Absolutely connected groups

Jakub Gismatullin

Instytut Matematyczny Uniwersytetu Wrocławskiego

Stability Theoretic Methods in Unstable Theories BIRS, February 9, 2009

It is work in progress.

General references:

- "G-compactness and groups" L. Newelski, J.G., Archive for Mathematical Logic, 47 (2008), no. 5, p. 479-501
- A preliminary version of Ph.D. thesis at www.math.uni.wroc.pl/~gismat

• (G, \cdot, \ldots) – a group with some first order structure

- ullet (G,\cdot,\ldots) a group with some first order structure
- G^* saturated extension of $(G, \cdot, ...)$ (model monstrum, $\overline{\kappa}$ -saturated, $\overline{\kappa}$ -strongly homogeneus)

- $(G, \cdot, ...)$ a group with some first order structure
- G^* saturated extension of $(G, \cdot, ...)$ (model monstrum, $\overline{\kappa}$ -saturated, $\overline{\kappa}$ -strongly homogeneus)
- $A \subset G^*$ some small set of parameters $(|A| < \overline{\kappa})$

- (G, \cdot, \ldots) a group with some first order structure
- G^* saturated extension of $(G, \cdot, ...)$ (model monstrum, $\overline{\kappa}$ -saturated, $\overline{\kappa}$ -strongly homogeneus)
- $A\subset G^*$ some small set of parameters $(|A|<\overline{\kappa})$

Definition

• $G_A^{*0} = \bigcap \{ H < G^* : H \text{ is } A\text{-def. and } [G^* : H] < \omega \}$

- $(G, \cdot, ...)$ a group with some first order structure
- G^* saturated extension of $(G, \cdot, ...)$ (model monstrum, $\overline{\kappa}$ -saturated, $\overline{\kappa}$ -strongly homogeneus)
- $A \subset G^*$ some small set of parameters $(|A| < \overline{\kappa})$

Definition

- $G_A^{*0} = \bigcap \{ H < G^* : H \text{ is } A\text{-def. and } [G^* : H] < \omega \}$
- $G_A^{*00} = \bigcap \{ H < G^* : H \text{ is } A\text{-type def. and } [G^* : H] < \overline{\kappa} \}$

- $(G, \cdot, ...)$ a group with some first order structure
- G^* saturated extension of $(G, \cdot, ...)$ (model monstrum, $\overline{\kappa}$ -saturated, $\overline{\kappa}$ -strongly homogeneus)
- $A \subset G^*$ some small set of parameters $(|A| < \overline{\kappa})$

Definition

- $G_A^{*0} = \bigcap \{ H < G^* : H \text{ is } A\text{-def. and } [G^* : H] < \omega \}$
- $G_A^{*00} = \bigcap \{ H < G^* : H \text{ is } A\text{-type def. and } [G^* : H] < \overline{\kappa} \}$
- $G_A^{*\infty} = \bigcap \{ H < G^* : H \text{ is } \operatorname{Aut}(G^*/A) \text{-inv. and } [G^* : H] < \overline{\kappa} \}$

- (G, \cdot, \ldots) a group with some first order structure
- G^* saturated extension of $(G, \cdot, ...)$ (model monstrum, $\overline{\kappa}$ -saturated, $\overline{\kappa}$ -strongly homogeneus)
- $A\subset G^*$ some small set of parameters $(|A|<\overline{\kappa})$

Definition

- $G_A^{*0} = \bigcap \{ H < G^* : H \text{ is } A\text{-def. and } [G^* : H] < \omega \}$
- $G_A^{*00} = \bigcap \{ H < G^* : H \text{ is } A\text{-type def. and } [G^* : H] < \overline{\kappa} \}$
- $G_A^{*\infty} = \bigcap \{ H < G^* : H \text{ is } \operatorname{Aut}(G^*/A) \text{-inv. and } [G^* : H] < \overline{\kappa} \}$

We say, that $G^{*\infty}$ exists, if for every small $A \subset G^*$,

$$G_A^{*\infty}=G_\emptyset^{*\infty}.$$

- (G, \cdot, \ldots) a group with some first order structure
- G^* saturated extension of $(G, \cdot, ...)$ (model monstrum, $\overline{\kappa}$ -saturated, $\overline{\kappa}$ -strongly homogeneus)
- $A \subset G^*$ some small set of parameters $(|A| < \overline{\kappa})$

