Linear and conic programming relaxations: Graph structure and message-passing

Martin Wainwright
UC Berkeley
Departments of EECS and Statistics

Banff Workshop

Partially supported by grants from:
National Science Foundation
Alfred P. Sloan Foundation

Outline

(1) Conic programming relaxations based on moments

- From integer program to linear program
- Codeword and marginal polytopes
- First-order relaxation and tightness
- Sherali-Adams and Lasserre sequences
(2) Analysis of LP relaxations in coding
- geometry and pseudocodeword
- worst-case guarantees for expanders
- some probabilistic analysis
- primal-dual witnesses in LP decoding

Parity check matrices and factor graphs

Binary linear code as null space:

$$
\mathbb{C}=\left\{\mathbf{x} \in\{0,1\}^{n} \mid H \mathbf{x}=0\right\},
$$

for some parity check matrix $H \in \mathbb{R}^{m \times n}$.

Example: $m=3$ constraints over $n=7$ bits

$$
H=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Optimal (maximum likelihood) decoding

Given: Likelihood vector $\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$ (typically from stochastic communication channel)

Goal: Determine most likely codeword:

$$
\widehat{\mathbf{x}}_{\mathrm{MAP}}=\arg \max _{\mathbf{x} \in C} \sum_{i=1}^{n} \theta_{i} x_{i} .
$$

- known to be difficult in general (NP-complete)
- certain sub-classes of codes are polynomial-time decodable:
- trellis codes
- tree-structured codes
- cut-set codes on planar graphs
- more generally: codes with sum-of-circuits property
- meta-"theorem" in information theory: codes exactly decodable in polynomial-time are not "good"

From integer program to linear program

Any integer program (IP) can be converted to a linear program.

- re-write IP as maximization over convex hull:

$$
\max _{\mathbf{x} \in \mathbb{C}} \sum_{i=1}^{n} \theta_{i} x_{i}=\max _{\substack{p(\mathbf{x}) \geq 0 \\ \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x})=1}} \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x})\left\{\sum_{i=1}^{n} \theta_{i} x_{i}\right\} .
$$

From integer program to linear program

Any integer program (IP) can be converted to a linear program.

- re-write IP as maximization over convex hull:

$$
\max _{\mathbf{x} \in \mathbb{C}} \sum_{i=1}^{n} \theta_{i} x_{i}=\max _{\substack{p(\mathbf{x}) \geq 0 \\ \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x})=1}} \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x})\left\{\sum_{i=1}^{n} \theta_{i} x_{i}\right\} .
$$

- use linearity of expectation:

$$
\begin{aligned}
\max _{\substack{p(\mathbf{x}) \geq 0 \\
\sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x})=1}} \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) \sum_{i=1}^{n} x_{i} \theta_{i} & =\max _{\substack{\sum_{\mathbf{x} \in \mathbb{C}}^{p(\mathbf{x}) \geq 0} \mathbf{p (\mathbf { x }) = 1}}} \sum_{i=1}^{n} \underbrace{\left\{\sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) x_{i}\right\}} \theta_{i} \\
& =\max _{\mu \in \mathcal{M}(\mathbb{C})} \sum_{i=1}^{n} \mu_{i} \theta_{i}
\end{aligned}
$$

From integer program to linear program

Any integer program (IP) can be converted to a linear program.

- re-write IP as maximization over convex hull:

$$
\max _{\mathbf{x} \in \mathbb{C}} \sum_{i=1}^{n} \theta_{i} x_{i}=\max _{\substack{p(\mathbf{x}) \geq 0 \\ \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x})=1}} \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x})\left\{\sum_{i=1}^{n} \theta_{i} x_{i}\right\}
$$

- use linearity of expectation:

$$
\begin{aligned}
\max _{\substack{p(\mathbf{x}) \geq 0 \\
\sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x})=1}} \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) \sum_{i=1}^{n} x_{i} \theta_{i} & =\max _{\substack{\sum_{\mathbf{x}(\mathbf{x}) \geq 0} p(\mathbf{x})=1}} \sum_{i=1}^{n} \underbrace{\left\{\sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) x_{i}\right\}} \theta_{i} \\
& =\max _{\mu \in \mathcal{M}(\mathbb{C})} \sum_{i=1}^{n} \mu_{i} \theta_{i}
\end{aligned}
$$

Key question:

What is the set $\mathcal{M}(\mathbb{C})$ of $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$ that are realizable in this way?

Codeword polytope (\equiv cycle polytope)

Definition:

The codeword polytope $\mathcal{M}(\mathbb{C}) \subseteq[0,1]^{n}$ is the convex hull of all codewords

$$
\mathcal{M}(\mathbb{C})=\left\{\begin{array}{c}
\mu \in[0,1]^{n} \mid \text { there exists } p(\mathbf{x}) \geq 0 \text { with } \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x})=1, \\
\text { such that } \quad \mu_{s}=\sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) x_{s} \quad \text { for all } s=1,2, \ldots, n
\end{array}\right\}
$$

(a) Uncoded

(b) One check

(c) Two checks

- $\mathcal{M}(\mathbb{C}) \subseteq[0,1]^{n}$, with vertices corresponding to codewords
- useful to think of $\{p(\mathbf{x}), \mathbf{x} \in \mathbb{C}\}$ as a probability distribution over codewords

First-order linear programming relaxation

- each parity check $a \in C$ defines a local codeword polytope $\mathcal{L}_{1}(a) \equiv \mathcal{M}(a)$
- first-order relaxation obtained by imposing all local constraints:

$$
\mathcal{L}_{1}(\mathbb{C}):=\cap_{a \in C} \mathcal{L}_{1}(a) .
$$

Illustration: A fractional vertex (pseudocodeword)

