
Linear and conic programming relaxations:

Graph structure and message-passing

Martin Wainwright

UC Berkeley
Departments of EECS and Statistics

Banff Workshop

Partially supported by grants from:
National Science Foundation
Alfred P. Sloan Foundation

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 1 / 33

Outline

1 Conic programming relaxations based on moments
◮ From integer program to linear program

◮ Codeword and marginal polytopes

◮ First-order relaxation and tightness

◮ Sherali-Adams and Lasserre sequences

2 Analysis of LP relaxations in coding

◮ geometry and pseudocodeword

◮ worst-case guarantees for expanders

◮ some probabilistic analysis

◮ primal-dual witnesses in LP decoding

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 2 / 33

Parity check matrices and factor graphs

Binary linear code as null space:

C =
{
x ∈ {0, 1}n | Hx = 0

}
,

for some parity check matrix H ∈ R
m×n.

Example: m = 3 constraints over n = 7 bits

H =




1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1





x1 x2 x3 x4 x5 x6 x7

a b c

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 3 / 33

Optimal (maximum likelihood) decoding

Given: Likelihood vector θ = (θ1, θ2, . . . , θn) (typically from stochastic
communication channel)

Goal: Determine most likely codeword:

x̂MAP = arg max
x∈C

n∑

i=1

θixi.

known to be difficult in general (NP-complete)

certain sub-classes of codes are polynomial-time decodable:
◮ trellis codes
◮ tree-structured codes
◮ cut-set codes on planar graphs
◮ more generally: codes with sum-of-circuits property (Seymour, 1981)

meta-“theorem” in information theory: codes exactly decodable in
polynomial-time are not “good”

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 4 / 33

From integer program to linear program

Any integer program (IP) can be converted to a linear program.

re-write IP as maximization over convex hull:

max
x∈C

n∑

i=1

θixi = max
p(x)≥0

P

x∈C
p(x)=1

∑

x∈C

p(x)

{
n∑

i=1

θixi

}
.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 5 / 33

From integer program to linear program

Any integer program (IP) can be converted to a linear program.

re-write IP as maximization over convex hull:

max
x∈C

n∑

i=1

θixi = max
p(x)≥0

P

x∈C
p(x)=1

∑

x∈C

p(x)

{
n∑

i=1

θixi

}
.

use linearity of expectation:

max
p(x)≥0

P

x∈C
p(x)=1

∑

x∈C

p(x)

n∑

i=1

xiθi = max
p(x)≥0

P

x∈C
p(x)=1

n∑

i=1

{
∑

x∈C

p(x)xi

}

︸ ︷︷ ︸

θi

= max
µ∈M(C)

n∑

i=1

µiθi

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 5 / 33

From integer program to linear program

Any integer program (IP) can be converted to a linear program.

re-write IP as maximization over convex hull:

max
x∈C

n∑

i=1

θixi = max
p(x)≥0

P

x∈C
p(x)=1

∑

x∈C

p(x)

{
n∑

i=1

θixi

}
.

use linearity of expectation:

max
p(x)≥0

P

x∈C
p(x)=1

∑

x∈C

p(x)

n∑

i=1

xiθi = max
p(x)≥0

P

x∈C
p(x)=1

n∑

i=1

{
∑

x∈C

p(x)xi

}

︸ ︷︷ ︸

θi

= max
µ∈M(C)

n∑

i=1

µiθi

Key question:

What is the set M(C) of (µ1, µ2, . . . , µn) that are realizable in this way?

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 5 / 33

Codeword polytope (≡ cycle polytope)

Definition:

The codeword polytope M(C) ⊆ [0, 1]n is the convex hull of all codewords

M(C) =

{
µ ∈ [0, 1]n | there exists p(x) ≥ 0 with

∑
x∈C

p(x) = 1,
such that µs =

∑
x∈C

p(x) xs for all s = 1, 2, . . . , n

}

000

110

101

011

100

001

111

000

010

000

110

101

011

000

111

(a) Uncoded (b) One check (c) Two checks

M(C) ⊆ [0, 1]n, with vertices corresponding to codewords

useful to think of {p(x), x ∈ C} as a probability distribution over
codewords

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 6 / 33

First-order linear programming relaxation

µ1

µ2

µ3

µ4

µ5

µ6

µ1

µ2

µ2

µ3
µ4

µ4

µ5

µ6

µ6

each parity check a ∈ C defines a local codeword polytope L1(a) ≡ M(a)

first-order relaxation obtained by imposing all local constraints:

L1(C) := ∩a∈CL1(a).

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 7 / 33

Illustration: A fractional vertex (pseudocodeword)

Check A:
2

6

6

4

0
1
2
1
2
1

3

7

7

5

=
1

2

2

6

6

4

0
1
0
1

3

7

7

5

+
1

2

2

6

6

4

0
0
1
1

3

7

7

5

Check A:
2

6

6

4

1
2
1
2
0
0

3

7

7

5

=
1

2

2

6

6

4

1
1
0
0

3

7

7

5

+
1

2

2

6

6

4

0
0
0
0

3

7

7

5

0

1
2

1
2

1

0 0 1
2

fA

fB fC

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 8 / 33

Exactness for trees

Proposition:

On any tree, first-order LP relaxation is exact, and max-product algorithm
solves the dual LP. (WaiJaaWil02, WaiJor03)

Proof sketch:

given (µ1, . . . , µn) ∈ L1(C), need to construct a global distribution p(·)
such that

∑

x∈C

p(x)xi = µi for all i = 1, . . . , n.