Definition

- $G_A^{*0} = \bigcap \{ H < G^* : H \text{ is } A\text{-def. and } [G^* : H] < \omega \}$
- $G_A^{*00} = \bigcap \{ H < G^* : H \text{ is } A\text{-type def. and } [G^* : H] < \overline{\kappa} \}$
- $G_A^{*\infty} = \bigcap \{ H < G^* : H \text{ is } \operatorname{Aut}(G^*/A) \text{-inv. and } [G^* : H] < \overline{\kappa} \}$

We say, that $G^{*\infty}$ exists, if for every small $A \subset G^*$,

$$G_A^{*\infty} = G_\emptyset^{*\infty}$$
.

E.g. when G has NIP, $G^{*\infty}$, G^{*00} and G^{*0} exist.

 G_A^{*0} , G_A^{*00} and $G_A^{*\infty}$ correspond to the strong types over A in some structure related to G (a regular action of G):

 G_A^{*0} , G_A^{*00} and $G_A^{*\infty}$ correspond to the strong types over A in some structure related to G (a regular action of G):

• G^{*0}_{A} to the Shelah strong type (just strong type)

 G_A^{*0} , G_A^{*0} and $G_A^{*\infty}$ correspond to the strong types over A in some structure related to G (a regular action of G):

- G^{*0}_A to the Shelah strong type (just strong type)
- G_A^{*00} to the Kim-Pillay strong type (the compact strong type)

 G_A^{*0} , G_A^{*0} and $G_A^{*\infty}$ correspond to the strong types over A in some structure related to G (a regular action of G):

- G^{*0}_{A} to the Shelah strong type (just strong type)
- G_A^{*00} to the Kim-Pillay strong type (the compact strong type)
- ullet $G^{*\infty}_{\ A}$ to the Lascar strong type (the invariant strong type)

 G_A^{*0} , G_A^{*0} and $G_A^{*\infty}$ correspond to the strong types over A in some structure related to G (a regular action of G):

- G^{*0}_{A} to the Shelah strong type (just strong type)
- ullet G^{*00}_{A} to the Kim-Pillay strong type (the compact strong type)
- ullet $G^{*\infty}_{A}$ to the Lascar strong type (the invariant strong type)

Recall that the theory is non-G-compact, when Kim-Pillay strong types \neq Lascar strong types.

 G_A^{*0} , G_A^{*0} and $G_A^{*\infty}$ correspond to the strong types over A in some structure related to G (a regular action of G):

- G^{*0}_{A} to the Shelah strong type (just strong type)
- G_A^{*00} to the Kim-Pillay strong type (the compact strong type)
- $G^{*\infty}_{A}$ to the Lascar strong type (the invariant strong type)

Recall that the theory is non-G-compact, when Kim-Pillay strong types \neq Lascar strong types.

Problem

Find a group G with

$$G_A^{*00} \neq G_A^{*\infty}$$

for some small A.

Definition

 (G,\cdot) – an arbitrary group, $P\subseteq G$, $n<\omega$

Definition

 (G,\cdot) – an arbitrary group, $P\subseteq G$, $n<\omega$

• P is n-thick $\Leftrightarrow P=P^{-1}$ and for every $g_0,\ldots,g_{n-1}\in G$ there are i< j< n such that

$$g_i^{-1}g_j\in P,$$

Definition

 (G,\cdot) – an arbitrary group, $P\subseteq G$, $n<\omega$

• P is n-thick $\Leftrightarrow P = P^{-1}$ and for every $g_0, \dots, g_{n-1} \in G$ there are i < j < n such that

$$g_i^{-1}g_j\in P,$$

• P is thick $\Leftrightarrow P$ is n-thick for some natural n.

Definition

 (G,\cdot) – an arbitrary group, $P\subseteq G$, $n<\omega$

• P is n-thick $\Leftrightarrow P = P^{-1}$ and for every $g_0, \dots, g_{n-1} \in G$ there are i < j < n such that

$$g_i^{-1}g_j\in P,$$

• P is thick \Leftrightarrow P is n-thick for some natural n.

