Amalgamation properties for types in stable theories and beyond

John Goodrick

University of Maryland, College Park

Banff February 2009

Introduction

We ask: when can certain systems of types be amalgamated, and when is the result unique?

This yields properties such as n-existence (or the n amalgamation property) and n-uniqueness.

Many natural algebraic examples have these properties, and they have nice consequences, such as:

Theorem

(De Piro, Kim, Young) If T is simple and has 5 complete amalgamation over models, then the existence of a hyperdefinable group configuration implies the existence of a hyperdefinable group.

More recently, Hrushovski showed that in stable T, 4-existence is equivalent to the eliminability of "generalized imaginary sorts" as well as the collapsing of certain definable groupoids.

The 3-amalgamation problem

3-amalgamation is about the following question:

Question

Given complete types $p_{12}(x_1, x_2)$, $p_{23}(x_2, x_3)$, and $p_{13}(x_1, x_3)$, when is $p_{12} \cup p_{23} \cup p_{13}$ consistent?

Equivalently: given any realization (a_1, a_2) of p_{12} , is there a common realization of the two types $p_{23}(a_2, x_3)$ and $p_{13}(a_1, x_3)$?

A minimal necessary requirement is coherence: $p_{12} \upharpoonright x_1 = p_{13} \upharpoonright x_1$, $p_{12} \upharpoonright x_2 = p_{23} \upharpoonright x_2$, and $p_{13} \upharpoonright x_3 = p_{23} \upharpoonright x_3$.

Failures of 3-amalgamation

Question

Given complete types $p_{12}(x_1, x_2)$, $p_{23}(x_2, x_3)$, and $p_{13}(x_1, x_3)$, when is $p_{12} \cup p_{23} \cup p_{13}$ consistent?

But many coherent triples of types cannot be amalgamated, e.g.:

If the universe is linearly ordered by "<," $x_1 < x_2 \in p_{12}$, $x_2 < x_3 \in p_{23}$, and $x_3 < x_1 \in p_{13}$;

Or in a theory with an equivalence relation E with exactly two classes, if $\neg E(x_i, x_j) \in p_{ij}$.

3-amalgamation in stable theories

Theorem

Suppose that T is stable, $B = \operatorname{acl}^{eq}(B)$, $a_1 \bigcup_B a_2$, and the types $p_1(a_1, x_3)$ and $p_2(a_2, x_3)$ are nonforking extensions of a common type $p(x_3) \in S(B)$. Then there is a realization a_3 of $p_1(a_1, x_3) \cup p_2(a_2, x_3)$ such that $a_3 \bigcup_B a_1 a_2$.

Proof.

Pick any a_3 realizing $p_1(a_1, x_3)$ such that $a_3 \perp_{Ba_1} a_2$. By stationarity of p, $a_3 \models p_2(a_2, x_3)$.

3-amalgamation in simple theories

Kim and Pillay generalized this to simple theories:

$\mathsf{Theorem}$

Suppose that T is simple, $B = bdd^{heq}(B)$, $a_1 \bigcup_B a_2$, and the types $p_1(a_1, x_3)$ and $p_2(a_2, x_3)$ are nonforking extensions of a common type $p(x_3) \in S(B)$. Then there is a realization a_3 of $p_1(a_1, x_3) \cup p_2(a_2, x_3)$ such that $a_3 \bigcup_B a_1 a_2$.

If T has elimination of hyperimaginaries (e.g. if T is supersimple), then $B = \operatorname{acl}^{eq}(B)$ is enough.

From 3 to n

In the terminology we are about to define, we have shown that all stable theories have 3-existence (or the 3-amalgamation property).

Now we will generalize this property from 3 to n.

n-amalgamation problems

Notation: $\mathscr{P}^-(n) = \{s : s \subsetneq \{1, \dots, n\}\}.$

Definition

- 1. An <u>n-amalgamation problem</u> is a functor $A: \mathscr{P}^-(n) \to \mathscr{P}(\mathfrak{C})$, where the maps on the right are elementary.
- 2. A <u>solution</u> to an *n*-amalgamation problem A is an extension to a functor $A': \mathcal{P}(n) \to \mathcal{P}(\mathfrak{C})$ (again with elmentary maps on the right).

