
Linear and conic programming relaxations:

Graph structure and message-passing

Martin Wainwright

UC Berkeley
Departments of EECS and Statistics

Banff Workshop

Partially supported by grants from:
National Science Foundation
Alfred P. Sloan Foundation

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 1 / 33
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◮ Codeword and marginal polytopes
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Parity check matrices and factor graphs

Binary linear code as null space:

C =
{
x ∈ {0, 1}n | Hx = 0

}
,

for some parity check matrix H ∈ R
m×n.

Example: m = 3 constraints over n = 7 bits

H =




1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1





x1 x2 x3 x4 x5 x6 x7

a b c
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Optimal (maximum likelihood) decoding

Given: Likelihood vector θ = (θ1, θ2, . . . , θn) (typically from stochastic
communication channel)

Goal: Determine most likely codeword:

x̂MAP = arg max
x∈C

n∑

i=1

θixi.

known to be difficult in general (NP-complete)

certain sub-classes of codes are polynomial-time decodable:
◮ trellis codes
◮ tree-structured codes
◮ cut-set codes on planar graphs
◮ more generally: codes with sum-of-circuits property (Seymour, 1981)

meta-“theorem” in information theory: codes exactly decodable in
polynomial-time are not “good”
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From integer program to linear program

Any integer program (IP) can be converted to a linear program.

re-write IP as maximization over convex hull:

max
x∈C

n∑

i=1

θixi = max
p(x)≥0

P

x∈C
p(x)=1

∑

x∈C

p(x)

{
n∑

i=1

θixi

}
.
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Any integer program (IP) can be converted to a linear program.

re-write IP as maximization over convex hull:

max
x∈C

n∑

i=1

θixi = max
p(x)≥0

P

x∈C
p(x)=1

∑

x∈C

p(x)

{
n∑

i=1

θixi

}
.

use linearity of expectation:

max
p(x)≥0

P

x∈C
p(x)=1

∑

x∈C

p(x)

n∑

i=1

xiθi = max
p(x)≥0

P

x∈C
p(x)=1

n∑

i=1

{
∑

x∈C

p(x)xi

}

︸ ︷︷ ︸

θi

= max
µ∈M(C)

n∑

i=1

µiθi
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Any integer program (IP) can be converted to a linear program.
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.

use linearity of expectation:

max
p(x)≥0
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x∈C
p(x)=1

∑

x∈C

p(x)

n∑

i=1

xiθi = max
p(x)≥0

P

x∈C
p(x)=1

n∑

i=1

{
∑

x∈C

p(x)xi

}

︸ ︷︷ ︸

θi

= max
µ∈M(C)

n∑

i=1

µiθi

Key question:

What is the set M(C) of (µ1, µ2, . . . , µn) that are realizable in this way?
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Codeword polytope (≡ cycle polytope)

Definition:

The codeword polytope M(C) ⊆ [0, 1]n is the convex hull of all codewords

M(C) =

{
µ ∈ [0, 1]n | there exists p(x) ≥ 0 with

∑
x∈C

p(x) = 1,
such that µs =

∑
x∈C

p(x) xs for all s = 1, 2, . . . , n

}

000

110

101

011

100

001

111

000
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000

110

101

011

000

111

(a) Uncoded (b) One check (c) Two checks

M(C) ⊆ [0, 1]n, with vertices corresponding to codewords

useful to think of {p(x), x ∈ C} as a probability distribution over
codewords
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First-order linear programming relaxation

µ1

µ2

µ3

µ4

µ5

µ6

µ1

µ2

µ2

µ3
µ4

µ4

µ5

µ6

µ6

each parity check a ∈ C defines a local codeword polytope L1(a) ≡ M(a)

first-order relaxation obtained by imposing all local constraints:

L1(C) := ∩a∈CL1(a).
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Illustration: A fractional vertex (pseudocodeword)

Check A:
2

6

6

4

0
1
2
1
2
1

3

7

7

5

=
1

2

2

6

6

4

0
1
0
1

3

7

7

5

+
1

2

2

6

6

4

0
0
1
1

3

7

7

5

Check A:
2

6

6

4

1
2
1
2
0
0

3

7

7

5

=
1

2

2

6

6

4

1
1
0
0

3

7

7

5

+
1

2

2

6

6

4

0
0
0
0

3

7

7

5

0

1
2

1
2

1

0 0 1
2

fA

fB fC

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 8 / 33



Exactness for trees

Proposition:

