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Preliminaries
• Nn = {1, . . . , n}

• Ω = {Xi, i ∈ Nn}; Xi is a discrete random variable.

• Entropy (Shannon Entropy)

H(X) = −
∑

x

p(x) log p(x)

• Joint Entropy
H(X,Y ) = −

∑

x,y

p(x, y) log p(x, y)

• In information theory, entropy is the measure of the uncertainty contained
in a discrete random variable, justified by fundamental coding theorems.
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Preliminaries
• For n random variables, there are 2n − 1 joint entropies.

• E.g., n = 3, the 23 − 1 = 7 joint entropies are

H(X1), H(X2), H(X3), H(X1, X2), H(X2, X3),
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• HΩ : 2Nn → IR is set function with HΩ(φ) = 0.

• HΩ is called the entropy function of Ω.
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The Entropy Function as a 
Polymatroid

• It is well-known that for any Ω, HΩ satisfies the following polymatroidal
axioms. For any α,β ⊂ Nn,

(P1) HΩ(φ) = 0;
(P2) HΩ(α) ≤ HΩ(β) if α ⊂ β;
(P3) HΩ(α) + HΩ(β) ≥ HΩ(α ∩ β) + HΩ(α ∪ β).



The Basic Inequalities
• In addition to Entropy, we also have:

Conditional Entropy

H(X|Y ) = H(X, Y )−H(Y )

Mutual Information

I(X;Y ) = H(X) + H(Y )−H(X, Y )

Conditional Mutual Information

I(X;Y |Z) = H(X, Z) + H(Y, Z)−H(X,Y, Z)−H(Z)

• These are called Shannon’s information measures.
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• Constraints on entropies govern the “impossibilities” in Information The-

ory. Sometimes called the “Laws of Information Theory.”

• Pippenger’s Question (1986): Are there any constraints on entropies other
than the basic inequalities?
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    The Region      (Y97)
• Fix n. For each Ω, HΩ defines a vector in Hn = IR2n−1.

• Hn is called the entropy space for n r.v.’s

• A vector
h = (hα : α ∈ 2Nn\∅)

in Hn is called entropic if it corresponds to the entropy function HΩ for
some Ω.

• Define the region in Hn:

Γ∗n = {h ∈ Hn : h is entropic}

Γ∗
n
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Entropy Inequalities:
A Geometric View

• An entropy inequality has the form f(h) ≥ 0.

• f(h) ≥ 0 always holds if and only if

Γ∗
n ⊂ {h ∈ Hn : f(h) ≥ 0}.

• In fact, f(h) ≥ 0 always holds if and only if

Γ∗
n ⊂ {h ∈ Hn : f(h) ≥ 0}

because {h ∈ Hn : f(h) ≥ 0} is closed.
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f(h) ≥ 0 Always holds

!n

f(h) > 0

*



f(h) ≥ 0 Does Not Always holds

f(h) > 0

*!n

. h0



         The Region Γn

• Define the following region in Hn:

Γn = {h ∈ Hn : h satisfies the basic inequalities}

• Γ∗
n ⊂ Γn since the basic inequalities are satisfied by any X1, . . . , Xn.

• An entropy inequality f(h) ≥ 0 is called a Shannon-type inequality if it
is implied by the basic inequalities, or

Γn ⊂ {h ∈ Hn : f(h) ≥ 0}.
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Machine-Proving of 
Entropy Inequalities

The geometric view of entropy inequalities enables machine-proving of
entropy inequalities. The following applications have been developed:

1. ITIP (Information-Theoretic Inequality Prover) at CUHK
(Y.-O.Yan and Y, 1996)

2. Xitip at EPFL (Pulikkoonattu, Perron, Diggavi, 2007)

3. ITTP (Information-Theoretic Theorem Prover) at KAIST
(S.-Y. Chung, 2009)

ITIP and Xitip are linear programming based, while ITTP is axiom based.
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Pippenger's Problem Rephrased

• Is Γ∗
n = Γn?

• The answer is NO iff there exists an entropy inequality g(h) ≥ 0 which
cuts between Γn and Γ∗

n. Such an inequality is called a non-Shannon-type
inequality.

• It is known that

1. Γ∗
2 = Γ2

2. Γ∗
3 "= Γ3, but Γ∗

3 = Γ3

• Therefore, unconstrained non-Shannon-type inequalities can exist only for
4 or more random variables.