Check A:

$$
\left[\begin{array}{c}
0 \\
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

Check A:

$$
\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0 \\
0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Exactness for trees

Proposition:

On any tree, first-order LP relaxation is exact, and max-product algorithm solves the dual LP.
(WaiJaaWil02, WaiJor03)

Proof sketch:

- given $\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathcal{L}_{1}(\mathbb{C})$, need to construct a global distribution $p(\cdot)$ such that

$$
\sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) x_{i}=\mu_{i} \quad \text { for all } i=1, \ldots, n
$$

Exactness for trees

Proposition:

On any tree, first-order LP relaxation is exact, and max-product algorithm solves the dual LP.
(WaiJaaWil02, WaiJor03)

Proof sketch:

- given $\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathcal{L}_{1}(\mathbb{C})$, need to construct a global distribution $p(\cdot)$ such that

$$
\sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) x_{i}=\mu_{i} \quad \text { for all } i=1, \ldots, n
$$

- consider local code $\mathbb{C}(a)$ defined over each parity check: e.g., if $a=\{4,7,9\}$, and $x_{a}=\left(x_{4}, x_{7}, x_{9}\right)$:

$$
\mathbb{C}(a)=\left\{\left(x_{4}, x_{7}, x_{9}\right) \mid x_{4} \oplus x_{7} \oplus x_{9}=0\right\}
$$

Exactness for trees

Proposition:

On any tree, first-order LP relaxation is exact, and max-product algorithm solves the dual LP.
(WaiJaaWil02, WaiJor03)

Proof sketch:

- given $\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathcal{L}_{1}(\mathbb{C})$, need to construct a global distribution $p(\cdot)$ such that

$$
\sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) x_{i}=\mu_{i} \quad \text { for all } i=1, \ldots, n
$$

- consider local code $\mathbb{C}(a)$ defined over each parity check: e.g., if $a=\{4,7,9\}$, and $x_{a}=\left(x_{4}, x_{7}, x_{9}\right)$:

$$
\mathbb{C}(a)=\left\{\left(x_{4}, x_{7}, x_{9}\right) \mid x_{4} \oplus x_{7} \oplus x_{9}=0\right\}
$$

- by definition of $\mathcal{L}_{1}(\mathbb{C})$, there exist marginal distributions $\left\{\mu_{a}\left(x_{a}\right) \mid x_{a} \in \mathbb{C}(a)\right\}$ for each parity check such that:

$$
\sum_{x_{a}^{\prime} \in \mathbb{C}(a), x_{i}^{\prime}=x_{i}} \mu_{a}\left(x_{a}^{\prime}\right)=\mu_{i}\left(x_{i}\right) \quad \text { for all } i \in a .
$$

From local to global consistency

Proof sketch (continued):

- we now have the following objects:

Bit marginals

$$
\mu_{i}\left(x_{i}\right)=\left\{\begin{array}{l}
1-\mu_{i} \\
\mu_{i}
\end{array}\right.
$$

Check-based marginals $\quad \mu_{a}\left(x_{a}\right)$ over local codes $\mathbb{C}(a)$.

From local to global consistency

Proof sketch (continued):

- we now have the following objects:

Bit marginals

$$
\mu_{i}\left(x_{i}\right)=\left\{\begin{array}{l}
1-\mu_{i} \\
\mu_{i}
\end{array}\right.
$$

Check-based marginals $\quad \mu_{a}\left(x_{a}\right)$ over local codes $\mathbb{C}(a)$.

- consider candidate distribution $p_{\mu}(\cdot)$ given by

$$
p_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{Z(\mu)} \prod_{i=1}^{n} \mu_{i}\left(x_{i}\right) \prod_{a \in C} \frac{\mu_{a}\left(x_{a}\right)}{\prod_{i \in a} \mu_{i}\left(x_{i}\right)}
$$

From local to global consistency

Proof sketch (continued):

- we now have the following objects:

Bit marginals

$$
\mu_{i}\left(x_{i}\right)=\left\{\begin{array}{l}
1-\mu_{i} \\
\mu_{i}
\end{array}\right.
$$

Check-based marginals $\quad \mu_{a}\left(x_{a}\right)$ over local codes $\mathbb{C}(a)$.

- consider candidate distribution $p_{\mu}(\cdot)$ given by

$$
p_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{Z(\mu)} \prod_{i=1}^{n} \mu_{i}\left(x_{i}\right) \prod_{a \in C} \frac{\mu_{a}\left(x_{a}\right)}{\prod_{i \in a} \mu_{i}\left(x_{i}\right)}
$$

- Key property of tree-structured graphs:
- distribution is already normalized: $Z(\mu)=1$
- Bitwise consistency: $\sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) x_{i}=\mu_{i}$ for all $i=1,2, \ldots, n$.

From local to global consistency

Proof sketch (continued):

- we now have the following objects:

Bit marginals

$$
\mu_{i}\left(x_{i}\right)=\left\{\begin{array}{l}
1-\mu_{i} \\
\mu_{i}
\end{array}\right.
$$

Check-based marginals $\quad \mu_{a}\left(x_{a}\right)$ over local codes $\mathbb{C}(a)$.

- consider candidate distribution $p_{\mu}(\cdot)$ given by

$$
p_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{Z(\mu)} \prod_{i=1}^{n} \mu_{i}\left(x_{i}\right) \prod_{a \in C} \frac{\mu_{a}\left(x_{a}\right)}{\prod_{i \in a} \mu_{i}\left(x_{i}\right)}
$$

- Key property of tree-structured graphs:
- distribution is already normalized: $Z(\mu)=1$
- Bitwise consistency: $\sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) x_{i}=\mu_{i}$ for all $i=1,2, \ldots, n$.
- proof via induction:
- orient tree: specify some arbitrary vertex as the root
- perform leaf-stripping operation

Hierarchies of relaxations

Moment-based perspective leads naturally to hierarchies via lifting operations.