On any tree, first-order LP relaxation is exact, and max-product algorithm
solves the dual LP. (WaiJaaWil02, WaiJor03)

Proof sketch:

given (µ1, . . . , µn) ∈ L1(C), need to construct a global distribution p(·)
such that

∑

x∈C

p(x)xi = µi for all i = 1, . . . , n.
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Exactness for trees

Proposition:

On any tree, first-order LP relaxation is exact, and max-product algorithm
solves the dual LP. (WaiJaaWil02, WaiJor03)

Proof sketch:

given (µ1, . . . , µn) ∈ L1(C), need to construct a global distribution p(·)
such that

∑

x∈C

p(x)xi = µi for all i = 1, . . . , n.

consider local code C(a) defined over each parity check: e.g., if
a = {4, 7, 9}, and xa = (x4, x7, x9):

C(a) = {(x4, x7, x9) | x4 ⊕ x7 ⊕ x9 = 0}

by definition of L1(C), there exist marginal distributions
{µa(xa) | xa ∈ C(a)} for each parity check such that:

∑

x′
a∈C(a), x′

i
=xi

µa(x′
a) = µi(xi) for all i ∈ a.



From local to global consistency

Proof sketch (continued):

we now have the following objects:

Bit marginals µi(xi) =

{
1 − µi

µi

Check-based marginals µa(xa) over local codes C(a).
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From local to global consistency

Proof sketch (continued):

we now have the following objects:

Bit marginals µi(xi) =

{
1 − µi

µi

Check-based marginals µa(xa) over local codes C(a).

consider candidate distribution pµ(·) given by

pµ(x1, x2, . . . , xn) =
1

Z(µ)

n∏

i=1

µi(xi)
∏

a∈C

µa(xa)∏
i∈a µi(xi)
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From local to global consistency

Proof sketch (continued):

we now have the following objects:

Bit marginals µi(xi) =

{
1 − µi

µi

Check-based marginals µa(xa) over local codes C(a).

consider candidate distribution pµ(·) given by

pµ(x1, x2, . . . , xn) =
1

Z(µ)

n∏

i=1

µi(xi)
∏

a∈C

µa(xa)∏
i∈a µi(xi)

Key property of tree-structured graphs:
◮ distribution is already normalized: Z(µ) = 1
◮ Bitwise consistency:

P

x∈C
p(x)xi = µi for all i = 1, 2, . . . , n.
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From local to global consistency

Proof sketch (continued):

we now have the following objects:

Bit marginals µi(xi) =

{
1 − µi

µi

Check-based marginals µa(xa) over local codes C(a).

consider candidate distribution pµ(·) given by

pµ(x1, x2, . . . , xn) =
1

Z(µ)

n∏

i=1

µi(xi)
∏

a∈C

µa(xa)∏
i∈a µi(xi)

Key property of tree-structured graphs:
◮ distribution is already normalized: Z(µ) = 1
◮ Bitwise consistency:

P

x∈C
p(x)xi = µi for all i = 1, 2, . . . , n.

proof via induction:
◮ orient tree: specify some arbitrary vertex as the root
◮ perform leaf-stripping operation
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Hierarchies of relaxations

Moment-based perspective leads naturally to hierarchies via lifting operations.

Example:

say given binary quadratic program over ordinary graph G = (V,E):

max
x∈{0,1}n

{ n∑

i=1

θixi +
∑

(i,j)∈E

θijxixj

}
.

relevant moments after converting to linear program:
Vertex-based moment: µi = P[xi = 1] for all i = 1, . . . , n
Edge-based moment: µij = P[xi = 1, xj = 1] for all (i, j) ∈ E
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Hierarchies of relaxations

Moment-based perspective leads naturally to hierarchies via lifting operations.