Every subgroup of *G* with finite index is thick.

Definition

 (G,\cdot) – an arbitrary group, $P\subseteq G$, $n<\omega$

• P is n-thick $\Leftrightarrow P = P^{-1}$ and for every $g_0, \dots, g_{n-1} \in G$ there are i < j < n such that

$$g_i^{-1}g_j\in P,$$

• P is thick \Leftrightarrow P is n-thick for some natural n.

Every subgroup of G with finite index is thick.

Lemma

$$G_A^{*\infty} = \left\langle \bigcap \{ P \subseteq G^* : P \text{ is A-def. and thick } \} \right\rangle$$

Theorem (V. Bergelson, D. B. Shapiro, PAMS '92)

Let K be an infinite field and $G < K^{\times}$ with finite index, then G - G = K.

Theorem (V. Bergelson, D. B. Shapiro, PAMS '92)

Let K be an infinite field and $G < K^{\times}$ with finite index, then G - G = K.

The proof of this generalizes to the thick subsets of K^{\times} :

Theorem (V. Bergelson, D. B. Shapiro, PAMS '92)

Let K be an infinite field and $G < K^{\times}$ with finite index, then G - G = K.

The proof of this generalizes to the thick subsets of K^{\times} :

Theorem

Let K be an infinite field and $P \subseteq K^{\times}$ is thick, then $(P \cdot P) - (P \cdot P) = K$.

Theorem (V. Bergelson, D. B. Shapiro, PAMS '92)

Let K be an infinite field and $G < K^{\times}$ with finite index, then G - G = K.

The proof of this generalizes to the thick subsets of K^{\times} :

$\mathsf{Theorem}$

Let K be an infinite field and $P \subseteq K^{\times}$ is thick, then

$$(P\cdot P)-(P\cdot P)=K.$$

Moreover

$$(K^{*\times})_A^{\infty} - (K^{*\times})_A^{\infty} = K^*,$$

where K^* is a monster model of an arbitrary first order expansion of K and $A \subset K^*$ is small.

Theorem

Let K be an infinite field and $P \subseteq (K, +)$ is thick, then

$$(P \setminus \{0\})^{-1} \cdot P = K.$$

Theorem

Let K be an infinite field and $P \subseteq (K,+)$ is thick, then

$$(P \setminus \{0\})^{-1} \cdot P = K.$$

Moreover

$$(K^*,+)_A^{\infty-1} \cdot (K^*,+)_A^{\infty} = K^*,$$

where K^* is a monster model of an arbitrary first order expansion of K and $A \subset K^*$ is small.

Theorem

Let K be an infinite field and $P \subseteq (K,+)$ is thick, then

$$(P \setminus \{0\})^{-1} \cdot P = K.$$

Moreover

$$(K^*,+)_A^{\infty-1}\cdot (K^*,+)_A^{\infty}=K^*,$$

where K^* is a monster model of an arbitrary first order expansion of K and $A \subset K^*$ is small.

If $(K^*, +)^{\infty}$ exists (e.g. K has NIP), then

$$(K^*,+)^{\infty}=K^*,$$

because then $(K^*, +)^{\infty}$ is an ideal in K^* (for $(K^*, +)^{00}$ it was noticed by A. Pillay).

Proposition

 $(G, \cdot, ...)$ – a group with some first order structure, G^* – monster model. TFAE

Proposition

 $(G, \cdot, ...)$ – a group with some first order structure, G^* – monster model. TFAE

• $G^{*\infty}$ exists and $G^{*\infty} = G^*$

Proposition

 $(G, \cdot, ...)$ – a group with some first order structure, G^* – monster model. TFAE

- $G^{*\infty}$ exists and $G^{*\infty} = G^*$
- there is a natural number N such that for every definable and thick P ⊆ G*

$$P^N=G^*$$
.

When $G^{*\infty}$ exists and $G^{*\infty} = G^*$?

Proposition

 (G, \cdot, \ldots) – a group with some first order structure, G^* – monster model. TFAE

- $G^{*\infty}$ exists and $G^{*\infty} = G^*$
- there is a natural number N such that for every definable and thick P ⊆ G*

$$P^N=G^*$$
.

