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Introduction

We ask: when can certain systems of types be amalgamated, and
when is the result unique?
This yields properties such as n-existence (or the n amalgamation
property) and n-uniqueness.
Many natural algebraic examples have these properties, and they
have nice consequences, such as:

Theorem

(De Piro, Kim, Young) If T is simple and has 5 complete
amalgamation over models, then the existence of a hyperdefinable
group configuration implies the existence of a hyperdefinable group.

More recently, Hrushovski showed that in stable T , 4-existence is
equivalent to the eliminability of “generalized imaginary sorts” as
well as the collapsing of certain definable groupoids.
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The 3-amalgamation problem

3-amalgamation is about the following question:

Question

Given complete types p12(x1, x2), p23(x2, x3), and p13(x1, x3), when
is p12 ∪ p23 ∪ p13 consistent?

Equivalently: given any realization (a1, a2) of p12, is there a
common realization of the two types p23(a2, x3) and p13(a1, x3)?

A minimal necessary requirement is coherence: p12 � x1 = p13 � x1,
p12 � x2 = p23 � x2, and p13 � x3 = p23 � x3.
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Failures of 3-amalgamation

Question

Given complete types p12(x1, x2), p23(x2, x3), and p13(x1, x3), when
is p12 ∪ p23 ∪ p13 consistent?

But many coherent triples of types cannot be amalgamated, e.g.:

If the universe is linearly ordered by “<,” x1 < x2 ∈ p12,
x2 < x3 ∈ p23, and x3 < x1 ∈ p13;

Or in a theory with an equivalence relation E with exactly two
classes, if ¬E (xi , xj) ∈ pij .
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3-amalgamation in stable theories

Theorem

Suppose that T is stable, B = acleq(B), a1 |̂ B
a2, and the types

p1(a1, x3) and p2(a2, x3) are nonforking extensions of a common
type p(x3) ∈ S(B). Then there is a realization a3 of
p1(a1, x3) ∪ p2(a2, x3) such that a3 |̂ B

a1a2.

Proof.

Pick any a3 realizing p1(a1, x3) such that a3 |̂ Ba1
a2. By

stationarity of p, a3 |= p2(a2, x3).
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3-amalgamation in simple theories

Kim and Pillay generalized this to simple theories:

Theorem

Suppose that T is simple, B = bddheq(B), a1 |̂ B
a2, and the

types p1(a1, x3) and p2(a2, x3) are nonforking extensions of a
common type p(x3) ∈ S(B). Then there is a realization a3 of
p1(a1, x3) ∪ p2(a2, x3) such that a3 |̂ B

a1a2.

If T has elimination of hyperimaginaries (e.g. if T is supersimple),
then B = acleq(B) is enough.
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From 3 to n

In the terminology we are about to define, we have shown that all
stable theories have 3-existence (or the 3-amalgamation property).

Now we will generalize this property from 3 to n.
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n-amalgamation problems

Notation: P−(n) = {s : s ( {1, . . . , n}}.

Definition

1. An n-amalgamation problem is a functor A : P−(n)→P(C),
where the maps on the right are elementary.
2. A solution to an n-amalgamation problem A is an extension to a
functor A′ : P(n)→P(C) (again with elmentary maps on the
right).

With A as above and s ⊆ t ( n, let τ s
t : A(s)→ A(t) be the image

of the inclusion s ⊆ t.

Fuctoriality says: τ t
u ◦ τ s

t = τ s
u whenever this makes sense.

[Draw picture of 3-amalgamation problem]
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Bases of amalgamation

Definition

If A is an n-amalgamation problem, then A is over B if B = A(∅)
and for every s ( n, τ∅s fixes B pointwise.

If we are looking at the solutions of A, clearly we may assume that
A is over A(∅) (just shift the A(s)’s by appropriate autmorphisms).

From now on we always assume A is over A(∅).
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Independent amalgamation problems

We write “i” for {i} to simplify notation.

Definition

An n-amalgamation problem A is independent if for every s s.t.
∅ 6= s ( n,

1
{
τ i
s (A(i)) : i ∈ s

}
is an A(∅)-independent set;

2 If t ⊆ s, then τ t
s (A(t)) = bddheq

(
A(∅) ∪

{
τ i
s (A(i)) : i ∈ t

})
.