With A as above and $s \subseteq t \subsetneq n$, let $\tau_t^s : A(s) \to A(t)$ be the image of the inclusion $s \subseteq t$.

Fuctoriality says: $\tau_u^t \circ \tau_t^s = \tau_u^s$ whenever this makes sense.

[Draw picture of 3-amalgamation problem]

Bases of amalgamation

Definition

If A is an *n*-amalgamation problem, then A is <u>over B</u> if $B = A(\emptyset)$ and for every $s \subsetneq n$, τ_s^{\emptyset} fixes B pointwise.

If we are looking at the solutions of A, clearly we may assume that A is over $A(\emptyset)$ (just shift the A(s)'s by appropriate autmorphisms).

From now on we always assume A is over $A(\emptyset)$.

Independent amalgamation problems

We write "i" for $\{i\}$ to simplify notation.

Definition

An n-amalgamation problem A is independent if for every s s.t.

$$\emptyset \neq s \subsetneq n$$
,

- ② If $t \subseteq s$, then $\tau_s^t(A(t)) = \mathsf{bdd}^{heq}(A(\emptyset) \cup \{\tau_s^i(A(i)) : i \in t\})$.

(If T is stable, replace "bdd^{heq}" by "acl^{eq}.")

So if the au-maps are all inclusions, then $A(t) \perp_{A(t \cap u)} A(u)$

Independent solutions to A are defined in a similar way

Independent amalgamation problems

We write "i" for $\{i\}$ to simplify notation.

Definition

An n-amalgamation problem A is independent if for every s s.t.

$$\emptyset \neq s \subsetneq n$$
,

- ② If $t \subseteq s$, then $\tau_s^t(A(t)) = \mathsf{bdd}^{heq}(A(\emptyset) \cup \{\tau_s^i(A(i)) : i \in t\})$.

(If T is stable, replace "bdd^{heq}" by "acl^{eq}.")

So if the au-maps are all inclusions, then $A(t) \perp_{A(t \cap u)} A(u)$.

Independent solutions to A are defined in a similar way.

n-existence, *n*-uniqueness

Assume *T* is simple.

Definition

- 1. T has \underline{n} -existence if every independent n-amalgamation problem has an independent solution.
- 2. T has <u>n-uniqueness</u> if every independent *n*-amalgamation problem A has at most one independent solution up to isomorphism over A.
- 3. T has <u>n</u>-complete amalgamation if for every k with $3 \le k \le n$, T has k-existence.

n-existence and *n*-uniqueness continued

So *n*-existence and *n*-uniqueness give two different ways to classify simple theories:

- 2-existence is true in any simple theory, by the existence of nonforking extensions;
- 3-existence is true in any stable theory, and all known examples of simple theories;
- 4-existence can fail even in stable theories (we'll see an example).
- 2-uniqueness is true in any stable theory (by stationarity of strong types), but fails for unstable simple T;
- 3-uniqueness can fail even for stable T.

Example: the random graph

The theory of a random graph is simple and has n-existence for all $n \ge 2$.

But if $A(i) = a_i$ (for i = 1, 2), then there are two solutions to the 2-amalgamation problem A: one with an edge between the points and one with no edge. So the random graph does not have 2-uniqueness.

Example: random hypergraphs

A <u>hypergraph</u> is a set with a symmetric ternary relation R.

The theory of a random "tetrahedron-free hypergraph" (where *R* cannot hold of every 3-element subset of a 4-element set) turns out to be simple.

However, it fails 4-existence: consider a 4-amalgamation problem where $A(\{i,j,k\})$ is a triple of points on which R holds.

Similarly, the *n*-simplex-free hyper $^{n-3}$ graph is simple and has (n-1)-complete amalgamation but not *n*-existence.

"Q-example"

We now give an example of a stable T which fails 3-uniqueness.

