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Flight Plan
1. Superstability and Limit Models

2. Limit Models and the Generic Pairs Conjecture

3. Dependence in AECs

4. Splintering in Dependent (f.o.) theories
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nλ(T )

Fix M a saturated model of cardinalityλ+. M is
unique up to isomorphism, butM may have several
non-isomorphic decompositions into〈Mi | i < λ+〉
eachMi of cardinalityλ. The functionnλ(T ) counts
these.

Defn. (Shelah)
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Superstability for T first order
Thm. Let T be a complete first order theory. TFAE:

1. T is superstable.

2. κ(T ) = ℵ0.

3. Any increasing union of saturated models is
saturated.

4. nλ(T ) = 1 for λ regular and> |T |+.
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Superstability for T first order
Thm. Let T be a complete first order theory. TFAE:

1. T is superstable.

2. κ(T ) = ℵ0.

3. Any increasing union of saturated models is
saturated.

4. nλ(T ) = 1 for λ regular and> |T |+.

5. the existence of and uniqueness of limit models of
cardinalityλ for λ ≥ |T |+.

Proof of the equivalence with 5:
2. ⇒ 5. is the result of Grossberg-V-Villaveces
restricted to FOL.
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Superstability for T first order
Thm. Let T be a complete first order theory. TFAE:

1. T is superstable.

2. κ(T ) = ℵ0.

3. Any increasing union of saturated models is
saturated.

4. nλ(T ) = 1 for λ regular and> |T |+.

5. the existence of and uniqueness of limit models of
cardinalityλ for λ ≥ |T |+.

Proof of the equivalence with 5:
2. ⇒ 5. is the result of Grossberg-V-Villaveces
restricted to FOL.

5. ⇒ 4. Sketch on board.
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Limit Models
Defn. M1 is said to beuniversal overM0 provided
that for everyN extendingM0 of cardinality‖M0‖,
there exists aK-mappingf : N → M1 with
f ↾ M0 = idM0

.
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Defn. M ∗ is a(µ, α)-limit model overM provided
there exists a≺K-increasing and continuous chain of
models〈Mi ∈ K | i < α〉 such thatM0 = M ,
⋃

i<α Mi = M ∗, ‖Mi‖ = µ andMi+1 is universal over
Mi.
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nλ(T ) for T Strictly Stable
nλ(T ) = 2.
The two generic models are a saturated model and a
(λ,ℵ0)-limit model.
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Generic Pairs Conjecture
Conj. (Shelah 877) LetT be a complete first order
theory. Suppose thatλ = λ<λ > |T | and2λ = λ+.
T has NIP iffnλ,λ(T ) = 1.

Definenλ,λ(T ) on board.

The unique pair of models in the cases that
nλ,λ(T ) = 1 is called thegeneric pair.
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Dependence in AECs
In light of significant progress on the GPC, we say an
AEC K is λ-dependentif and only if nλ,λ(K) = 1.
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Dependence in AECs
In light of significant progress on the GPC, we say an
AEC K is λ-dependentif and only if nλ,λ(K) = 1.

Fact:λ-stability (in the sense of counting
Galois-types) impliesλ-dependence.

In this case, the generic pair is(M1,M0) whereM1 is
a (λ, λ)-limit model overM0 andM0 is also a
(λ, λ)-limit model. If λ is regular, then these models
are also saturated.

Come Fly With Me:A Look at Dependence from Above – p. 8/12



One use of dependence
Question.Does categoricity inλ and few models in
λ+ imply the existence of a model if cardinalityλ++?
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One use of dependence
Question.Does categoricity inλ and few models in
λ+ imply the existence of a model if cardinalityλ++?

Some Propaganda.Excellence and The Main Gap
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One use of dependence
Question.Does categoricity inλ and few models in
λ+ imply the existence of a model if cardinalityλ++?

Thm. (Sh 576) LetK be an AEC andλ ≥ LS(K).
Suppose little more than2λ < 2λ+

< 2λ++

. If K is
categorical inλ andλ+ and in addition we know that
1 ≤ I(λ++,K) < 2λ++

thenK has a model of
cardinalityλ+++.
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One use of dependence
Question.Does categoricity inλ and few models in
λ+ imply the existence of a model if cardinalityλ++?

Thm. (Sh 576) LetK be an AEC andλ ≥ LS(K).
Suppose little more than2λ < 2λ+

< 2λ++

. If K is
categorical inλ andλ+ and in addition we know that
1 ≤ I(λ++,K) < 2λ++

thenK has a model of
cardinalityλ+++.

Thm. (GrVaVi ’08) Suppose thatλ+ < 2λ < 2λ+

, then
if K is λ-dependent, the answer is yes.
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The mechanics
Defn. A typep = tp(a/M) is said toλ-splinter over
N if and only if there are modelsN1, N2 ∈ Kλ and a
K-mappingf satisfying:

• N ≺K N1, N2,≺K M

• f : N1
∼= N2

• f fixesN setwise and

• tp(a/N) = tp(f(a)/N).

• f(p ↾ N1) 6= p ↾ N2.
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The mechanics
Defn. A typep = tp(a/M) is said toλ-splinter over
N if and only if there are modelsN1, N2 ∈ Kλ and a
K-mappingf satisfying:

• N ≺K N1, N2,≺K M

• f : N1
∼= N2

• f fixesN setwise and

• tp(a/N) = tp(f(a)/N).

• f(p ↾ N1) 6= p ↾ N2.

Strong-splitting−→ Splitting
−→
8 Splintering

Compare this definition to splitting.
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Splintering in NIP Theories p1
Invariance

Monotonicity: with respect to the domain
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Splintering in NIP Theories p1
Invariance

Monotonicity: with respect to the domain

Existence:
Let (M,N) be a generic pair of cardinalityλ and
p ∈ S(M) non-algebraic so that the size ofp’s
conjugacy class with respect toAut(M) is≤ λ
(weaker than assuming invariant).
Then there existsN ′ ≺ M so that(M,N ′) is generic
andp does notλ-splinter overN ′.
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Splintering in NIP Theories p2
Uniqueness and Extension:Forp ∈ S(M) which does
notλ-splinter overN , if (M,N) contains a copy of
the generic pair andM ′ is an extension ofM of
cardinalityλ, then there is a uniqueq ∈ S(M ′)
extendingp which does notλ-splinter overN .
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Splintering in NIP Theories p2
Uniqueness and Extension:Forp ∈ S(M) which does
notλ-splinter overN , if (M,N) contains a copy of
the generic pair andM ′ is an extension ofM of
cardinalityλ, then there is a uniqueq ∈ S(M ′)
extendingp which does notλ-splinter overN .

Continuity: For 〈Mi | i < α〉 an increasing chain of
models of length< λ+ so that each pair of models
contains a copy of the generic pair, then for
p ∈ S(

⋃

i<α Mi) if p ↾ Mi does notλ-splinter overM0

for everyi, thenp does notλ-splinter overM0.
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