Come Fly With Me: A Look at Dependence from Above

Monica VanDieren

Department of Mathematics Robert Morris University

Flight Plan

- 1. Superstability and Limit Models
- 2. Limit Models and the Generic Pairs Conjecture
- 3. Dependence in AECs
- 4. Splintering in Dependent (f.o.) theories

$$n_{\lambda}(T)$$

Fix M a saturated model of cardinality λ^+ . M is unique up to isomorphism, but M may have several non-isomorphic decompositions into $\langle M_i \mid i < \lambda^+ \rangle$ each M_i of cardinality λ . The function $n_{\lambda}(T)$ counts these.

Defn. (Shelah)

$$n_{\lambda}(T) = \min \left\{ |M_i/\cong| \middle| \begin{array}{c} E \text{ is a club on } \lambda^+ \text{ and} \\ \langle M_i \mid i < \lambda^+ \rangle \text{ is an inc} \\ \text{and continuous decomp} \\ \text{of } M \end{array} \right\}$$

Superstability for T first order

Thm. Let T be a complete first order theory. TFAE:

- 1. T is superstable.
- 2. $\kappa(T) = \aleph_0$.
- 3. Any increasing union of saturated models is saturated.
- 4. $n_{\lambda}(T) = 1$ for λ regular and $> |T|^{+}$.

Superstability for T first order

Thm. Let T be a complete first order theory. TFAE:

- 1. T is superstable.
- 2. $\kappa(T) = \aleph_0$.
- 3. Any increasing union of saturated models is saturated.
- 4. $n_{\lambda}(T) = 1$ for λ regular and $> |T|^{+}$.
- 5. the existence of and uniqueness of limit models of cardinality λ for $\lambda \geq |T|^+$.

Proof of the equivalence with 5:

 $2. \Rightarrow 5.$ is the result of Grossberg-V-Villaveces restricted to FOL.

Superstability for T first order

Thm. Let T be a complete first order theory. TFAE:

- 1. T is superstable.
- 2. $\kappa(T) = \aleph_0$.
- 3. Any increasing union of saturated models is saturated.
- 4. $n_{\lambda}(T) = 1$ for λ regular and $> |T|^{+}$.
- 5. the existence of and uniqueness of limit models of cardinality λ for $\lambda \geq |T|^+$.

Proof of the equivalence with 5:

- $2. \Rightarrow 5.$ is the result of Grossberg-V-Villaveces restricted to FOL.
- $5. \Rightarrow 4.$ Sketch on board.

Limit Models

Defn. M_1 is said to be universal over M_0 provided that for every N extending M_0 of cardinality $||M_0||$, there exists a \mathcal{K} -mapping $f: N \to M_1$ with $f \upharpoonright M_0 = id_{M_0}$.

Limit Models

Defn. M_1 is said to be universal over M_0 provided that for every N extending M_0 of cardinality $||M_0||$, there exists a \mathcal{K} -mapping $f: N \to M_1$ with $f \upharpoonright M_0 = id_{M_0}$.

Defn. M^* is a (μ, α) -limit model over M provided there exists a $\prec_{\mathcal{K}}$ -increasing and continuous chain of models $\langle M_i \in \mathcal{K} \mid i < \alpha \rangle$ such that $M_0 = M$, $\bigcup_{i < \alpha} M_i = M^*$, $||M_i|| = \mu$ and M_{i+1} is universal over M_i .

$\mathbf{n}_{\lambda}(T)$ for T Strictly Stable

$$\mathbf{n}_{\lambda}(T)=2.$$

The two generic models are a saturated model and a (λ, \aleph_0) -limit model.

Generic Pairs Conjecture

Conj. (Shelah 877) Let T be a complete first order theory. Suppose that $\lambda = \lambda^{<\lambda} > |T|$ and $2^{\lambda} = \lambda^{+}$. T has NIP iff $\mathbf{n}_{\lambda,\lambda}(T) = 1$.

Define $\mathbf{n}_{\lambda,\lambda}(T)$ on board.

The unique pair of models in the cases that $\mathbf{n}_{\lambda,\lambda}(T)=1$ is called the generic pair.

Dependence in AECs

In light of significant progress on the GPC, we say an AEC \mathcal{K} is λ -dependent if and only if $\mathbf{n}_{\lambda,\lambda}(\mathcal{K}) = 1$.

Dependence in AECs

In light of significant progress on the GPC, we say an AEC \mathcal{K} is λ -dependent if and only if $\mathbf{n}_{\lambda,\lambda}(\mathcal{K}) = 1$.