• In general,

– Γ∗
n is neither closed nor convex, but Γ∗

n is a convex cone.
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A Non-Shanon-Type Inequality
• The following unconstrained non-Shannon-type inequality was discovered

by Zhang and Y (1998) for any 4 random variables:

I(Z;U)− I(Z;U |X)− I(Z;U |Y )

≤ 1
2
I(X;Y ) +

1
4
[I(X;Z, U) + I(Y ;Z, U)]



!!

!!

"
*

ZY98

An Illustration of ZY98



Other Non-Shanon-Type Inequalities

• ZY98 have been further generalized by Makarychev et al. (2002), Zhang
(2003), and Matúš (2007).

• In particular, Matúš showed that Γ∗
n is not a polytope, and hence there

exist an infinitely number of linear non-Shannon-type inequalities!

• Dougherty, Freiling and Zeger (2006) have discovered several tens of non-
Shannon-type inequalities by a search on the supercomputer at UCSD.
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• In particular, Matúš showed that Γ∗
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   Subjects Related to Γ∗
n

!n
* Matrix

Theory
 Probability

Theory

Coding 
Network Combinatorics

Kolmogorov
Complexity

Group
Theory

Quantum

Mechanics



COMBINATORICS



2-D Quasi-Uniform Array
• For a distribution p(x), a sequence x of length n is strongly typical if the

empirical distribution of x is approximately equal to p(x).

• Let p(x, y) be a joint distribution. The strongly typical sequences w.r.t.
p(x, y), p(x), and p(y) can be illustrated by a 2-D quasi-uniform array.

2 nH ( Y ) 

2 nH ( X,Y ) 2 nH ( X ) 

y S 
[ Y ] 

n 

x S 
[ X ] 

n 
( x , y ) T 

[ XY ] 

n 

. 

. 

. . 
. 
. 

. . . 
. 

. . . . 

. 
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• Each row has approximately the same number of dots (∼ 2nH(Y |X)) and
each column has approximately the same number of dots (∼ 2nH(X|Y )).

• Thus

2nH(X,Y ) ≤ 2nH(X)2nH(Y ) ⇒ H(X, Y ) ≤ H(X) + H(Y )

• Then the basic inequality I(X;Y ) ≥ 0 is about the unfilled entries in the
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3-D Quasi-Uniform Array
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Quasi-Uniform Arrays and 
Entropy Inequalities

• For an n-dimensional quasi-uniform array, if all the “dots” are assigned
equal probabilities, then the projection on every lower dimensional plane
has a uniform distribution over its support.

• Do quasi-uniform arrays fully capture all constraints on the entropy func-
tion?

• YES. T. Chan (2001) showed that all constraints on the entropy function
can be obtained through quasi-uniform arrays, and vice versa.
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GROUP THEORY



Entropy and Groups 
(Chan-Y 99)

• Let G be a finite group and G1, G2, . . . , Gn be subgroups of G.

• Let Gα = ∩i∈αGi, also a subgroup.

• A probability distribution for n random variables X1, X2, . . . , Xn can be
constructed from any finite group G and subgroups G1, G2, . . . , Gn, with

H(Xα) = log
|G|
|Gα|

which depends only on the orders of G and G1, G2, . . . , Gn.



Entropy and Groups 
(Chan-Y 99)

• Let G be a finite group and G1, G2, . . . , Gn be subgroups of G.

• Let Gα = ∩i∈αGi, also a subgroup.

• A probability distribution for n random variables X1, X2, . . . , Xn can be
constructed from any finite group G and subgroups G1, G2, . . . , Gn, with

H(Xα) = log
|G|
|Gα|

which depends only on the orders of G and G1, G2, . . . , Gn.



Entropy and Groups 
(Chan-Y 99)

• Let G be a finite group and G1, G2, . . . , Gn be subgroups of G.

• Let Gα = ∩i∈αGi, also a subgroup.

• A probability distribution for n random variables X1, X2, . . . , Xn can be
constructed from any finite group G and subgroups G1, G2, . . . , Gn, with

H(Xα) = log
|G|
|Gα|

which depends only on the orders of G and G1, G2, . . . , Gn.