Example:

- say given binary quadratic program over ordinary graph $G=(V, E)$:

$$
\max _{\mathbf{x} \in\{0,1\}^{n}}\left\{\sum_{i=1}^{n} \theta_{i} x_{i}+\sum_{(i, j) \in E} \theta_{i j} x_{i} x_{j}\right\}
$$

- relevant moments after converting to linear program:

Vertex-based moment: $\quad \mu_{i}=\mathbb{P}\left[x_{i}=1\right]$ for all $i=1, \ldots, n$
Edge-based moment: $\quad \mu_{i j}=\mathbb{P}\left[x_{i}=1, x_{j}=1\right]$ for all $(i, j) \in E$

Hierarchies of relaxations

Moment-based perspective leads naturally to hierarchies via lifting operations.

Example:

- say given binary quadratic program over ordinary graph $G=(V, E)$:

$$
\max _{\mathbf{x} \in\{0,1\}^{n}}\left\{\sum_{i=1}^{n} \theta_{i} x_{i}+\sum_{(i, j) \in E} \theta_{i j} x_{i} x_{j}\right\} .
$$

- relevant moments after converting to linear program:

Vertex-based moment: $\quad \mu_{i}=\mathbb{P}\left[x_{i}=1\right]$ for all $i=1, \ldots, n$
Edge-based moment: $\quad \mu_{i j}=\mathbb{P}\left[x_{i}=1, x_{j}=1\right]$ for all $(i, j) \in E$

- moment polytope: cut or correlation polytope
(Deza \& Laurent, 1997)
- first-order LP relaxation involves four constraints per edge:

$$
\begin{aligned}
& \mathbb{P}\left[x_{i}=1, x_{j}=1\right] \quad=\mu_{i j} \geq 0 \\
& \mathbb{P}\left[x_{i}=1, x_{j}=0\right]=\mu_{i}-\mu_{i j} \geq 0 \\
& \mathbb{P}\left[x_{i}=0, x_{j}=1\right]=\mu_{j}-\mu_{i j} \geq 0 \\
& \mathbb{P}\left[x_{i}=0, x_{j}=0\right] \quad=1+\mu_{i j}-\mu_{i}-\mu_{j} \geq 0 .
\end{aligned}
$$

Example: Sherali-Adams relaxations for $n=3$

First-order: Imposes positive semidefinite constraints on three 4×4 sub-matrices.
$\left[\begin{array}{lll|l:l:lll}1 & \mu_{1} & \mu_{2} & \mu_{3} & \mu_{12} & \mu_{23} & \mu_{13} & \mu_{123} \\ \mu_{1} & \mu_{1} & \mu_{12} & \mu_{13} & \mu_{12} & \mu_{123} & \mu_{13} & \mu_{123} \\ \mu_{2} & \mu_{12} & \mu_{2} & \mu_{23} & \mu_{12} & \mu_{23} & \mu_{123} & \mu_{123} \\ \hdashline \mu_{3} & \mu_{13} & \mu_{23} & \mu_{3} & \mu_{123} & \mu_{23} & \mu_{13} & \mu_{123} \\ \hdashline \mu_{12} & \mu_{12} & \mu_{12} & \mu_{123} & \mu_{12} & \mu_{123} & \mu_{123} & \mu_{123} \\ \mu_{23} & \mu_{123} & \mu_{23} & \mu_{23} & \mu_{123} & \mu_{23} & \mu_{123} & \mu_{123} \\ \mu_{13} & \mu_{13} & \mu_{123} & \mu_{13} & \mu_{123} & \mu_{123} & \mu_{13} & \mu_{123} \\ \mu_{123} & \mu_{123}\end{array}\right]$
(Sherali \& Adams, 1990)

Example: Sherali-Adams relaxations for $n=3$

First-order: Imposes positive semidefinite constraints on three 4×4 sub-matrices.
Another matrix controlled by the first-order relaxation.

1	μ_{1}	μ_{2}	μ_{3}	μ_{12}	μ_{23}	μ_{13}	μ_{123}
μ_{1}	μ_{1}	μ_{12}	μ_{13}	μ_{12}	μ_{123}	μ_{13}	μ_{123}
μ_{2}	μ_{12}	μ_{2}	μ_{23}	μ_{12}	μ_{23}	μ_{123}	μ_{123}
μ_{3}	μ_{13}	μ_{23}	μ_{3}	μ_{123}	μ_{23}	μ_{13}	μ_{123}
μ_{12}	μ_{12}	μ_{12}	μ_{123}	μ_{12}	μ_{123}	μ_{123}	μ_{123}
μ_{23}	μ_{123}	μ_{23}	μ_{23}	μ_{123}	μ_{23}	μ_{123}	μ_{123}
μ_{13}	μ_{13}	μ_{123}	μ_{13}	μ_{123}	μ_{123}	μ_{13}	μ_{123}
μ_{123}							

(Sherali \& Adams, 1990)

