NTP1 theories

Byunghan Kim

BIRS workshop

Dept. Math. Yonsei University Feb. 9-13, 2009

Outline

- 1 The tree properties
- 2 Type counting criteria
- 3 Discussion/Suggestion

NTP1 theories

Byunghan Kim

BIRS workshop

Dept. Math. Yonsei University Feb. 9-13, 2009

- Recall $\psi(x, y)$ has the *k*-tree property (*k*-*TP*) if there is some set of tuples $\{c_{\beta}|\beta\in\omega^{<\omega}\}$ such that
 - for each $\beta \in \omega^{\omega}$, $\{\psi(x, c_{\beta \lceil n}) | n \in \omega\}$ is consistent, and
 - for each $\beta \in \omega^{<\omega}$, $\{\psi(x, c_{\beta n}) | n \in \omega\}$ is k-inconsistent.
- $\psi(x, y)$ has TP if it has k-TP for some k.
- T has TP if some formula has TP.

Fact

- T is simple iff T does not have TP.
- If $\psi(x,y)$ has k-TP then $\psi(x,y_1) \wedge ... \wedge \psi(x,y_n)$ for some n has 2-TP.

- $\psi(x,y)$ has the *k-tree property 1 (k-TP1)* if there is some set of tuples $\{c_{\beta}|\beta\in\omega^{<\omega}\}$ such that
 - for each $\beta \in \omega^{\omega}$, $\{\psi(x, c_{\beta \lceil n}) | n \in \omega\}$ is consistent,
 - for any pairwise incomparable $\{\beta_1,...,\beta_k\}\subseteq\omega^{<\omega}$, $\{\psi(x,c_{\beta_i})|\ 1\leq i\leq k\}$ is inconsistent.
- T has TP1 if some formula has 2-TP1.
- T has k-TP1 if some formulas has k-TP1.

Question

Are TP1 and k-TP1 equivalent? In paticular, if φ has k-TP1, then does its some conjunction have 2-TP1?

- $\psi(x,y)$ has the *k-tree property 1 (k-TP1)* if there is some set of tuples $\{c_{\beta}|\beta\in\omega^{<\omega}\}$ such that
 - for each $\beta \in \omega^{\omega}$, $\{\psi(x, c_{\beta \lceil n}) | n \in \omega\}$ is consistent,
 - for any pairwise incomparable $\{\beta_1,...,\beta_k\} \subseteq \omega^{<\omega}$, $\{\psi(x,c_{\beta_i})|\ 1\leq i\leq k\}$ is inconsistent.
- T has TP1 if some formula has 2-TP1.
- T has k-TP1 if some formulas has k-TP1.

Question

Are TP1 and k-TP1 equivalent? In paticular, if φ has k-TP1, then does its some conjunction have 2-TP1?

Both yes.

T has the tree property 2 (TP2) if there is some set of tuples $\{c_i^i|i,j<\omega\}$ such that for some ψ ,

- for any $f:\omega \to \omega$, $\{\psi(x,c^i_{f(i)})|i\in\omega\}$ is consistent, and
- for each $i \in \omega$, $\{\psi(x, c_i^i)|j \in \omega\}$ is 2-inconsistent.

Fact

T has TP iff T has either TP1 or TP2.

 $\psi(x,y)$ has the binary tree property (BTP=SOP₂) if there is some set of tuples $\{c_{\beta}|\beta\in 2^{<\omega}\}$ such that

- for each $\beta \in 2^{\omega}$, $\{\psi(x, c_{\beta \lceil n}) | n \in \omega\}$ is consistent,
- for any incomparable $\alpha, \beta \in \omega^{<\omega}$, $\psi(x, c_{\alpha}) \wedge \psi(x, c_{\beta})$ is inconsistent.

Similarly we define k-BTP.

Fact

Strict Order Property \Rightarrow .. $SOP_4 \Rightarrow SOP_3 \Rightarrow SOP_2 = BTP \Rightarrow SOP_1 \Rightarrow TP = nonsimple$.

Observation

T has TP1 iff T has BTP.

The prototypical example of NTP1

The prototypical example of NTP1

The prototypical example with NTP1: The model companion of the theory with sorts P, E and a ternary $x \sim_z y$ on $P^2 \times E$ saying that for each $e \in E$, $x \sim_e y$ forms an equivalence relation on P. It is complete, ω -categorical having QE.

Stable Simple NTP1

The prototypical example of NTP1

Stable	Simple	NTP1
Infinite set	The random graph	The random equi. rel.s

The prototypical example of NTP1

Stable	Simple	NTP1
Infinite set	The random graph	The random equi. rel.s
ACF	Bounded PAC fields	ω -free PAC fields

The prototypical example of NTP1

Stable	Simple	NTP1
Infinite set ACF	The random graph Bounded PAC fields	The random equi. rel.s ω -free PAC fields
V = vector sapce	$(V,\langle, angle)$ $/$ a finite F	$(V,\langle, angle)$ / an infinite F

Theorem

(Shelah) TFAE.