Exactness for trees

Proposition:

On any tree, first-order LP relaxation is exact, and max-product algorithm
solves the dual LP. (WaiJaaWil02, WaiJor03)

Proof sketch:

given (µ1, . . . , µn) ∈ L1(C), need to construct a global distribution p(·)
such that

∑

x∈C

p(x)xi = µi for all i = 1, . . . , n.

consider local code C(a) defined over each parity check: e.g., if
a = {4, 7, 9}, and xa = (x4, x7, x9):

C(a) = {(x4, x7, x9) | x4 ⊕ x7 ⊕ x9 = 0}

Exactness for trees

Proposition:

On any tree, first-order LP relaxation is exact, and max-product algorithm
solves the dual LP. (WaiJaaWil02, WaiJor03)

Proof sketch:

given (µ1, . . . , µn) ∈ L1(C), need to construct a global distribution p(·)
such that

∑

x∈C

p(x)xi = µi for all i = 1, . . . , n.

consider local code C(a) defined over each parity check: e.g., if
a = {4, 7, 9}, and xa = (x4, x7, x9):

C(a) = {(x4, x7, x9) | x4 ⊕ x7 ⊕ x9 = 0}

by definition of L1(C), there exist marginal distributions
{µa(xa) | xa ∈ C(a)} for each parity check such that:

∑

x′
a∈C(a), x′

i
=xi

µa(x′
a) = µi(xi) for all i ∈ a.

From local to global consistency

Proof sketch (continued):

we now have the following objects:

Bit marginals µi(xi) =

{
1 − µi

µi

Check-based marginals µa(xa) over local codes C(a).

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 10 / 33

From local to global consistency

Proof sketch (continued):

we now have the following objects:

Bit marginals µi(xi) =

{
1 − µi

µi

Check-based marginals µa(xa) over local codes C(a).

consider candidate distribution pµ(·) given by

pµ(x1, x2, . . . , xn) =
1

Z(µ)

n∏

i=1

µi(xi)
∏

a∈C

µa(xa)∏
i∈a µi(xi)

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 10 / 33

From local to global consistency

Proof sketch (continued):

we now have the following objects:

Bit marginals µi(xi) =

{
1 − µi

µi

Check-based marginals µa(xa) over local codes C(a).

consider candidate distribution pµ(·) given by

pµ(x1, x2, . . . , xn) =
1

Z(µ)

n∏

i=1

µi(xi)
∏

a∈C

µa(xa)∏
i∈a µi(xi)

Key property of tree-structured graphs:
◮ distribution is already normalized: Z(µ) = 1
◮ Bitwise consistency:

P

x∈C
p(x)xi = µi for all i = 1, 2, . . . , n.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 10 / 33

From local to global consistency

Proof sketch (continued):

we now have the following objects:

Bit marginals µi(xi) =

{
1 − µi

µi

Check-based marginals µa(xa) over local codes C(a).

consider candidate distribution pµ(·) given by

pµ(x1, x2, . . . , xn) =
1

Z(µ)

n∏

i=1

µi(xi)
∏

a∈C

µa(xa)∏
i∈a µi(xi)

Key property of tree-structured graphs:
◮ distribution is already normalized: Z(µ) = 1
◮ Bitwise consistency:

P

x∈C
p(x)xi = µi for all i = 1, 2, . . . , n.

proof via induction:
◮ orient tree: specify some arbitrary vertex as the root
◮ perform leaf-stripping operation

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 10 / 33

Hierarchies of relaxations

Moment-based perspective leads naturally to hierarchies via lifting operations.

Example:

say given binary quadratic program over ordinary graph G = (V,E):

max
x∈{0,1}n

{ n∑

i=1

θixi +
∑

(i,j)∈E

θijxixj

}
.

relevant moments after converting to linear program:
Vertex-based moment: µi = P[xi = 1] for all i = 1, . . . , n
Edge-based moment: µij = P[xi = 1, xj = 1] for all (i, j) ∈ E

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 11 / 33

Hierarchies of relaxations

Moment-based perspective leads naturally to hierarchies via lifting operations.

Example:

say given binary quadratic program over ordinary graph G = (V,E):

max
x∈{0,1}n

{ n∑

i=1

θixi +
∑

(i,j)∈E

θijxixj

}
.

relevant moments after converting to linear program:
Vertex-based moment: µi = P[xi = 1] for all i = 1, . . . , n
Edge-based moment: µij = P[xi = 1, xj = 1] for all (i, j) ∈ E

moment polytope: cut or correlation polytope (Deza & Laurent, 1997)

first-order LP relaxation involves four constraints per edge:

P[xi = 1, xj = 1] = µij ≥ 0

P[xi = 1, xj = 0] = µi − µij ≥ 0

P[xi = 0, xj = 1] = µj − µij ≥ 0

P[xi = 0, xj = 0] = 1 + µij − µi − µj ≥ 0.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 11 / 33

Example: Sherali-Adams relaxations for n = 3

First-order: Imposes positive semidefinite constraints on three 4 × 4
sub-matrices.