Example:

say given binary quadratic program over ordinary graph G = (V,E):

max
x∈{0,1}n

{ n∑

i=1

θixi +
∑

(i,j)∈E

θijxixj

}
.

relevant moments after converting to linear program:
Vertex-based moment: µi = P[xi = 1] for all i = 1, . . . , n
Edge-based moment: µij = P[xi = 1, xj = 1] for all (i, j) ∈ E

moment polytope: cut or correlation polytope (Deza & Laurent, 1997)

first-order LP relaxation involves four constraints per edge:

P[xi = 1, xj = 1] = µij ≥ 0

P[xi = 1, xj = 0] = µi − µij ≥ 0

P[xi = 0, xj = 1] = µj − µij ≥ 0

P[xi = 0, xj = 0] = 1 + µij − µi − µj ≥ 0.
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Example: Sherali-Adams relaxations for n = 3

First-order: Imposes positive semidefinite constraints on three 4 × 4
sub-matrices.
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(Sherali & Adams, 1990)
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Example: Sherali-Adams relaxations for n = 3

First-order: Imposes positive semidefinite constraints on three 4 × 4
sub-matrices.
Another matrix controlled by the first-order relaxation.
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Example: Lasserre relaxations for n = 3

First-order: Imposes positive semidefinite constraint on 4 × 4 matrix.
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(Lasserre, 2001)
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Example: Lasserre relaxations for n = 3

Second-order: Imposes positive semidefinite constraint on 7 × 7 matrix.
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Tightness and hypergraph structure

Question: When are these relaxations tight?

always tight after n stages of lifting (constraining all 2n moments)
exist (binary) problems that require n steps
in a worst-case sense: tightness determined by treewidth
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Tightness and hypergraph structure

Question: When are these relaxations tight?

always tight after n stages of lifting (constraining all 2n moments)
exist (binary) problems that require n steps
in a worst-case sense: tightness determined by treewidth

Consider family of {0, 1}-polynomial programs:

max
n∑

i=1

θixi subject to polynomial constraints

gℓ(x1, . . . , xn) ≤ 0, ℓ = 1, . . . ,M
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Tightness and hypergraph structure

Question: When are these relaxations tight?

always tight after n stages of lifting (constraining all 2n moments)
exist (binary) problems that require n steps
in a worst-case sense: tightness determined by treewidth

Consider family of {0, 1}-polynomial programs:

max
n∑

i=1

θixi subject to polynomial constraints

gℓ(x1, . . . , xn) ≤ 0, ℓ = 1, . . . ,M

Theorem

Form the hypergraph G with vertex V = {1, 2, . . . , n} and hyperedge set
E = {V (gℓ), ℓ = 1, . . . ,M}, and let t be its treewidth.

(a) The Sherali-Adams relaxation is tight at order t.

(b) The Lasserre relaxation is tight at order t + 1.

(WaiJor03)
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Linear programming (LP) decoding

Based on first-order LP relaxation of ML integer program:

max
x∈C

n∑

i=1

θixi ≤ max
µ∈L1(C)

n∑

i=1

θiµi

where the vectors µ = (µ1, . . . , µn) belong to the relaxed constraint set:

L1(C) =

{
µ ∈ [0, 1]n |

∑
i∈N(a) |µi − zi| ≥ 1 ∀ odd parity za ∈ {0, 1}|N(a)|

and for all checks a ∈ C

}

Relaxed set L1(C) defined by T =
∑

a∈C 2da−1 constraints in total, where
da = |N(a)|.

Example: For check a = {1, 2, 3}, require 23−1 = 4 constraints:

(1 − µ1) + µ2 + µ3 ≥ 0

µ1 + (1 − µ2) + µ3 ≥ 0

µ1 + µ2 + (1 − µ3) ≥ 0

(1 − µ1) + (1 − µ2) + (1 − µ3) ≥ 0
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Different types of channels

communication channel modeled as a conditional distribution

P[y | x] = prob. of observing y given that x transmitted

channels are often modeled as memoryless: P[y | x] =
∏n

i=1 P[yi | xi]
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Different types of channels

communication channel modeled as a conditional distribution

P[y | x] = prob. of observing y given that x transmitted

channels are often modeled as memoryless: P[y | x] =
∏n

i=1 P[yi | xi]

some examples:
◮ binary erasure channel (BEC) with erasure prob. α ∈ [0, 1]:

yi =

(

xi with prob. 1 − α

∗ with prob. α.
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communication channel modeled as a conditional distribution

P[y | x] = prob. of observing y given that x transmitted

channels are often modeled as memoryless: P[y | x] =
∏n

i=1 P[yi | xi]

some examples:
◮ binary erasure channel (BEC) with erasure prob. α ∈ [0, 1]:

yi =

(

xi with prob. 1 − α

∗ with prob. α.