Fact: λ -stability (in the sense of counting Galois-types) implies λ -dependence.

In this case, the generic pair is (M_1, M_0) where M_1 is a (λ, λ) -limit model over M_0 and M_0 is also a (λ, λ) -limit model. If λ is regular, then these models are also saturated.

Question. Does categoricity in λ and few models in λ^+ imply the existence of a model if cardinality λ^{++} ?

Question. Does categoricity in λ and few models in λ^+ imply the existence of a model if cardinality λ^{++} ? Some Propaganda. Excellence and The Main Gap

Question. Does categoricity in λ and few models in λ^+ imply the existence of a model if cardinality λ^{++} ?

Thm. (Sh 576) Let \mathcal{K} be an AEC and $\lambda \geq \mathrm{LS}(\mathcal{K})$. Suppose little more than $2^{\lambda} < 2^{\lambda^+} < 2^{\lambda^{++}}$. If \mathcal{K} is categorical in λ and λ^+ and in addition we know that $1 \leq \mathrm{I}(\lambda^{++}, \mathcal{K}) < 2^{\lambda^{++}}$ then \mathcal{K} has a model of cardinality λ^{+++} .

Question. Does categoricity in λ and few models in λ^+ imply the existence of a model if cardinality λ^{++} ?

Thm. (Sh 576) Let \mathcal{K} be an AEC and $\lambda \geq \mathrm{LS}(\mathcal{K})$. Suppose little more than $2^{\lambda} < 2^{\lambda^+} < 2^{\lambda^{++}}$. If \mathcal{K} is categorical in λ and λ^+ and in addition we know that $1 \leq \mathrm{I}(\lambda^{++}, \mathcal{K}) < 2^{\lambda^{++}}$ then \mathcal{K} has a model of cardinality λ^{+++} .

Thm. (GrVaVi '08) Suppose that $\lambda^+ < 2^{\lambda} < 2^{\lambda^+}$, then if \mathcal{K} is λ -dependent, the answer is yes.

The mechanics

Defn. A type $p = \operatorname{tp}(a/M)$ is said to λ -splinter over N if and only if there are models $N_1, N_2 \in \mathcal{K}_{\lambda}$ and a \mathcal{K} -mapping f satisfying:

- $N \prec_{\mathcal{K}} N_1, N_2, \prec_{\mathcal{K}} M$
- \bullet $f: N_1 \cong N_2$
- f fixes N setwise and
- $\operatorname{tp}(a/N) = \operatorname{tp}(f(a)/N)$.
- $f(p \upharpoonright N_1) \neq p \upharpoonright N_2$.

The mechanics

Defn. A type $p = \operatorname{tp}(a/M)$ is said to λ -splinter over N if and only if there are models $N_1, N_2 \in \mathcal{K}_{\lambda}$ and a \mathcal{K} -mapping f satisfying:

- $N \prec_{\mathcal{K}} N_1, N_2, \prec_{\mathcal{K}} M$
- \bullet $f: N_1 \cong N_2$
- f fixes N setwise and
- $\operatorname{tp}(a/N) = \operatorname{tp}(f(a)/N)$.
- $f(p \upharpoonright N_1) \neq p \upharpoonright N_2$.

Strong-splitting \longrightarrow Splitting \rightleftarrows Splintering Compare this definition to splitting.

Invariance

Monotonicity: with respect to the domain

Invariance

Monotonicity: with respect to the domain

Existence:

Let (M, N) be a generic pair of cardinality λ and $p \in S(M)$ non-algebraic so that the size of p's conjugacy class with respect to $\operatorname{Aut}(M)$ is $\leq \lambda$ (weaker than assuming invariant).

Then there exists $N' \prec M$ so that (M, N') is generic and p does not λ -splinter over N'.

Uniqueness and Extension: For $p \in S(M)$ which does not λ -splinter over N, if (M, N) contains a copy of the generic pair and M' is an extension of M of cardinality λ , then there is a unique $q \in S(M')$ extending p which does not λ -splinter over N.

Uniqueness and Extension: For $p \in S(M)$ which does not λ -splinter over N, if (M, N) contains a copy of the generic pair and M' is an extension of M of cardinality λ , then there is a unique $q \in S(M')$ extending p which does not λ -splinter over N.

Continuity: For $\langle M_i \mid i < \alpha \rangle$ an increasing chain of models of length $< \lambda^+$ so that each pair of models contains a copy of the generic pair, then for $p \in S(\bigcup_{i < \alpha} M_i)$ if $p \upharpoonright M_i$ does not λ -splinter over M_0 for every i, then p does not λ -splinter over M_0 .