Example: Lasserre relaxations for $n=3$

First-order: Imposes positive semidefinite constraint on 4×4 matrix.
$\left[\begin{array}{llll:llll}1 & \mu_{1} & \mu_{2} & \mu_{3} & \mu_{12} & \mu_{23} & \mu_{13} & \mu_{123} \\ \mu_{1} & \mu_{1} & \mu_{12} & \mu_{13} & \mu_{12} & \mu_{123} & \mu_{13} & \mu_{123} \\ \mu_{2} & \mu_{12} & \mu_{2} & \mu_{23} & \mu_{12} & \mu_{23} & \mu_{123} & \mu_{123} \\ \mu_{3} & \mu_{13} & \mu_{23} & \mu_{3} & \mu_{123} & \mu_{23} & \mu_{13} & \mu_{123} \\ \hdashline \mu_{12} & \mu_{12} & \mu_{12} & \mu_{123} & \mu_{12} & \mu_{123} & \mu_{123} & \mu_{123} \\ \mu_{23} & \mu_{123} & \mu_{23} & \mu_{23} & \mu_{123} & \mu_{23} & \mu_{123} & \mu_{123} \\ \mu_{13} & \mu_{13} & \mu_{123} & \mu_{13} & \mu_{123} & \mu_{123} & \mu_{13} & \mu_{123} \\ \mu_{123} & \mu_{123}\end{array}\right]$

Example: Lasserre relaxations for $n=3$

Second-order: Imposes positive semidefinite constraint on 7×7 matrix.
$\left[\begin{array}{lllllll:l}1 & \mu_{1} & \mu_{2} & \mu_{3} & \mu_{12} & \mu_{23} & \mu_{13} & \mu_{123} \\ \mu_{1} & \mu_{1} & \mu_{12} & \mu_{13} & \mu_{12} & \mu_{123} & \mu_{13} & \mu_{123} \\ \mu_{2} & \mu_{12} & \mu_{2} & \mu_{23} & \mu_{12} & \mu_{23} & \mu_{123} & \mu_{123} \\ \mu_{3} & \mu_{13} & \mu_{23} & \mu_{3} & \mu_{123} & \mu_{23} & \mu_{13} & \mu_{123} \\ \mu_{12} & \mu_{12} & \mu_{12} & \mu_{123} & \mu_{12} & \mu_{123} & \mu_{123} & \mu_{123} \\ \mu_{23} & \mu_{123} & \mu_{23} & \mu_{23} & \mu_{123} & \mu_{23} & \mu_{123} & \mu_{123} \\ \mu_{13} & \mu_{13} & \mu_{123} & \mu_{13} & \mu_{123} & \mu_{123} & \mu_{13} & \mu_{123} \\ \mu_{123} & \mu_{123}\end{array}\right]$

Tightness and hypergraph structure

Question: When are these relaxations tight?

- always tight after n stages of lifting (constraining all 2^{n} moments)
- exist (binary) problems that require n steps
- in a worst-case sense: tightness determined by treewidth

Tightness and hypergraph structure

Question: When are these relaxations tight?

- always tight after n stages of lifting (constraining all 2^{n} moments)
- exist (binary) problems that require n steps
- in a worst-case sense: tightness determined by treewidth

Consider family of $\{0,1\}$-polynomial programs:

$$
\begin{gathered}
\max \sum_{i=1}^{n} \theta_{i} x_{i} \quad \text { subject to polynomial constraints } \\
g_{\ell}\left(x_{1}, \ldots, x_{n}\right) \leq 0, \quad \ell=1, \ldots, M
\end{gathered}
$$

Tightness and hypergraph structure

Question: When are these relaxations tight?

- always tight after n stages of lifting (constraining all 2^{n} moments)
- exist (binary) problems that require n steps
- in a worst-case sense: tightness determined by treewidth

Consider family of $\{0,1\}$-polynomial programs:

$$
\begin{gathered}
\max \sum_{i=1}^{n} \theta_{i} x_{i} \quad \text { subject to polynomial constraints } \\
g_{\ell}\left(x_{1}, \ldots, x_{n}\right) \leq 0, \quad \ell=1, \ldots, M
\end{gathered}
$$

Theorem

Form the hypergraph G with vertex $V=\{1,2, \ldots, n\}$ and hyperedge set $E=\left\{V\left(g_{\ell}\right), \ell=1, \ldots, M\right\}$, and let t be its treewidth.
(a) The Sherali-Adams relaxation is tight at order t.
(b) The Lasserre relaxation is tight at order $t+1$.

Linear programming (LP) decoding

Based on first-order LP relaxation of ML integer program:

$$
\max _{\mathbf{x} \in \mathbb{C}} \sum_{i=1}^{n} \theta_{i} x_{i} \leq \max _{\mu \in \mathcal{L}_{1}(\mathbb{C})} \sum_{i=1}^{n} \theta_{i} \mu_{i}
$$

where the vectors $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ belong to the relaxed constraint set:
$\mathcal{L}_{1}(\mathbb{C})=\left\{\begin{array}{c}\mu \in[0,1]^{n} \quad\left|\sum_{i \in N(a)}\right| \mu_{i}-z_{i} \mid \geq 1 \quad \forall \text { odd parity } z_{a} \in\{0,1\}^{|N(a)|} \\ \text { and for all checks } a \in C\end{array}\right.$
Relaxed set $\mathcal{L}_{1}(\mathbb{C})$ defined by $T=\sum_{a \in C} 2^{d_{a}-1}$ constraints in total, where $d_{a}=|N(a)|$.