◮ binary symmetric channel (BSC) with flip prob. p ∈ [0, 1]:

yi =

(

xi with prob. 1−

1 − xi with prob. p.
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Different types of channels

communication channel modeled as a conditional distribution

P[y | x] = prob. of observing y given that x transmitted

channels are often modeled as memoryless: P[y | x] =
∏n

i=1 P[yi | xi]

some examples:
◮ binary erasure channel (BEC) with erasure prob. α ∈ [0, 1]:

yi =

(

xi with prob. 1 − α

∗ with prob. α.

◮ binary symmetric channel (BSC) with flip prob. p ∈ [0, 1]:

yi =

(

xi with prob. 1−

1 − xi with prob. p.

◮ additive white Gaussian noise channel (AWGN):

yi = (2xi − 1) + σwi where wi ∼ N(0, 1)
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Different types of channels

communication channel modeled as a conditional distribution

P[y | x] = prob. of observing y given that x transmitted

channels are often modeled as memoryless: P[y | x] =
∏n

i=1 P[yi | xi]

some examples:
◮ binary erasure channel (BEC) with erasure prob. α ∈ [0, 1]:

yi =

(

xi with prob. 1 − α

∗ with prob. α.

◮ binary symmetric channel (BSC) with flip prob. p ∈ [0, 1]:

yi =

(

xi with prob. 1−

1 − xi with prob. p.

◮ additive white Gaussian noise channel (AWGN):

yi = (2xi − 1) + σwi where wi ∼ N(0, 1)

input to LP decoding algorithm: likelihoods θi = log P[yi|xi=1]
P[yi|xi=0]
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Geometry of LP decoding

0

θ1θ2

M(C)

L1(C)

NL1(0) = normal cone of L1(C)

NM(0) = normal cone of M(C)

Prob. of successful ML decoding = P
[
θ ∈ NM(0)

]

Prob. of successful LP decoding = P
[
θ ∈ NL1

(0)
]
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Some known results
LP decoding equivalent to message-passing for binary erasure channel
(stopping sets ⇐⇒ pseudocodewords)

positive results:
◮ linear LP pseudoweight for expander codes and BSC (Feldman et al., 2004)
◮ linear pseudoweight scaling for truncated Gaussian (Feldman et al., 2005)

negative results:
◮ sublinear LP pseudoweight for AWGN (Koetter & Vontobel, 2003, 2005)
◮ bounds on BSC pseudodistance (Vontobel & Koetter, 2006)

various extensions to basic LP algorithm:
◮ stopping set redundancy for BEC (Vardy et al., 2006)
◮ facet guessing (Dimakis et al., 2006, 2009)
◮ loop corrections for LP decoding (Chertkov et al., 2006)
◮ higher-order relaxations (Feldman et al., 2005, others...)

various iterative “message-passing” algorithms for solving LP:
◮ tree-reweighted (TRW) max-product (WaiJaaWil03, Kolmogorov, 2005)
◮ zero-temperature limits of convex BP (Weiss et al., 2006, Johnson et al., 2008)
◮ adaptive LP-solver (Taghavi & Siegel, 2006)
◮ interior-point methods (Vontobel, 2008)
◮ proximal methods (Agarwal et al., 2009)



Performance for the BEC

standard iterative decoding (sum-product; belief propagation) takes a
very simple form in the BEC: (e.g., Luby et al., 2001)

While there exists at least one erased (∗) bit:

1 Find check node with exactly one erased bit nbr.

2 Set erased bit neighbor to the XOR of other bit neighbors.

3 Repeat.

success/failure is determined by presence/absence of stopping sets in the
erased bits (Di et al., 2002)

for LP decoding, cost vector takes form θs =






−1 if ys = 1

1 if ys = 0

0 if ys erased

.

stopping sets correspond to cost vectors that lie outside the relaxed
normal cone NL1

(0)
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Stopping sets for the BEC

Definition: A stopping set S is a set of bits such that:

every bit in S is erased

every check that is adjacent to S has degree at least two (with respect to
S)

0 0 ∗ 0 0 0 0 ∗

0 0 2 2
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LP decoding in the BEC

The performance of the LP decoder in the BEC is completely characterized by
stopping sets:

Theorem

(a) LP decoding succeeds in the BEC if and only the set of erasures does not
contain a stopping set.

(b) Therefore, the performance of (first-order) LP decoding is equivalent to
sum-product/belief propagation decoding in the BEC.

(Feldman et al., 2003)
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LP decoding in the BEC

The performance of the LP decoder in the BEC is completely characterized by
stopping sets:

Theorem

(a) LP decoding succeeds in the BEC if and only the set of erasures does not
contain a stopping set.