Let I be some infinite set, $[I]^2$ is all 2-element subsets of I, $E\subseteq I\times [I]^2$ is set membership, $P=\{0,1\}\times [I]^2$, with projection map $\pi:P\to [I]^2$, And $Q\subseteq P\times P\times P$ be the set of all ((i,s),(j,t),(k,u)) such that:

- \bullet s, t, u are all distinct sets,
- ② $|s \cup t \cup u| = 3$, and
- i + j + k is even.

[Draw picture on blackboard]

$$T = \text{Th}(I, [I]^2, E, P, \pi, Q).$$

Q-example continued

$$T = \mathsf{Th}(I, [I]^2, E, P, \pi, Q)$$

Note that if $a, b \in I$, then $|\pi^{-1}(\{a, b\})| = 2$, so $\pi^{-1}(\{a, b\}) \subseteq \operatorname{acl}(a, b)$.

It turns out that T is totally categorical, hence stable.

Note that if Q(x, y, z) holds, then $z \in dcl(x, y)$.

Therefore, for any three distinct elements $a_1, a_2, a_3 \in I$, note that

$$\pi^{-1}(\{a_1,a_2\}) \subseteq \operatorname{dcl}(\pi^{-1}(\{a_1,a_3\}) \cup \pi^{-1}(\{a_2,a_3\})).$$

Q-example continued

Given three distinct elements $a_1, a_2, a_3 \in I$, let A be the 3-amalgamation problem given by $A(\{i\}) = a_i$ and $A(\{i,j\}) = \operatorname{acl}(a_i, a_j)$.

There are two solutions A_1 , A_2 to A, defined by:

$$A_1(\{1,2,3\}) = A_2(\{1,2,3,\}) = \operatorname{acl}(\{a_1,a_2,a_3\});$$

All transition maps in A_1 are inclusion maps.

In A_2 , the transition maps $A(\{1,3\}) \to A_2(\{1,2,3\})$ and $A(\{2,3\}) \to A_2(\{1,2,3\})$ are inclusions, but the transition map $A(\{1,2\}) \to A_2(\{1,2,3\})$ fixes a_1 and a_2 but switches the two elements of $\pi^{-1}(\{a_1,a_2\})$.

 $A_1 \ncong A_2$ because of the relation Q on the fibers.

(n+1)-existence from $\leq n$ -uniqueness

Theorem

Suppose T is stable and T has k-uniqueness for all $2 \le k \le n$ (where $n \ge 2$). Then T has (n + 1)-existence.

Proof.

Suppose A is an independent (n+1)-amalgamation problem. Let $A'(\{1,\ldots,n+1\})$ be the algebraic closure of independent

copies of $A(\{1,\ldots,n\})$ and $A(\{n+1\})$.

Define maps $au_{1,\dots,n+1}^i:A(\{i\})\to A'(\{1,\dots,n+1\})$ in the natural way.

For any $i \leq n$, there is only one way to define the transition map $\tau_{1,\dots,n+1}^{i,n+1}:A(\{i,n+1\})\to A'(\{1,\dots,n+1\})$ (by 2-uniqueness). If n>3, 3-uniqueness implies there is a unique way to extend

these transition maps to "faces." Repeat using induction.

Characterizing 3-uniqueness in stable T

Theorem

(Hrushovski) If T is stable, then TFAE:

- T has 3-uniqueness;
- T has 4-existence;
- Every connected definable groupoid in T with finite automorphism groups is "equivalent" to a group.

Retractable groupoids

Definition

- 1. A groupoid is a category \mathscr{G} in which every morphism has a (unique, 2-sided) inverse.
- 2. A groupoid is <u>connected</u> if there is a morphism between any two objects.

In a connected groupoid, any two automorphism groups $Mor_{\mathscr{G}}(a,a)$ and $Mor_{\mathscr{G}}(b,b)$ are isomorphic. (Conjugate by $f \in Mor_{\mathscr{G}}(a,b)$.)