Proposition

$$(G,\cdot)$$
 – a group. TFAE

When $G^{*\infty}$ exists and $G^{*\infty} = G^*$?

Proposition

 (G, \cdot, \ldots) – a group with some first order structure, G^* – monster model. TFAE

- $G^{*\infty}$ exists and $G^{*\infty} = G^*$
- there is a natural number N such that for every definable and thick P ⊆ G*

$$P^N=G^*$$
.

Proposition

 (G,\cdot) – a group. TFAE

• $G^{*\infty}$ exists and $G^{*\infty} = G^*$, where G^* is a monster model of an arbitrary first order expansion of G

When $G^{*\infty}$ exists and $G^{*\infty} = G^*$?

Proposition

 (G,\cdot,\ldots) – a group with some first order structure, G^* – monster model. TFAE

- $G^{*\infty}$ exists and $G^{*\infty} = G^*$
- there is a natural number N such that for every definable and thick $P \subseteq G^*$

$$P^N=G^*$$
.

Proposition

 (G,\cdot) – a group. TFAE

- $G^{*\infty}$ exists and $G^{*\infty} = G^*$, where G^* is a monster model of an arbitrary first order expansion of G
- there is a natural number N such that for every thick $P \subseteq G$

$$P^N = G$$
.

Definition

ullet G is N-absolutely connected (N-ac) if for every thick $P\subseteq G$

$$P^N=G.$$

Definition

ullet G is N-absolutely connected (N-ac) if for every thick $P\subseteq G$

$$P^N=G$$
.

• *G* is absolutely connected if *G* is *N*-absolutely connected for some natural *N*.

Definition

ullet G is N-absolutely connected (N-ac) if for every thick $P\subseteq G$

$$P^N = G$$
.

- G is absolutely connected if G is N-absolutely connected for some natural N.
- Let $C_N = \{N\text{-absolutely connected groups}\}$ and $C_\infty = \bigcup_{N < \omega} C_N$.

Definition

ullet G is N-absolutely connected (N-ac) if for every thick $P\subseteq G$

$$P^N = G$$
.

- G is absolutely connected if G is N-absolutely connected for some natural N.
- Let $C_N = \{N\text{-absolutely connected groups}\}$ and $C_\infty = \bigcup_{N < \omega} C_N$.

Proposition

If for every natural N, $\mathcal{C}_{\infty} \neq \mathcal{C}_N$, then there is a group G with

$$G^{*\infty}_{0} \neq G^{*00}_{0}$$
.

Example

1. $(\kappa > \omega) \operatorname{Sym}^{\kappa}(\Omega) = \{ \sigma \in \operatorname{Sym}(\Omega) : |\operatorname{supp}(\sigma)| < \kappa \}$ is 16-ac

Example

- 1. $(\kappa > \omega)$ Sym^{κ} $(\Omega) = {\sigma \in Sym(\Omega) : |supp(\sigma)| < \kappa} is 16-ac$
- 2. if V a vector space over a division ring with $\dim(V) = \infty$, then $\operatorname{GL}(V)$ is 128-ac

Example

- 1. $(\kappa > \omega)$ Sym^{κ} $(\Omega) = {\sigma \in \text{Sym}(\Omega) : |\text{supp}(\sigma)| < \kappa}$ is 16-ac
- 2. if V a vector space over a division ring with $\dim(V) = \infty$, then $\operatorname{GL}(V)$ is 128-ac
- 3. K infinite field, $n < \omega$, $SL_n(K)$ is 24-ac

Example

- 1. $(\kappa > \omega)$ Sym^{κ} $(\Omega) = {\sigma \in \text{Sym}(\Omega) : |\text{supp}(\sigma)| < \kappa}$ is 16-ac
- 2. if V a vector space over a division ring with $\dim(V) = \infty$, then $\operatorname{GL}(V)$ is 128-ac
- 3. K infinite field, $n < \omega$, $SL_n(K)$ is 24-ac

Proof.

We use an auxiliary class of weakly simple groups.

Example

- 1. $(\kappa > \omega)$ Sym^{κ} $(\Omega) = {\sigma \in Sym(\Omega) : |supp(\sigma)| < \kappa} is 16-ac$
- 2. if V a vector space over a division ring with $\dim(V) = \infty$, then $\operatorname{GL}(V)$ is 128-ac
- 3. K infinite field, $n < \omega$, $SL_n(K)$ is 24-ac

Proof.