(If T is stable, replace “bddheq” by “acleq.”)

So if the τ -maps are all inclusions, then A(t) |̂
A(t∩u)

A(u).

Independent solutions to A are defined in a similar way.
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n-existence, n-uniqueness

Assume T is simple.

Definition

1. T has n-existence if every independent n-amalgamation problem
has an independent solution.
2. T has n-uniqueness if every independent n-amalgamation
problem A has at most one independent solution up to
isomorphism over A.
3. T has n-complete amalgamation if for every k with 3 ≤ k ≤ n,
T has k-existence.
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n-existence and n-uniqueness continued

So n-existence and n-uniqueness give two different ways to classify
simple theories:

2-existence is true in any simple theory, by the existence of
nonforking extensions;
3-existence is true in any stable theory, and all known examples of
simple theories;
4-existence can fail even in stable theories (we’ll see an example).

2-uniqueness is true in any stable theory (by stationarity of strong
types), but fails for unstable simple T ;
3-uniqueness can fail even for stable T .
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Example: the random graph

The theory of a random graph is simple and has n-existence for all
n ≥ 2.

But if A(i) = ai (for i = 1, 2), then there are two solutions to the
2-amalgamation problem A: one with an edge between the points
and one with no edge. So the random graph does not have
2-uniqueness.
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Example: random hypergraphs

A hypergraph is a set with a symmetric ternary relation R.

The theory of a random “tetrahedron-free hypergraph” (where R
cannot hold of every 3-element subset of a 4-element set) turns
out to be simple.

However, it fails 4-existence: consider a 4-amalgamation problem
where A({i , j , k}) is a triple of points on which R holds.

Similarly, the n-simplex-free hypern−3graph is simple and has
(n − 1)-complete amalgamation but not n-existence.
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“Q-example”

We now give an example of a stable T which fails 3-uniqueness.

Let I be some infinite set,
[I ]2 is all 2-element subsets of I ,
E ⊆ I × [I ]2 is set membership,
P = {0, 1} × [I ]2, with projection map π : P → [I ]2,
And Q ⊆ P ×P ×P be the set of all ((i , s), (j , t), (k , u)) such that:

1 s, t, u are all distinct sets,

2 |s ∪ t ∪ u| = 3, and

3 i + j + k is even.

[Draw picture on blackboard]

T = Th(I , [I ]2 ,E ,P, π,Q).
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Q-example continued

T = Th(I , [I ]2 ,E ,P, π,Q)

Note that if a, b ∈ I , then |π−1({a, b})| = 2, so
π−1({a, b}) ⊆ acl(a, b).

It turns out that T is totally categorical, hence stable.

Note that if Q(x , y , z) holds, then z ∈ dcl(x , y).

Therefore, for any three distinct elements a1, a2, a3 ∈ I , note that

π−1({a1, a2}) ⊆ dcl(π−1({a1, a3}) ∪ π−1({a2, a3})).
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Q-example continued

Given three distinct elements a1, a2, a3 ∈ I , let A be the
3-amalgamation problem given by A({i}) = ai and
A({i , j}) = acl(ai , aj).

There are two solutions A1,A2 to A, defined by:

A1({1, 2, 3}) = A2({1, 2, 3, }) = acl({a1, a2, a3});

All transition maps in A1 are inclusion maps.

In A2, the transition maps A({1, 3})→ A2({1, 2, 3}) and
A({2, 3})→ A2({1, 2, 3}) are inclusions, but the transition map
A({1, 2})→ A2({1, 2, 3}) fixes a1 and a2 but switches the two
elements of π−1({a1, a2}).

A1 � A2 because of the relation Q on the fibers.
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(n + 1)-existence from ≤ n-uniqueness

Theorem

Suppose T is stable and T has k-uniqueness for all 2 ≤ k ≤ n
(where n ≥ 2). Then T has (n + 1)-existence.

Proof.