Example: For check $a=\{1,2,3\}$, require $2^{3-1}=4$ constraints:

$$
\begin{aligned}
\left(1-\mu_{1}\right)+\mu_{2}+\mu_{3} & \geq 0 \\
\mu_{1}+\left(1-\mu_{2}\right)+\mu_{3} & \geq 0 \\
\mu_{1}+\mu_{2}+\left(1-\mu_{3}\right) & \geq 0 \\
\left(1-\mu_{1}\right)+\left(1-\mu_{2}\right)+\left(1-\mu_{3}\right) & \geq 0
\end{aligned}
$$

Different types of channels

- communication channel modeled as a conditional distribution

$$
\mathbb{P}[\mathbf{y} \mid \mathbf{x}]=\text { prob. of observing } \mathbf{y} \text { given that } \mathbf{x} \text { transmitted }
$$

- channels are often modeled as memoryless: $\mathbb{P}[\mathbf{y} \mid \mathbf{x}]=\prod_{i=1}^{n} \mathbb{P}\left[y_{i} \mid x_{i}\right]$

Different types of channels

- communication channel modeled as a conditional distribution
$\mathbb{P}[\mathbf{y} \mid \mathbf{x}]=$ prob. of observing \mathbf{y} given that \mathbf{x} transmitted
- channels are often modeled as memoryless: $\mathbb{P}[\mathbf{y} \mid \mathbf{x}]=\prod_{i=1}^{n} \mathbb{P}\left[y_{i} \mid x_{i}\right]$
- some examples:
- binary erasure channel (BEC) with erasure prob. $\alpha \in[0,1]$:

$$
y_{i}= \begin{cases}x_{i} & \text { with prob. } 1-\alpha \\ * & \text { with prob. } \alpha .\end{cases}
$$

Different types of channels

- communication channel modeled as a conditional distribution
$\mathbb{P}[\mathbf{y} \mid \mathbf{x}]=$ prob. of observing \mathbf{y} given that \mathbf{x} transmitted
- channels are often modeled as memoryless: $\mathbb{P}[\mathbf{y} \mid \mathbf{x}]=\prod_{i=1}^{n} \mathbb{P}\left[y_{i} \mid x_{i}\right]$
- some examples:
- binary erasure channel (BEC) with erasure prob. $\alpha \in[0,1]$:

$$
y_{i}= \begin{cases}x_{i} & \text { with prob. } 1-\alpha \\ * & \text { with prob. } \alpha .\end{cases}
$$

- binary symmetric channel (BSC) with flip prob. $p \in[0,1]$:

$$
y_{i}= \begin{cases}x_{i} & \text { with prob. } 1- \\ 1-x_{i} & \text { with prob. } p\end{cases}
$$

Different types of channels

- communication channel modeled as a conditional distribution

$$
\mathbb{P}[\mathbf{y} \mid \mathbf{x}]=\text { prob. of observing } \mathbf{y} \text { given that } \mathbf{x} \text { transmitted }
$$

- channels are often modeled as memoryless: $\mathbb{P}[\mathbf{y} \mid \mathbf{x}]=\prod_{i=1}^{n} \mathbb{P}\left[y_{i} \mid x_{i}\right]$
- some examples:
- binary erasure channel (BEC) with erasure prob. $\alpha \in[0,1]$:

$$
y_{i}= \begin{cases}x_{i} & \text { with prob. } 1-\alpha \\ * & \text { with prob. } \alpha .\end{cases}
$$

- binary symmetric channel (BSC) with flip prob. $p \in[0,1]$:

$$
y_{i}= \begin{cases}x_{i} & \text { with prob. } 1- \\ 1-x_{i} & \text { with prob. } p\end{cases}
$$

- additive white Gaussian noise channel (AWGN):

$$
y_{i}=\left(2 x_{i}-1\right)+\sigma w_{i} \quad \text { where } w_{i} \sim N(0,1)
$$

Different types of channels

- communication channel modeled as a conditional distribution

$$
\mathbb{P}[\mathbf{y} \mid \mathbf{x}]=\text { prob. of observing } \mathbf{y} \text { given that } \mathbf{x} \text { transmitted }
$$

- channels are often modeled as memoryless: $\mathbb{P}[\mathbf{y} \mid \mathbf{x}]=\prod_{i=1}^{n} \mathbb{P}\left[y_{i} \mid x_{i}\right]$
- some examples:
- binary erasure channel (BEC) with erasure prob. $\alpha \in[0,1]$:

$$
y_{i}= \begin{cases}x_{i} & \text { with prob. } 1-\alpha \\ * & \text { with prob. } \alpha\end{cases}
$$

- binary symmetric channel (BSC) with flip prob. $p \in[0,1]$:

$$
y_{i}= \begin{cases}x_{i} & \text { with prob. } 1- \\ 1-x_{i} & \text { with prob. } p\end{cases}
$$

- additive white Gaussian noise channel (AWGN):

$$
y_{i}=\left(2 x_{i}-1\right)+\sigma w_{i} \quad \text { where } w_{i} \sim N(0,1)
$$

- input to LP decoding algorithm: likelihoods $\theta_{i}=\log \frac{\mathbb{P}\left[y_{i} \mid x_{i}=1\right]}{\mathbb{P}\left[y_{i} \mid x_{i}=0\right]}$

Geometry of LP decoding

Some known results

- LP decoding equivalent to message-passing for binary erasure channel (stopping sets \Longleftrightarrow pseudocodewords)

Some known results

- LP decoding equivalent to message-passing for binary erasure channel (stopping sets \Longleftrightarrow pseudocodewords)
- positive results:
- linear LP pseudoweight for expander codes and BSC (Feldman et al., 2004)
- linear pseudoweight scaling for truncated Gaussian (Feldman et al., 2005)

Some known results

- LP decoding equivalent to message-passing for binary erasure channel (stopping sets \Longleftrightarrow pseudocodewords)
- positive results:
- linear LP pseudoweight for expander codes and BSC (Feldman et al., 2004)
- linear pseudoweight scaling for truncated Gaussian (Feldman et al., 2005)
- negative results:
- sublinear LP pseudoweight for AWGN
- bounds on BSC pseudodistance
(Koetter \& Vontobel, 2003, 2005)
(Vontobel \& Koetter, 2006)