We use an auxiliary class of weakly simple groups. Let

$$\mathcal{G}_N(G) = \{g \in G : \left(g^G \cup g^{-1}^G\right)^N = G\}.$$

Example

- 1. $(\kappa > \omega)$ Sym^{κ} $(\Omega) = {\sigma \in \text{Sym}(\Omega) : |\text{supp}(\sigma)| < \kappa}$ is 16-ac
- 2. if V a vector space over a division ring with $\dim(V) = \infty$, then $\operatorname{GL}(V)$ is 128-ac
- 3. K infinite field, $n < \omega$, $SL_n(K)$ is 24-ac

Proof.

We use an auxiliary class of weakly simple groups. Let

$$\mathcal{G}_{\mathcal{N}}(G) = \{ g \in G : \left(g^G \cup g^{-1}^G \right)^{\mathcal{N}} = G \}.$$

A group G is N-weakly simple if $\mathcal{G}_N(G)$ is "big" in some sense: $G\setminus\mathcal{G}_N(G)$ is not thick.

Example

- 1. $(\kappa > \omega)$ Sym^{κ} $(\Omega) = {\sigma \in \text{Sym}(\Omega) : |\text{supp}(\sigma)| < \kappa}$ is 16-ac
- 2. if V a vector space over a division ring with dim(V) = ∞ , then GL(V) is 128-ac
- 3. K infinite field, $n < \omega$, $SL_n(K)$ is 24-ac

Proof.

We use an auxiliary class of weakly simple groups. Let

$$G_N(G) = \{g \in G : \left(g^G \cup g^{-1}^G\right)^N = G\}.$$

A group G is N-weakly simple if $\mathcal{G}_N(G)$ is "big" in some sense: $G \setminus \mathcal{G}_N(G)$ is not thick.

It can be proved that *N*-weak simplicity \Rightarrow 4*N*-ac.

Example

- 1. $(\kappa > \omega)$ Sym^{κ} $(\Omega) = {\sigma \in \text{Sym}(\Omega) : |\text{supp}(\sigma)| < \kappa}$ is 16-ac
- 2. if V a vector space over a division ring with dim(V) = ∞ , then GL(V) is 128-ac
- 3. K infinite field, $n < \omega$, $SL_n(K)$ is 24-ac

Proof.

We use an auxiliary class of weakly simple groups. Let

$$\mathcal{G}_N(G) = \{g \in G : \left(g^G \cup g^{-1}^G\right)^N = G\}.$$

A group G is N-weakly simple if $\mathcal{G}_N(G)$ is "big" in some sense: $G\setminus \mathcal{G}_N(G)$ is not thick.

It can be proved that N-weak simplicity $\Rightarrow 4N$ -ac.

Now use description of the conjugacy classes: in 1. results of E. A. Bertram '73 and G. Moran '76; in 2. — V. A. Tolstykh '06; in 3.

— A. Lev '96.

Theorem

Absolutely connected groups are perfect (i.e. G = [G, G]).

Theorem

Absolutely connected groups are perfect (i.e. G = [G, G]).

Question

Do absolutely connected groups have a finite commutator width?

Theorem

Absolutely connected groups are perfect (i.e. G = [G, G]).

Question

Do absolutely connected groups have a finite commutator width?

• Every weakly simple group has a finite commutator width.

Theorem

Absolutely connected groups are perfect (i.e. G = [G, G]).

Question

Do absolutely connected groups have a finite commutator width?

• Every weakly simple group has a finite commutator width.

Alexey Muranov constructed (using small cancellation theory and GGT) a collection of simple torsion free groups $\{M_n\}_{n<\omega}$ satisfying

Theorem

Absolutely connected groups are perfect (i.e. G = [G, G]).

Question

Do absolutely connected groups have a finite commutator width?

• Every weakly simple group has a finite commutator width.

Alexey Muranov constructed (using small cancellation theory and GGT) a collection of simple torsion free groups $\{M_n\}_{n<\omega}$ satisfying

• M_n is (2n+2)-boundedly simple (so (8n+8)-ac),

Theorem

Absolutely connected groups are perfect (i.e. G = [G, G]).