- T has TP.
- 2 Some formula has 2-TP.
- **3** There are a cardinal κ and a family $\mathcal F$ of types over A such that
 - $|\mathcal{F}| > |A|^{|T|} + 2^{|T| + \kappa}$,
 - $|p| \le \kappa$ for each $p \in \mathcal{F}$,
 - whenever $\mathcal{G} \subseteq F$ and $|\mathcal{G}| > \kappa$, then $\bigcup \mathcal{G}$ is inconsistent.

Proof. $(1) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$.

Theorem

TFAE.

- T has k-TP1 for some k.
- 2 Some formula has BTP.
- 3 Some formula has 2-TP1.
- **1** There are a regular cardinal κ and a family $\mathcal F$ of types over A such that
 - $|p| = \kappa$ for each $p \in \mathcal{F}$,
 - $|\mathcal{F}| = \lambda^+$ where $\lambda = |A|^{|T|} + |T|^{\kappa}$, and
 - given any subfamily $\mathcal{G} = \{q_i | i < \lambda^+\}$ of \mathcal{F} , there are disjoint subsets τ_1, τ_2 of λ^+ with $|\tau_j| = \lambda^+$ (j = 0, 1), and $q_i' \subseteq q_i$ with $|q_i q_i'| < \kappa$ $(i < \lambda^+)$, such that ${}^\vee\mathcal{G}_0 \cap {}^\vee\mathcal{G}_1 = \emptyset$, where $\mathcal{G}_j = \{q_i' | i \in \tau_j\}$, and ${}^\vee\mathcal{G}_j = \bigcup \{\varphi(\mathcal{M}) | \varphi \in \bigcup \mathcal{G}_j\}$.

Proof. $(1)\Rightarrow(2)\Rightarrow(3)\Rightarrow(1)$ (Džamonja, Shelah, Usvyatsov)¹. $(3)\Rightarrow(4)\Rightarrow(2)$.

 $^{^1}$ M. Džamonja, S. Shelah, 'On \lhd *-maximality' APAL 2004; S. Shelah, A. Usvyatsov, 'More on SOP_1 and SOP_2 ', APAL

Hence T has TP1 iff so does $T^{\rm eq}$. (Expansive way of proving. Cheap way: Consider preimages in the home-sort.)

Hence T has TP1 iff so does T^{eq} . (Expansive way of proving. Cheap way: Consider preimages in the home-sort.)

Key idea of Džamonja, Shelah, Usvyatsov

If $C = \{c_{\beta} | \beta \in 2^{<\omega}\}$ witnesses k-BTP of φ , then one can additionally assume that C is tree-indiscernible. Namely,

$$c_{\alpha_1}...c_{\alpha_n} \equiv c_{\beta_1}...c_{\beta_n}$$

whenever both $\{\alpha_1,...,\alpha_n\},\{\beta_1,...,\beta_n\}(\subseteq 2^{\omega})$ are

 \bullet closed under \cap , and \lhd -order isomorphic.

Then it follows that some conjunction of φ has 2-BTP.

The rest are all tentative with possible naivety.

Definition

- $\psi(x, a)$ strongly divides over A if for any $A_0(\subseteq A)$, and any Morley I of $\operatorname{tp}(a/A)$, $\{\psi(x, a') | a' \in I\}$ is inconsistent.
- Write \downarrow^s = non-strong dividing.
- T is *subtle* if \bot^s satisfies local character.

The rest are all tentative with possible naivety.

Definition

- $\psi(x, a)$ strongly divides over A if for any $A_0(\subseteq A)$, and any Morley I of $\operatorname{tp}(a/A)$, $\{\psi(x, a') | a' \in I\}$ is inconsistent.
- Write \downarrow^s = non-strong dividing.
- T is *subtle* if \bigcup^s satisfies local character.

Stable \subseteq Simple (there $\downarrow = \downarrow^s$) \subseteq Subtle.

The rest are all tentative with possible naivety.

Definition

- $\psi(x, a)$ strongly divides over A if for any $A_0(\subseteq A)$, and any Morley I of $\operatorname{tp}(a/A)$, $\{\psi(x, a') | a' \in I\}$ is inconsistent.
- Write \downarrow^s = non-strong dividing.
- T is *subtle* if \bot^s satisfies local character.

Stable \subseteq Simple (there $\downarrow = \downarrow^s$) \subseteq Subtle.

Question

- (We may additionally assume forking=dividing) NTP1⇒ Subtle (even are both equivalent)?
- Does symmetry over Ø hold?
- Note that different from simple case, $A \, \cup_B^s \, C$ is not equivalent to $A \, \cup_b^s \, C$ in $\mathcal{L}(B)$!! Indeed in the examples of NTP1, possibly independence notions are not invariant under naming elements, so we may end up need quarternary relation rather than ternary \cup ?