Entropy and Groups 
(Chan-Y 99)

• Let G be a finite group and G1, G2, . . . , Gn be subgroups of G.

• Let Gα = ∩i∈αGi, also a subgroup.

• A probability distribution for n random variables X1, X2, . . . , Xn can be
constructed from any finite group G and subgroups G1, G2, . . . , Gn, with

H(Xα) = log
|G|
|Gα|

which depends only on the orders of G and G1, G2, . . . , Gn.



Entropy and Groups 
• Substituting the joint entropies into any entropy inequality gives a group

inequality.

• For example, for any X1, X2,

H(X1) + H(X2) ≥ H(X1, X2)

corresponds to for any finite group G and subgroups G1, G2,

log
|G|
|G1|

+ log
|G|
|G2|

≥ log
|G|

|G1 ∩G2|

or
|G||G1 ∩G2| ≥| G1||G2|
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Non-shannon-Type 
Group Inequalities

• “Non-Shannon-type” group inequalities can be obtained accordingly.

• For example, ZY98 can be written as

H(X1) + H(X2) 6H(X3, X4)
+2H(X1, X2) +4H(X1, X3)

+4H(X3) + 4H(X4) ≤ +4H(X1, X4)
+5H(X1, X3, X4) +4H(X2, X3)
+5H(X2, X3, X4) +4H(X2, X4)
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Non-shannon-Type 
Group Inequalities

• This corresponds to
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|G2 ∩G4|4 |G2 ∩G3 ∩G4|5

• It can be proved that the correspondence between entropy inequalities and
group inequalities is one-to-one.
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Relation between Finite Group 
and Quasi-Uniform Array

• The distribution of the elements of a finite group among its subgroups
exhibits a quasi-uniform structure.
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KOLMOGOROV 
COMPLEXITY



Entropy and 
Kolmogorov Complexity

• Let K(·) denotes the Kolmogorov complexity of a collection of sequences.

• Hammer et al. (2000) showed that there exists a one-to-one correspondence
between entropy inequalities and Kolmogorov complexity inequalities.

• For example, for any X1, X2,

H(X1) + H(X2) ≥ H(X1, X2)

corresponds to for any two sequences x and y,

K(x) + K(y) ≥ K(x, y)

• “Non-Shannon-type” Kolmogorov complexity inequalities can be obtained
accordingly.
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Compatibility of Conditional 
Independence

• The Implication Problem Is a given conditional independency implied by
a given set of conditional independencies?

• Example
X → Y → Z
X ⊥ Y

}
⇒ X ⊥ Z

• A very basic problem in probability theory.

• Very hard for n ≥ 4.
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Compatibility of Conditional 
Independence

• This is a subproblem of characterizing Γ∗
n because a conditional indepen-

dence relation is just a hyperplane in Hn.

• For example, X ⊥ Y |Z ⇔ I(X;Y |Z) = 0.

• Thus the conditional independence problem is

A discrete problem imbedded in a continuous problem.

• n = 4 was settled by F. Matúš (1999) with the help of the following non-
Shannon-type information inequality (Ingleton inequality):

If X ⊥ Y or Y ⊥ U |Z, then

H(XY Z) + H(XU) + H(Y U) + H(ZU)−H(XY )−H(U)

−H(XZU)−H(Y ZU) ≥ 0

• Matroid Theory is a powerful tool for studying this problem.
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MATRIX THEORY



Differential Entropy Inequalities

• Differential Entropy

h(X) = −
∫

f(x) log f(x)dx

• Joint Differential Entropy

h(X, Y ) = −
∫

f(x, y) log f(x, y)dxdy

• Chan (2006) showed that a differential entropy inequality is valid iff the co-
efficients of the random variables are balanced and its discrete counterpart
is valid.
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Balanced Entropy Inequalities
• For example,

h(X|Y ) = h(X, Y )− h(Y ) ≥ 0

is not valid because the coefficients are not balanced.

• On the other hand,

I(X;Y ) = h(X) + h(Y )− h(X, Y ) ≥ 0

is valid.

• The coefficients in ZY98 are balanced, so it is also valid for differential
entropy.
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Gaussian Distribution
• Any (symmetric) positive definite matrix is a valid covariance matrix, so

that it defines the joint pdf of a Gaussian random vector

X = [ X1 X2 · · · Xn ].