(b) Therefore, the performance of (first-order) LP decoding is equivalent to
sum-product/belief propagation decoding in the BEC.

(Feldman et al., 2003)

Shannon capacity: a code of rate R = 1−m/n should be able to correct a
fraction m/n of erasures

Corollary: With appropriate choices of low-density parity check codes,
LP decoding can achieve capacity in the BEC.
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Codes based on expander graphs

previous work on expander codes (e.g., SipSpi02; BurMil02; BarZem02)

graph expansion: yields stronger results beyond girth-based analysis

|S| ≤ α|V |

|C(S)| ≥ ρ|S|

Definition: Let α ∈ (0, 1). A factor graph G = (V,C,E) is a (α, ρ)-expander
if for all subsets S ⊂ V with |S| ≤ α|V |, at least ρ|S| check nodes are incident
to S.
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Worst-case constant fraction for expanders

Theorem (Linear fraction guarantee)

Let C be an LDPC described by a factor graph G with regular variable (bit)
degree dv. Suppose that G is an (α, δdv)-expander, where δ > 2/3 + 1/(3dv)
and δdv is an integer.
Then the LP decoder can correct any pattern of 3δ−2

2δ−1 (αn) bit flips.
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Worst-case constant fraction for expanders

Theorem (Linear fraction guarantee)

Let C be an LDPC described by a factor graph G with regular variable (bit)
degree dv. Suppose that G is an (α, δdv)-expander, where δ > 2/3 + 1/(3dv)
and δdv is an integer.
Then the LP decoder can correct any pattern of 3δ−2

2δ−1 (αn) bit flips.

key technical device: use of dual witness

◮ by code/polytope symmetry: assume WLOG that 0n sent

◮ LP succeeds when 0n sent ⇐⇒ primal optimum p∗ = 0

◮ suffices to construct dual optimal solution with q∗ = 0

caveat: constant fraction very low (e.g., c = 0.00017 for R = 0.5)

potential gaps in the analysis

◮ analysis adversarial in nature
◮ dual witness relatively weak
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Proof technique: Construction of dual witness

Primal LP: Vars. {µi, i ∈ V }, {µa,J , a ∈ F, J ⊆ N(a), |J | even}

min.
∑

i∈V

θiµi s.t.






µa,J ≥ 0
∑

J∈C(a)

µa,J = 1

∑
J∈C(a),Jv=1

µa,J = µv
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Proof technique: Construction of dual witness

Primal LP: Vars. {µi, i ∈ V }, {µa,J , a ∈ F, J ⊆ N(a), |J | even}

min.
∑

i∈V

θiµi s.t.






µa,J ≥ 0
∑

J∈C(a)

µa,J = 1

∑
J∈C(a),Jv=1

µa,J = µv

Dual LP: Vars. {va, a ∈ F} {τia, (i, a) ∈ E} unconstrained

max.
∑

a∈F

va s.t.






∑
i∈S

τia ≥ va for all a ∈ C, J ⊆ C(a), |J | even

∑
a∈N(i)

τia ≤ θi for all i ∈ V
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Dual witness to zero-valued primal solution

assume WLOG that 0n is sent: suffices to construct a dual solution with
value q∗ = 0

dual LP simplifies substantially as follows:

Dual feasibility: Find real numbers {τia, (i, a) ∈ E} such that

τia + τja ≥ 0 ∀ a ∈ C, and i, j ∈ N(a)
X

a∈N(i)

τia < θi for all i ∈ V

random weights θi ∈ R defined by channel; e.g., for binary symmetric
channel

θi =

{
1 with prob. 1 − p

−1 with prob. p
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Probabilistic analysis of LP decoding over BSC

Consider an ensemble of LDPC codes with rate R, regular vertex degree dv,

and blocklength n. Suppose that the code is a (ν,
(

p
dv

)
dv) expander.

Theorem

For each (R, dv, n), there is a fraction α > 0 and error exponent c > 0 such
that the LP decoder succeeds with probability 1 − exp(−cn) over the space of
bit flips ≤ ⌊αn⌋. (DasDimKarWai07)

Remarks:

the correctable fraction α is always larger than the worst case guarantee
3 p

dv
−2

2 p

dv
−1ν.

concrete example: rate R = 0.5, degree dv = 8 and p = 6 yields a
correctable fraction α = 0.002.
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Hyperflow-based dual witness

A hyperflow is a collection of weights
{τia, (i, a) ∈ E} such that:
(a) for each check a ∈ F , exists some
γa ≥ 0 and privileged neighbor i∗ ∈
N(a) such that

τia =

(

−γa for i = i∗

+γa for i 6= i∗.
.

