Come Fly With Me: A Look at Dependence from Above Monica VanDieren Department of Mathematics Robert Morris University ### Flight Plan - 1. Superstability and Limit Models - 2. Limit Models and the Generic Pairs Conjecture - 3. Dependence in AECs - 4. Splintering in Dependent (f.o.) theories $$n_{\lambda}(T)$$ Fix M a saturated model of cardinality λ^+ . M is unique up to isomorphism, but M may have several non-isomorphic decompositions into $\langle M_i \mid i < \lambda^+ \rangle$ each M_i of cardinality λ . The function $n_{\lambda}(T)$ counts these. Defn. (Shelah) $$n_{\lambda}(T) = \min \left\{ |M_i/\cong| \middle| \begin{array}{c} E \text{ is a club on } \lambda^+ \text{ and} \\ \langle M_i \mid i < \lambda^+ \rangle \text{ is an inc} \\ \text{and continuous decomp} \\ \text{of } M \end{array} \right\}$$ ### Superstability for T first order Thm. Let T be a complete first order theory. TFAE: - 1. T is superstable. - 2. $\kappa(T) = \aleph_0$. - 3. Any increasing union of saturated models is saturated. - 4. $n_{\lambda}(T) = 1$ for λ regular and $> |T|^{+}$. #### Superstability for T first order Thm. Let T be a complete first order theory. TFAE: - 1. T is superstable. - 2. $\kappa(T) = \aleph_0$. - 3. Any increasing union of saturated models is saturated. - 4. $n_{\lambda}(T) = 1$ for λ regular and $> |T|^{+}$. - 5. the existence of and uniqueness of limit models of cardinality λ for $\lambda \geq |T|^+$. #### Proof of the equivalence with 5: $2. \Rightarrow 5.$ is the result of Grossberg-V-Villaveces restricted to FOL. #### Superstability for T first order Thm. Let T be a complete first order theory. TFAE: - 1. T is superstable. - 2. $\kappa(T) = \aleph_0$. - 3. Any increasing union of saturated models is saturated. - 4. $n_{\lambda}(T) = 1$ for λ regular and $> |T|^{+}$. - 5. the existence of and uniqueness of limit models of cardinality λ for $\lambda \geq |T|^+$. #### Proof of the equivalence with 5: - $2. \Rightarrow 5.$ is the result of Grossberg-V-Villaveces restricted to FOL. - $5. \Rightarrow 4.$ Sketch on board. #### **Limit Models** Defn. M_1 is said to be universal over M_0 provided that for every N extending M_0 of cardinality $||M_0||$, there exists a \mathcal{K} -mapping $f: N \to M_1$ with $f \upharpoonright M_0 = id_{M_0}$. #### **Limit Models** Defn. M_1 is said to be universal over M_0 provided that for every N extending M_0 of cardinality $||M_0||$, there exists a \mathcal{K} -mapping $f: N \to M_1$ with $f \upharpoonright M_0 = id_{M_0}$. Defn. M^* is a (μ, α) -limit model over M provided there exists a $\prec_{\mathcal{K}}$ -increasing and continuous chain of models $\langle M_i \in \mathcal{K} \mid i < \alpha \rangle$ such that $M_0 = M$, $\bigcup_{i < \alpha} M_i = M^*$, $||M_i|| = \mu$ and M_{i+1} is universal over M_i . # $\mathbf{n}_{\lambda}(T)$ for T Strictly Stable $$\mathbf{n}_{\lambda}(T)=2.$$ The two generic models are a saturated model and a (λ, \aleph_0) -limit model. ### Generic Pairs Conjecture Conj. (Shelah 877) Let T be a complete first order theory. Suppose that $\lambda = \lambda^{<\lambda} > |T|$ and $2^{\lambda} = \lambda^{+}$. T has NIP iff $\mathbf{n}_{\lambda,\lambda}(T) = 1$. Define $\mathbf{n}_{\lambda,\lambda}(T)$ on board. The unique pair of models in the cases that $\mathbf{n}_{\lambda,\lambda}(T)=1$ is called the generic pair. #### Dependence in AECs In light of significant progress on the GPC, we say an AEC \mathcal{K} is λ -dependent if and only if $\mathbf{n}_{\lambda,\lambda}(\mathcal{K}) = 1$. #### Dependence in AECs In light of significant progress on the GPC, we say an AEC \mathcal{K} is λ -dependent if and only if $\mathbf{n}_{\lambda,\lambda}(\mathcal{K}) = 1$. Fact: λ -stability (in the sense of counting Galois-types) implies