• Then
h(X) =

1
2

log [(2πe)n|K|]

and for any subset α of {1, 2, . . . , n},

h(Xα) =
1
2

log
[
(2πe)|α||Kα|

]

where Kα is the corresponding submatrix of K.
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Non-Shannon-Type Matrix Inequalities
• Substituting these joint differential entropies into the inequality

h(X1, X2, . . . , Xn) ≤
∑

i

h(Xi)

gives the Hadamard inequality

|K| ≤
∏

i

|Ki| =
∏

i

kii

• Substituting these joint differential entropies into ZY98 gives

|K1||K2||K1,2|2|K3|4|K4|4|K1,3,4|5|K2,3,4|5

≤ |K3,4|6|K1,3|4|K1,4|4|K2,3|4|K2,4|4

for all positive definte matrices.

• Many other “non-Shannon-type” determinant inequalities can be obtained
this way.
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∏

i

kii

• Substituting these joint differential entropies into ZY98 gives

|K1||K2||K1,2|2|K3|4|K4|4|K1,3,4|5|K2,3,4|5

≤ |K3,4|6|K1,3|4|K1,4|4|K2,3|4|K2,4|4

for all positive definte matrices.

• Many other “non-Shannon-type” determinant inequalities can be obtained
this way.
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Entropy and Network Coding
• For single-source network coding, the network capacity is completely char-

acterized by the maximum flows in the network.

• For multi-source network coding, the problem has been studied by Y and
Zhang (1999), Song, Y, and Cai (2006). Yan, Y and Zhang (2007) finally
obtained a complete characterization (implicit) of the network capacity in
terms of Γ∗∗

n , which is almost equal to Γ∗
n.
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Entropy and Network Coding
• Dougherty, Freiling and Zeger (2007) constructed the first multi-source

network coding example whose characterization of the network capacity
requires ZY98.

• The construction is based on the Vámos matroid.

• Chan and Grant (2007) proved a one-to-one correspondence between en-
tropy functions and multi-source network coding problems.

• Thus

Every constraint on the entropy function is useful in
some multi-source network coding problems!

• The implications of non-Shannon-type inequalities in information theory
is finally understood in the context of network coding.
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Secret Sharing
• Secret sharing in cryptography was introduced independently by Blakley

and Shamir (1979).

• Recently, Beimel et al. (2008) has applied ZY98 to obtain a lower bound
in a secret sharing problem.

• Secret sharing can be regarded as a special case of secure network coding
(Cai and Y, 2002).
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The von Neumann Entropy
• The von Neumann entropy is an extension of the Shannon entropy to

quantum mechanics.

• The strong subadditivity of the von Neumann entropy (analogous to the
basic inequalities for the Shannon inequalities) was proved by Lieb ad
Ruskai (1973).

• Inspired by the discovery of non-Shannon-type inequalities, Pippenger
(2003) proved that for a 3-party system, there exists no inequality for
the von Neumann entropy beyond strong subadditivity.

• Linden and Winter (2005) discovered for a 4-party system a constrained
inequality for the von Neumann entropy which is independent of strong
subadditivity.
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Concluding Remarks
• I. Csiszár advocates that information theory should be an integral part of

mathematics.

• It is clear that constraints on the entropy function has fundamental im-
plications in a number of fields in information science, mathematics, and
physics.

• There exist one-to-one correspondences among the entropy function, group
theory, Kolmogorov complexity, and network coding, suggesting that they
share the same underlying structure.

• Matroid theory plays a role here and there, in particular in the study of
conditional independence and network coding.

• The relations between these fields need a deeper understanding. The com-
binatorial structure to study is the quasi-uniform array.

• “Non-Shannon-type” inequalities in different fields need further under-
standing.
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I have just seen your paper "On the Characterization of Entropy

Function via Information Inequalities" in the IEEE Transactions on

Information Theory.  Please allow me to congratulate you on a most

beautiful result!  I worked on the problem of whether \overbar{\Gamma}^*_n

= \Gamma_n during the 80s, without any success.  I presented it as an open

problem at the SPOC (Specific Problems on Communication and Computation)

Conference in 1986--I believe there were proceedings published by Springer,

but they seem to be out of print now.  

It was wonderful to see your paper.

 - Nick Pippenger
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