Some known results

- LP decoding equivalent to message-passing for binary erasure channel (stopping sets \Longleftrightarrow pseudocodewords)
- positive results:
- linear LP pseudoweight for expander codes and BSC (Feldman et al., 2004)
- linear pseudoweight scaling for truncated Gaussian (Feldman et al., 2005)
- negative results:
- sublinear LP pseudoweight for AWGN
- bounds on BSC pseudodistance
- various extensions to basic LP algorithm:
- stopping set redundancy for BEC
- facet guessing
- loop corrections for LP decoding
- higher-order relaxations
(Koetter \& Vontobel, 2003, 2005)
(Vontobel \& Koetter, 2006)
- various iterative "message-passing" algorithms for solving LP:
- tree-reweighted (TRW) max-product (WaiJaaWil03, Kolmogorov, 2005)
- zero-temperature limits of convex BP (Weiss et al., 2006, Johnson et al., 2008)
- adaptive LP-solver
(Taghavi \& Siegel, 2006)
- interior-point methods
(Vontobel, 2008)
- proximal methods

Performance for the BEC

- standard iterative decoding (sum-product; belief propagation) takes a very simple form in the BEC:
(e.g., Luby et al., 2001)

While there exists at least one erased (*) bit:
(1) Find check node with exactly one erased bit nbr.
(2) Set erased bit neighbor to the XOR of other bit neighbors.
(3) Repeat.

- success/failure is determined by presence/absence of stopping sets in the erased bits
(Di et al., 2002)
- for LP decoding, cost vector takes form $\theta_{s}=\left\{\begin{array}{ll}-1 & \text { if } y_{s}=1 \\ 1 & \text { if } y_{s}=0 \\ 0 & \text { if } y_{s} \text { erased }\end{array}\right.$.
- stopping sets correspond to cost vectors that lie outside the relaxed normal cone $N_{\mathcal{L}_{1}}(\mathbf{0})$

Stopping sets for the BEC

Definition: A stopping set S is a set of bits such that:

- every bit in S is erased
- every check that is adjacent to S has degree at least two (with respect to S)

LP decoding in the BEC

The performance of the LP decoder in the BEC is completely characterized by stopping sets:

Theorem

(a) LP decoding succeeds in the BEC if and only the set of erasures does not contain a stopping set.
(b) Therefore, the performance of (first-order) LP decoding is equivalent to sum-product/belief propagation decoding in the BEC.
(Feldman et al., 2003)

LP decoding in the BEC

The performance of the LP decoder in the BEC is completely characterized by stopping sets:

Theorem

(a) LP decoding succeeds in the BEC if and only the set of erasures does not contain a stopping set.
(b) Therefore, the performance of (first-order) LP decoding is equivalent to sum-product/belief propagation decoding in the BEC.

- Shannon capacity: a code of rate $R=1-m / n$ should be able to correct a fraction m / n of erasures
- Corollary: With appropriate choices of low-density parity check codes, LP decoding can achieve capacity in the BEC.

Codes based on expander graphs

- previous work on expander codes (e.g., SipSpi02; BurMil02; BarZem02)
- graph expansion: yields stronger results beyond girth-based analysis

Definition: Let $\alpha \in(0,1)$. A factor graph $G=(V, C, E)$ is a (α, ρ)-expander if for all subsets $S \subset V$ with $|S| \leq \alpha|V|$, at least $\rho|S|$ check nodes are incident to S.

Worst-case constant fraction for expanders

Theorem (Linear fraction guarantee)

Let \mathbb{C} be an LDPC described by a factor graph G with regular variable (bit) degree d_{v}. Suppose that G is an $\left(\alpha, \delta d_{v}\right)$-expander, where $\delta>2 / 3+1 /\left(3 d_{v}\right)$ and δd_{v} is an integer.
Then the LP decoder can correct any pattern of $\frac{3 \delta-2}{2 \delta-1}(\alpha n)$ bit flips.

Worst-case constant fraction for expanders

Theorem (Linear fraction guarantee)

Let \mathbb{C} be an LDPC described by a factor graph G with regular variable (bit) degree d_{v}. Suppose that G is an $\left(\alpha, \delta d_{v}\right)$-expander, where $\delta>2 / 3+1 /\left(3 d_{v}\right)$ and δd_{v} is an integer.
Then the LP decoder can correct any pattern of $\frac{3 \delta-2}{2 \delta-1}(\alpha n)$ bit flips.

- key technical device: use of dual witness
- by code/polytope symmetry: assume WLOG that 0^{n} sent
- LP succeeds when 0^{n} sent \Longleftrightarrow primal optimum $p^{*}=0$
- suffices to construct dual optimal solution with $q^{*}=0$

Worst-case constant fraction for expanders

Theorem (Linear fraction guarantee)

Let \mathbb{C} be an LDPC described by a factor graph G with regular variable (bit) degree d_{v}. Suppose that G is an $\left(\alpha, \delta d_{v}\right)$-expander, where $\delta>2 / 3+1 /\left(3 d_{v}\right)$ and δd_{v} is an integer.
Then the LP decoder can correct any pattern of $\frac{3 \delta-2}{2 \delta-1}(\alpha n)$ bit flips.