(b)
P

a∈N(i)

τia < θi for all i ∈ V .

Proposition:

A hyperflow exists ⇐⇒
∃ a dual feasible point with zero value.
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Hyperflow (epidemic) interpretation:

each flipped bit adds 1 unit of “poison”; each clean bit absorbs at most 1
unit
each infected check relays poison to all of its neighbors



Naive routing of poison may fail

overloaded bit
D

Dirty checks N(D)

Dc

need to route 1 unit of poison away from each flipped bit

each unflipped bit j ∈ Dc can neutralize at most one unit

Consequence: naive routing of poison can lead to overload
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Routing poison via generalized matching

D

Potentially dirty checks N(D)

Dc

Definition: For positive integers p, q, a (p, q)-matching is defined by the
conditions:
(i) every flipped bit i ∈ D is matched with p distinct checks.
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Routing poison via generalized matching

D

Potentially dirty checks N(D)

Dc

Definition: For positive integers p, q, a (p, q)-matching is defined by the
conditions:
(i) every flipped bit i ∈ D is matched with p distinct checks.

(ii) every unflipped bit j ∈ Dc matched with max{Zj − (dv − q), 0}
checks from N(D), where Zj = |N(j) ∩ N(D)|.
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Generalized matching implies hyperflow

Lemma

Any (p, q) matching with 2p + q > 2dv can be used to construct a valid
hyperflow.
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Lemma

Any (p, q) matching with 2p + q > 2dv can be used to construct a valid
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Proof sketch:

construct hyperflow with each flipped bit routing γ ≥ 0 units to each of p
checks
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Generalized matching implies hyperflow

Lemma

Any (p, q) matching with 2p + q > 2dv can be used to construct a valid
hyperflow.

Proof sketch:

construct hyperflow with each flipped bit routing γ ≥ 0 units to each of p
checks

each flipped bit can receive at most (dv − p)γ units from other dirty
checks (to which it is not matched)

hence we require that −pγ + (dv − p)γ < −1, or γ > 1/(2p − dv)
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Generalized matching implies hyperflow

Lemma

Any (p, q) matching with 2p + q > 2dv can be used to construct a valid
hyperflow.

Proof sketch:

construct hyperflow with each flipped bit routing γ ≥ 0 units to each of p
checks

each flipped bit can receive at most (dv − p)γ units from other dirty
checks (to which it is not matched)

hence we require that −pγ + (dv − p)γ < −1, or γ > 1/(2p − dv)

each unflipped bit receives at most (dv − q)γ units so that we need
γ < 1/(dv − q)
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Generalized matching and Hall’s theorem

D

S1 S2

Dc

N(D) ∩ N(S2)

N(S1)

by generalized Hall’s theorem, (p, q)-matching fails to exist if only if there
exist subsets S1 ⊆ D and S2 ⊆ Dc that contract:

|N(S1) ∪ [N(S2) ∩ N(D)]|︸ ︷︷ ︸ ≤ p|S1| +
∑

j∈S2

max {0, q − (dv − Zj)} .

︸ ︷︷ ︸
available matches total requests
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High-level summary of key steps

1 Randomly constructed LDPC is “almost-always” expander with high
probability (w.h.p.)

◮ weaker notion than classical expansion: holds for larger sizes
◮ proof: union bounds plus martingale concentration
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High-level summary of key steps

1 Randomly constructed LDPC is “almost-always” expander with high
probability (w.h.p.)

◮ weaker notion than classical expansion: holds for larger sizes
◮ proof: union bounds plus martingale concentration

2 Prove that an “almost-always” expander will have a generalized matching
w.h.p.:

◮ requires concentration statements
◮ generalized Hall’s theorem

3 Generalized matching guarantees existence of hyperflow.

4 Valid hyperflow is a dual witness for LP decoding succcess.
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Summary and some papers

broad families of conic programming (LP, SOCP, SDP) based on moments

worst-case tightness intimately related to (hyper)graph structure

known average-case results also exploit graph structure:
◮ girth and “locally treelike” properties
◮ graph expansion

many open questions remain....
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