Suppose A is an independent (n + 1)-amalgamation problem.
Let A′({1, . . . , n + 1}) be the algebraic closure of independent
copies of A({1, . . . , n}) and A({n + 1}).
Define maps τ i

1,...,n+1 : A({i})→ A′({1, . . . , n + 1}) in the natural
way.
For any i ≤ n, there is only one way to define the transition map
τ i ,n+1
1,...n+1 : A({i , n + 1})→ A′({1, . . . , n + 1}) (by 2-uniqueness).

If n > 3, 3-uniqueness implies there is a unique way to extend
these transition maps to “faces.” Repeat using induction.
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Characterizing 3-uniqueness in stable T

Theorem

(Hrushovski) If T is stable, then TFAE:

1 T has 3-uniqueness;

2 T has 4-existence;

3 Every connected definable groupoid in T with finite
automorphism groups is “equivalent” to a group.
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Retractable groupoids

Definition

1. A groupoid is a category G in which every morphism has a
(unique, 2-sided) inverse.
2. A groupoid is connected if there is a morphism between any two
objects.

In a connected groupoid, any two automorphism groups MorG (a, a)
and MorG (b, b) are isomorphic. (Conjugate by f ∈ MorG (a, b).)

Definition

A connected definable groupoid G is retractable if there is a
definable family of commuting morphisms
{fab ∈ MorG (a, b) : a, b ∈ ObG }.
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Symmetric witnesses to non-3-uniqueness

Lemma

Suppose that T is stable. T does not have 3-uniqueness if and
only if there is a set A, elements a1, a2, and a3, and elements
f12, f23, and f31 such that:

1 a1, a2, a3 is a Morley sequence over A;

2 fij ∈ acl(Aaiaj) \ dcl(Aaiaj);

3 a1a2f12 ≡A a2a3f23 ≡A a3a1f31;

4 If (i , j , k) is a cyclic permutation of (1, 2, 3), then
fij ∈ dcl(Afjk fki ).

{a1, a2, a3, f12, f23, f31} as above is called a symmetric witness to
non-3-uniqueness.
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Non-retractable groupoids from failure of 3-uniqueness

Theorem

(G.-Kolesnikov) Suppose T is stable and {a1, a2, a3, f12, f23, f31} is
a symmetric witness to non-3-uniqueness over A.
Then tp(acl(Aai )/acl(A)) defines the object class of a connected
?-definable non-retractable groupoid G , with
MorG (a1, a2) = {f ′ : f ′ ≡Aa1a2 f12}.

Corollary

If T is stable, then T does not have 3-uniqueness if and only if
there is a connected ?-definable groupoid with algebraically closed
objects which is not retractable.
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Generalizations?

Question

Does failure of n-uniqueness in stable T corresponded to the
definability of a certain kind of “higher-dimensional groupoid” for
n ≥ 4?

There are various different notions of “n-category” and
“n-groupoid” in the literature, and it is not clear which one is
appropriate here.

Question

In stable T , is (n + 1)-existence equivalent to n-uniqueness (for
n ≥ 4)?
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Generalized imaginaries

For stable T , Hrushovski proves there is an expansion C∗ of the
monster model C such that:

1. C∗ is C plus a bounded collection of new sorts;

2. C is stably embedded in C∗;

3. Each sort S ∈ C∗ admits a definable map into C with finite
fibers;

4. C∗ has n-uniqueness and n-existence for all n.

However, we lack an “explicit” description of the new sorts in C∗ –
presumably they are related to higher groupoids definable in C.
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Forcing amalgamation for simple theories?

Question

If T is simple, is there an expansion C∗ ⊇ C with n-existence into
which C is stably embedded?
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Consistent amalgamation in rosy theories

What kinds of amalgmation can we expect in rosy theories?

O-minimal structures can’t have 3-existence (we can’t amalgamate
x1 < x2, x2 < x3, and x3 < x1). But they do have the following
property:

Definition

(T rosy) T has consistent n-amalgamation if any
thorn-independent n-amalgamation problem with a solution has a
thorn-independent solution.
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Consistent amalgamation continued

Theorem

(Onshuus) There is a rosy theory which does not have consistent
3-amalgamation.

The example he constructs is a variation of Hrushovski’s ab initio
construction, and has U-thorn-rank 1, but it is not dependent.

Conjecture

If T is rosy and NIP, then T has consistent 3-amalgamation.

Question

What about consistent n-amalgamation?
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