- key technical device: use of dual witness
- by code/polytope symmetry: assume WLOG that 0^{n} sent
- LP succeeds when 0^{n} sent \Longleftrightarrow primal optimum $p^{*}=0$
- suffices to construct dual optimal solution with $q^{*}=0$
- caveat: constant fraction very low (e.g., $c=0.00017$ for $R=0.5$)
- potential gaps in the analysis
- analysis adversarial in nature
- dual witness relatively weak

Proof technique: Construction of dual witness

Primal LP: Vars. $\left\{\mu_{i}, i \in V\right\}, \quad\left\{\mu_{a, J}, a \in F, J \subseteq N(a), \quad|J|\right.$ even $\}$

$$
\min . \sum_{i \in V} \theta_{i} \mu_{i} \text { s.t. }\left\{\begin{array}{l}
\mu_{a, J} \geq 0 \\
\sum_{J \in \mathbb{C}(a)} \mu_{a, J}=1 \\
\sum_{J \in \mathbb{C}(a), J_{v}=1} \mu_{a, J}=\mu_{v}
\end{array}\right.
$$

Proof technique: Construction of dual witness

Primal LP: Vars. $\left\{\mu_{i}, i \in V\right\}, \quad\left\{\mu_{a, J}, a \in F, J \subseteq N(a), \quad|J|\right.$ even $\}$

$$
\text { min. } \sum_{i \in V} \theta_{i} \mu_{i} \text { s.t. }\left\{\begin{array}{l}
\mu_{a, J} \geq 0 \\
\sum_{J \in \mathbb{C}(a)} \mu_{a, J}=1 \\
\sum_{J \in \mathbb{C}(a), J_{v}=1} \mu_{a, J}=\mu_{v}
\end{array}\right.
$$

Dual LP: Vars. $\left\{v_{a}, a \in F\right\} \quad\left\{\tau_{i a},(i, a) \in E\right\}$ unconstrained

$$
\text { max. } \sum_{a \in F} v_{a} \text { s.t. } \begin{cases}\sum_{i \in S} \tau_{i a} \geq v_{a} \text { for all } & a \in C, J \subseteq C(a),|J| \text { even } \\ \sum_{a \in N(i)} \tau_{i a} \leq \theta_{i} & \text { for all } i \in V\end{cases}
$$

Dual witness to zero-valued primal solution

- assume WLOG that 0^{n} is sent: suffices to construct a dual solution with value $q^{*}=0$
- dual LP simplifies substantially as follows:

Dual feasibility: Find real numbers $\left\{\tau_{i a},(i, a) \in E\right\}$ such that

$$
\begin{aligned}
\tau_{i a}+\tau_{j a} & \geq 0 \quad \forall a \in C, \text { and } i, j \in N(a) \\
\sum_{a \in N(i)} \tau_{i a} & <\theta_{i} \quad \text { for all } i \in V
\end{aligned}
$$

- random weights $\theta_{i} \in \mathbb{R}$ defined by channel; e.g., for binary symmetric channel

$$
\theta_{i}= \begin{cases}1 & \text { with prob. } 1-p \\ -1 & \text { with prob. } p\end{cases}
$$

Probabilistic analysis of LP decoding over BSC

Consider an ensemble of LDPC codes with rate R, regular vertex degree d_{v}, and blocklength n. Suppose that the code is a $\left(\nu,\left(\frac{p}{d_{v}}\right) d_{v}\right)$ expander.

Theorem

For each $\left(R, d_{v}, n\right)$, there is a fraction $\alpha>0$ and error exponent $c>0$ such that the LP decoder succeeds with probability $1-\exp (-c n)$ over the space of bit flips $\leq\lfloor\alpha n\rfloor$. (DasDimKarWai07)

Remarks:

- the correctable fraction α is always larger than the worst case guarantee $\frac{3 \frac{p}{d v}-2}{2 \frac{p}{d v}-1} \nu$.
- concrete example: rate $R=0.5$, degree $d_{v}=8$ and $p=6$ yields a correctable fraction $\alpha=0.002$.

Hyperflow-based dual witness

A hyperflow is a collection of weights $\left\{\tau_{i a},(i, a) \in E\right\}$ such that:
(a) for each check $a \in F$, exists some $\gamma_{a} \geq 0$ and privileged neighbor $i^{*} \in$ $N(a)$ such that

$$
\tau_{i a}=\left\{\begin{array}{ll}
-\gamma_{a} & \text { for } i=i^{*} \\
+\gamma_{a} & \text { for } i \neq i^{*}
\end{array} .\right.
$$

(b) $\sum_{a \in N(i)} \tau_{i a}<\theta_{i}$ for all $i \in V$.

Proposition:

A hyperflow exists \Longleftrightarrow
\exists a dual feasible point with zero value.

Hyperflow-based dual witness

A hyperflow is a collection of weights $\left\{\tau_{i a},(i, a) \in E\right\}$ such that:
(a) for each check $a \in F$, exists some $\gamma_{a} \geq 0$ and privileged neighbor $i^{*} \in$ $N(a)$ such that

$$
\tau_{i a}=\left\{\begin{array}{ll}
-\gamma_{a} & \text { for } i=i^{*} \\
+\gamma_{a} & \text { for } i \neq i^{*}
\end{array} .\right.
$$

(b) $\sum_{a \in N(i)} \tau_{i a}<\theta_{i}$ for all $i \in V$.

Proposition:

A hyperflow exists \Longleftrightarrow
\exists a dual feasible point with zero value.
Hyperflow (epidemic) interpretation:

- each flipped bit adds 1 unit of "poison"; each clean bit absorbs at most 1 unit
- each infected check relays poison to all of its neighbors

Naive routing of poison may fail

Dirty checks $N(D)$

- need to route 1 unit of poison away from each flipped bit
- each unflipped bit $j \in D^{c}$ can neutralize at most one unit
- Consequence: naive routing of poison can lead to overload

Routing poison via generalized matching

Potentially dirty checks $N(D)$
Definition: For positive integers p, q, a (p, q)-matching is defined by the conditions:
(i) every flipped bit $i \in D$ is matched with p distinct checks.