λ -dependence. In this case, the generic pair is (M_1, M_0) where M_1 is a (λ, λ) -limit model over M_0 and M_0 is also a (λ, λ) -limit model. If λ is regular, then these models are also saturated. Question. Does categoricity in λ and few models in λ^+ imply the existence of a model if cardinality λ^{++} ? Question. Does categoricity in λ and few models in λ^+ imply the existence of a model if cardinality λ^{++} ? Some Propaganda. Excellence and The Main Gap Question. Does categoricity in λ and few models in λ^+ imply the existence of a model if cardinality λ^{++} ? Thm. (Sh 576) Let \mathcal{K} be an AEC and $\lambda \geq \mathrm{LS}(\mathcal{K})$. Suppose little more than $2^{\lambda} < 2^{\lambda^+} < 2^{\lambda^{++}}$. If \mathcal{K} is categorical in λ and λ^+ and in addition we know that $1 \leq \mathrm{I}(\lambda^{++}, \mathcal{K}) < 2^{\lambda^{++}}$ then \mathcal{K} has a model of cardinality λ^{+++} . Question. Does categoricity in λ and few models in λ^+ imply the existence of a model if cardinality λ^{++} ? Thm. (Sh 576) Let \mathcal{K} be an AEC and $\lambda \geq \mathrm{LS}(\mathcal{K})$. Suppose little more than $2^{\lambda} < 2^{\lambda^+} < 2^{\lambda^{++}}$. If \mathcal{K} is categorical in λ and λ^+ and in addition we know that $1 \leq \mathrm{I}(\lambda^{++}, \mathcal{K}) < 2^{\lambda^{++}}$ then \mathcal{K} has a model of cardinality λ^{+++} . Thm. (GrVaVi '08) Suppose that $\lambda^+ < 2^{\lambda} < 2^{\lambda^+}$, then if \mathcal{K} is λ -dependent, the answer is yes. #### The mechanics Defn. A type $p = \operatorname{tp}(a/M)$ is said to λ -splinter over N if and only if there are models $N_1, N_2 \in \mathcal{K}_{\lambda}$ and a \mathcal{K} -mapping f satisfying: - $N \prec_{\mathcal{K}} N_1, N_2, \prec_{\mathcal{K}} M$ - \bullet $f: N_1 \cong N_2$ - f fixes N setwise and - $\operatorname{tp}(a/N) = \operatorname{tp}(f(a)/N)$. - $f(p \upharpoonright N_1) \neq p \upharpoonright N_2$. #### The mechanics Defn. A type $p = \operatorname{tp}(a/M)$ is said to λ -splinter over N if and only if there are models $N_1, N_2 \in \mathcal{K}_{\lambda}$ and a \mathcal{K} -mapping f satisfying: - $N \prec_{\mathcal{K}} N_1, N_2, \prec_{\mathcal{K}} M$ - \bullet $f: N_1 \cong N_2$ - f fixes N setwise and - $\operatorname{tp}(a/N) = \operatorname{tp}(f(a)/N)$. - $f(p \upharpoonright N_1) \neq p \upharpoonright N_2$. Strong-splitting \longrightarrow Splitting \rightleftarrows Splintering Compare this definition to splitting. Invariance Monotonicity: with respect to the domain #### Invariance Monotonicity: with respect to the domain #### **Existence:** Let (M, N) be a generic pair of cardinality λ and $p \in S(M)$ non-algebraic so that the size of p's conjugacy class with respect to $\operatorname{Aut}(M)$ is $\leq \lambda$ (weaker than assuming invariant). Then there exists $N' \prec M$ so that (M, N') is generic and p does not λ -splinter over N'. Uniqueness and Extension: For $p \in S(M)$ which does not λ -splinter over N, if (M, N) contains a copy of the generic pair and M' is an extension of M of cardinality λ , then there is a unique $q \in S(M')$ extending p which does not λ -splinter over N. Uniqueness and Extension: For $p \in S(M)$ which does not λ -splinter over N, if (M, N) contains a copy of the generic pair and M' is an extension of M of cardinality λ , then there is a unique $q \in S(M')$ extending p which does not λ -splinter over N. Continuity: For $\langle M_i \mid i < \alpha \rangle$ an increasing chain of models of length $< \lambda^+$ so that each pair of models contains a copy of the generic pair, then for $p \in S(\bigcup_{i < \alpha} M_i)$ if $p \upharpoonright M_i$ does not λ -splinter over M_0 for every i, then p does not λ -splinter over M_0 .