Question

Do absolutely connected groups have a finite commutator width?

• Every weakly simple group has a finite commutator width.

Alexey Muranov constructed (using small cancellation theory and GGT) a collection of simple torsion free groups $\{M_n\}_{n<\omega}$ satisfying

- M_n is (2n+2)-boundedly simple (so (8n+8)-ac),
- the commutator width of M_n is between (n+1) and (2n+2).

Theorem

Absolutely connected groups are perfect (i.e. G = [G, G]).

Question

Do absolutely connected groups have a finite commutator width?

• Every weakly simple group has a finite commutator width.

Alexey Muranov constructed (using small cancellation theory and GGT) a collection of simple torsion free groups $\{M_n\}_{n<\omega}$ satisfying

- M_n is (2n+2)-boundedly simple (so (8n+8)-ac),
- the commutator width of M_n is between (n+1) and (2n+2).

Using Muranov's groups we can prove:

Theorem

Absolutely connected groups are perfect (i.e. G = [G, G]).

Question

Do absolutely connected groups have a finite commutator width?

• Every weakly simple group has a finite commutator width.

Alexey Muranov constructed (using small cancellation theory and GGT) a collection of simple torsion free groups $\{M_n\}_{n<\omega}$ satisfying

- M_n is (2n+2)-boundedly simple (so (8n+8)-ac),
- the commutator width of M_n is between (n+1) and (2n+2).

Using Muranov's groups we can prove:

Proposition

Either $\forall N, \ \mathcal{C}_{\infty} \neq \mathcal{C}_{N}$ (so there is a group G with $G^{*\infty}_{\emptyset} \neq G^{*00}_{\emptyset}$) or there is an absolutely connected group an with infinite commutator width.

An intermediate step in proving $\forall N, \ \mathcal{C}_{\infty} \neq \mathcal{C}_{N}$ is to answer the following question:

An intermediate step in proving $\forall N,\ \mathcal{C}_{\infty} \neq \mathcal{C}_{N}$ is to answer the following question:

assume that an infinite (torsion free) group G has no proper subgroup of finite index.

An intermediate step in proving $\forall N, \ \mathcal{C}_{\infty} \neq \mathcal{C}_{N}$ is to answer the following question:

assume that an infinite (torsion free) group ${\it G}$ has no proper subgroup of finite index. One can show that an infinite direct sum

$$G^{\oplus \omega}$$

also does not have any proper subgroup of finite index.

An intermediate step in proving $\forall N,\ \mathcal{C}_{\infty} \neq \mathcal{C}_{N}$ is to answer the following question:

assume that an infinite (torsion free) group ${\it G}$ has no proper subgroup of finite index. One can show that an infinite direct sum

$$G^{\oplus \omega}$$

also does not have any proper subgroup of finite index.

Question

Is it also true for an infinite direct product? i.e. is it true that

$$G^{\omega}$$

does not have any proper subgroup of finite index?

An intermediate step in proving $\forall N,\ \mathcal{C}_{\infty} \neq \mathcal{C}_{N}$ is to answer the following question:

assume that an infinite (torsion free) group ${\it G}$ has no proper subgroup of finite index. One can show that an infinite direct sum

$$G^{\oplus \omega}$$

also does not have any proper subgroup of finite index.

Question

Is it also true for an infinite direct product? i.e. is it true that

$$G^{\omega}$$

does not have any proper subgroup of finite index?

When G is abelian, the answer is YES, since abelian group has no proper subgroup of finite index iff it is divisible.

An intermediate step in proving $\forall N, \ \mathcal{C}_{\infty} \neq \mathcal{C}_{N}$ is to answer the following question:

assume that an infinite (torsion free) group ${\it G}$ has no proper subgroup of finite index. One can show that an infinite direct sum

$$\mathsf{G}^{\oplus \omega}$$

also does not have any proper subgroup of finite index.

Question

Is it also true for an infinite direct product? i.e. is it true that

$$G^{\omega}$$

does not have any proper subgroup of finite index?

When G is abelian, the answer is YES, since abelian group has no proper subgroup of finite index iff it is divisible.

Thank you for your attention