Routing poison via generalized matching

Potentially dirty checks $N(D)$
Definition: For positive integers p, q, a (p, q)-matching is defined by the conditions:
(i) every flipped bit $i \in D$ is matched with p distinct checks.
(ii) every unflipped bit $j \in D^{c}$ matched with $\max \left\{Z_{j}-\left(d_{v}-q\right), 0\right\}$ checks from $N(D)$, where $Z_{j}=|N(j) \cap N(D)|$.

Generalized matching implies hyperflow

Lemma

Any (p, q) matching with $2 p+q>2 d_{v}$ can be used to construct a valid hyperflow.

Generalized matching implies hyperflow

Lemma

Any (p, q) matching with $2 p+q>2 d_{v}$ can be used to construct a valid hyperflow.

Proof sketch:

- construct hyperflow with each flipped bit routing $\gamma \geq 0$ units to each of p checks

Generalized matching implies hyperflow

Lemma

Any (p, q) matching with $2 p+q>2 d_{v}$ can be used to construct a valid hyperflow.

Proof sketch:

- construct hyperflow with each flipped bit routing $\gamma \geq 0$ units to each of p checks
- each flipped bit can receive at most $\left(d_{v}-p\right) \gamma$ units from other dirty checks (to which it is not matched)

Generalized matching implies hyperflow

Lemma

Any (p, q) matching with $2 p+q>2 d_{v}$ can be used to construct a valid hyperflow.

Proof sketch:

- construct hyperflow with each flipped bit routing $\gamma \geq 0$ units to each of p checks
- each flipped bit can receive at most $\left(d_{v}-p\right) \gamma$ units from other dirty checks (to which it is not matched)
- hence we require that $-p \gamma+\left(d_{v}-p\right) \gamma<-1$, or $\gamma>1 /\left(2 p-d_{v}\right)$

Generalized matching implies hyperflow

Lemma

Any (p, q) matching with $2 p+q>2 d_{v}$ can be used to construct a valid hyperflow.

Proof sketch:

- construct hyperflow with each flipped bit routing $\gamma \geq 0$ units to each of p checks
- each flipped bit can receive at most $\left(d_{v}-p\right) \gamma$ units from other dirty checks (to which it is not matched)
- hence we require that $-p \gamma+\left(d_{v}-p\right) \gamma<-1$, or $\gamma>1 /\left(2 p-d_{v}\right)$
- each unflipped bit receives at most $\left(d_{v}-q\right) \gamma$ units so that we need $\gamma<1 /\left(d_{v}-q\right)$

Generalized matching and Hall's theorem

- by generalized Hall's theorem, (p, q)-matching fails to exist if only if there exist subsets $S_{1} \subseteq D$ and $S_{2} \subseteq D^{c}$ that contract:

$$
\underbrace{\left|N\left(S_{1}\right) \cup\left[N\left(S_{2}\right) \cap N(D)\right]\right|} \leq \underbrace{p\left|S_{1}\right|+\sum_{j \in S_{2}} \max \left\{0, q-\left(d_{v}-Z_{j}\right)\right\}}
$$

available matches total requests

High-level summary of key steps

(1) Randomly constructed LDPC is "almost-always" expander with high probability (w.h.p.)

- weaker notion than classical expansion: holds for larger sizes
- proof: union bounds plus martingale concentration

High-level summary of key steps

(1) Randomly constructed LDPC is "almost-always" expander with high probability (w.h.p.)

- weaker notion than classical expansion: holds for larger sizes
- proof: union bounds plus martingale concentration
(2) Prove that an "almost-always" expander will have a generalized matching w.h.p.:
- requires concentration statements
- generalized Hall's theorem

High-level summary of key steps

(1) Randomly constructed LDPC is "almost-always" expander with high probability (w.h.p.)

- weaker notion than classical expansion: holds for larger sizes
- proof: union bounds plus martingale concentration
(2) Prove that an "almost-always" expander will have a generalized matching w.h.p.:
- requires concentration statements
- generalized Hall's theorem
(3) Generalized matching guarantees existence of hyperflow.

High-level summary of key steps

(1) Randomly constructed LDPC is "almost-always" expander with high probability (w.h.p.)

- weaker notion than classical expansion: holds for larger sizes
- proof: union bounds plus martingale concentration
(2) Prove that an "almost-always" expander will have a generalized matching w.h.p.:
- requires concentration statements
- generalized Hall's theorem
(3) Generalized matching guarantees existence of hyperflow.
(4) Valid hyperflow is a dual witness for LP decoding succcess.

Summary and some papers

- broad families of conic programming (LP, SOCP, SDP) based on moments
- worst-case tightness intimately related to (hyper)graph structure
- known average-case results also exploit graph structure:
- girth and "locally treelike" properties
- graph expansion
- many open questions remain....

Summary and some papers

- broad families of conic programming (LP, SOCP, SDP) based on moments
- worst-case tightness intimately related to (hyper)graph structure
- known average-case results also exploit graph structure:
- girth and "locally treelike" properties
- graph expansion
- many open questions remain....

Some papers:

(1) Wainwright, M. J. and Jordan, M. I. (2008) Graphical models, exponential families, and variational methods. Foundations and Trends in Machine Learning, Volume 1, Issues 1-2, pages 1-305. December 2008.
(2) Daskalakis, C., Dimakis, A. D., Karp, R. and Wainwright, M. J. (2008). Probabilistic analysis of linear programming decoding. IEEE Transactions on Information Theory, Vol. 54(8), pp. 3565-3578, August 2008
(3 Feldman, J., Malkin, T., Servedio, R.A., Stein, C. and Wainwright, M. J., (2007). LP Decoding Corrects a Constant Fraction of Errors. IEEE Transactions on Information Theory, 53(1):82-89, January 2007.