Definition

A connected definable groupoid \mathscr{G} is <u>retractable</u> if there is a definable family of commuting morphisms $\{f_{ab} \in \mathsf{Mor}_{\mathscr{A}}(a,b) : a,b \in \mathsf{Ob}_{\mathscr{A}}\}.$

Symmetric witnesses to non-3-uniqueness

Lemma

Suppose that T is stable. T does <u>not</u> have 3-uniqueness if and only if there is a set A, elements a_1 , a_2 , and a_3 , and elements f_{12} , f_{23} , and f_{31} such that:

- $2 f_{ij} \in \operatorname{acl}(Aa_ia_j) \setminus \operatorname{dcl}(Aa_ia_j);$
- If (i, j, k) is a cyclic permutation of (1, 2, 3), then $f_{ij} \in dcl(Af_{jk}f_{ki})$.

 $\{a_1, a_2, a_3, f_{12}, f_{23}, f_{31}\}$ as above is called a <u>symmetric witness to</u> non-3-uniqueness.

Non-retractable groupoids from failure of 3-uniqueness

Theorem

(G.-Kolesnikov) Suppose T is stable and $\{a_1, a_2, a_3, f_{12}, f_{23}, f_{31}\}$ is a symmetric witness to non-3-uniqueness over A.

Then $tp(acl(Aa_i)/acl(A))$ defines the object class of a connected \star -definable non-retractable groupoid \mathcal{G} , with

$$Mor_{\mathscr{G}}(a_1, a_2) = \{f' : f' \equiv_{Aa_1a_2} f_{12}\}.$$

Corollary

If T is stable, then T does not have 3-uniqueness if and only if there is a connected \star -definable groupoid with algebraically closed objects which is not retractable.

Generalizations?

Question

Does failure of n-uniqueness in stable T corresponded to the definability of a certain kind of "higher-dimensional groupoid" for n > 4?

There are various different notions of "*n*-category" and "*n*-groupoid" in the literature, and it is not clear which one is appropriate here.

Question

In stable T, is (n + 1)-existence equivalent to n-uniqueness (for $n \ge 4$)?

Generalized imaginaries

For stable T, Hrushovski proves there is an expansion \mathfrak{C}^* of the monster model \mathfrak{C} such that:

- 1. \mathfrak{C}^* is \mathfrak{C} plus a bounded collection of new sorts;
- 2. \mathfrak{C} is stably embedded in \mathfrak{C}^* ;
- 3. Each sort $S \in \mathfrak{C}^*$ admits a definable map into \mathfrak{C} with finite fibers;
- 4. \mathfrak{C}^* has *n*-uniqueness and *n*-existence for all *n*.

However, we lack an "explicit" description of the new sorts in \mathfrak{C}^* – presumably they are related to higher groupoids definable in \mathfrak{C} .

Forcing amalgamation for simple theories?

Question

If T is simple, is there an expansion $\mathfrak{C}^* \supseteq \mathfrak{C}$ with n-existence into which \mathfrak{C} is stably embedded?

Consistent amalgamation in rosy theories

What kinds of amalgmation can we expect in rosy theories?

O-minimal structures can't have 3-existence (we can't amalgamate $x_1 < x_2$, $x_2 < x_3$, and $x_3 < x_1$). But they do have the following property:

Definition

(T rosy) $T \text{ has } \underline{\text{consistent } n\text{-amalgamation}}$ if any thorn-independent n-amalgamation problem with a solution has a thorn-independent solution.

Consistent amalgamation continued

Theorem

(Onshuus) There is a rosy theory which does not have consistent 3-amalgamation.

The example he constructs is a variation of Hrushovski's *ab initio* construction, and has *U*-thorn-rank 1, but it is not dependent.

Conjecture

If T is rosy and NIP, then T has consistent 3-amalgamation.

Question

What about consistent n-amalgamation?

Works cited

- Tristram De Piro, Byunghan Kim, and Jessica Millar, "Constructing the hyperdefinable group from the group configuration," preprint.
- Clifton Ealy and Alf Onshuus, "Consistent amalgamation for thorn-forking," in preparation.
- John Goodrick and Alexei Kolesnikov, "Groupoids, covers, and 3-uniqueness," preprint.
- Ehud Hrushovski, "Groupoids, imaginaries, and finite covers," preprint.
- Byunghan Kim and Anand Pillay, "Simple theories," *Ann. of Pure and Appl. Logic*, **88** (1997), 149-164.