1

µ1

µ1

µ1

µ2

µ2

µ2

µ3

µ3

µ3

µ12

µ12

µ12

µ12

µ12

µ12

µ12

µ12

µ12

µ23

µ23

µ23

µ23

µ23

µ23

µ23

µ23

µ23

µ13

µ13µ13

µ13

µ13

µ13

µ13

µ13

µ13

µ123

µ123

µ123

µ123µ123

µ123

µ123

µ123µ123µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123µ123

µ123

µ123µ123µ123µ123µ123

(Sherali & Adams, 1990)

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 12 / 33

Example: Sherali-Adams relaxations for n = 3

First-order: Imposes positive semidefinite constraints on three 4 × 4
sub-matrices.
Another matrix controlled by the first-order relaxation.

1

µ1

µ1

µ1

µ2

µ2

µ2

µ3

µ3

µ3

µ12

µ12

µ12

µ12

µ12

µ12

µ12

µ12

µ12

µ23

µ23

µ23

µ23

µ23

µ23

µ23

µ23

µ23

µ13

µ13µ13

µ13

µ13

µ13

µ13

µ13

µ13

µ123

µ123

µ123

µ123µ123

µ123

µ123

µ123µ123µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123µ123

µ123

µ123µ123µ123µ123µ123

(Sherali & Adams, 1990)

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 12 / 33

Example: Lasserre relaxations for n = 3

First-order: Imposes positive semidefinite constraint on 4 × 4 matrix.

1

µ1

µ1

µ1

µ2

µ2

µ2

µ3

µ3

µ3

µ12

µ12

µ12

µ12

µ12

µ12

µ12

µ12

µ12

µ23

µ23

µ23

µ23

µ23

µ23

µ23

µ23

µ23

µ13

µ13µ13

µ13

µ13

µ13

µ13

µ13

µ13

µ123

µ123

µ123

µ123µ123

µ123

µ123

µ123µ123µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123µ123

µ123

µ123µ123µ123µ123µ123

(Lasserre, 2001)

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 13 / 33

Example: Lasserre relaxations for n = 3

Second-order: Imposes positive semidefinite constraint on 7 × 7 matrix.

1

µ1

µ1

µ1

µ2

µ2

µ2

µ3

µ3

µ3

µ12

µ12

µ12

µ12

µ12

µ12

µ12

µ12

µ12

µ23

µ23

µ23

µ23

µ23

µ23

µ23

µ23

µ23

µ13

µ13µ13

µ13

µ13

µ13

µ13

µ13

µ13

µ123

µ123

µ123

µ123µ123

µ123

µ123

µ123µ123µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123

µ123µ123

µ123

µ123µ123µ123µ123µ123

(Lasserre, 2001)

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 13 / 33

Tightness and hypergraph structure

Question: When are these relaxations tight?

always tight after n stages of lifting (constraining all 2n moments)
exist (binary) problems that require n steps
in a worst-case sense: tightness determined by treewidth

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 14 / 33

Tightness and hypergraph structure

Question: When are these relaxations tight?

always tight after n stages of lifting (constraining all 2n moments)
exist (binary) problems that require n steps
in a worst-case sense: tightness determined by treewidth

Consider family of {0, 1}-polynomial programs:

max
n∑

i=1

θixi subject to polynomial constraints

gℓ(x1, . . . , xn) ≤ 0, ℓ = 1, . . . ,M

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 14 / 33

Tightness and hypergraph structure

Question: When are these relaxations tight?

always tight after n stages of lifting (constraining all 2n moments)
exist (binary) problems that require n steps
in a worst-case sense: tightness determined by treewidth

Consider family of {0, 1}-polynomial programs:

max
n∑

i=1

θixi subject to polynomial constraints

gℓ(x1, . . . , xn) ≤ 0, ℓ = 1, . . . ,M

Theorem

Form the hypergraph G with vertex V = {1, 2, . . . , n} and hyperedge set
E = {V (gℓ), ℓ = 1, . . . ,M}, and let t be its treewidth.

(a) The Sherali-Adams relaxation is tight at order t.

(b) The Lasserre relaxation is tight at order t + 1.

(WaiJor03)

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 14 / 33

Linear programming (LP) decoding

Based on first-order LP relaxation of ML integer program:

max
x∈C

n∑

i=1

θixi ≤ max
µ∈L1(C)

n∑

i=1

θiµi

where the vectors µ = (µ1, . . . , µn) belong to the relaxed constraint set:

L1(C) =

{
µ ∈ [0, 1]n |

∑
i∈N(a) |µi − zi| ≥ 1 ∀ odd parity za ∈ {0, 1}|N(a)|

and for all checks a ∈ C

}

Relaxed set L1(C) defined by T =
∑

a∈C 2da−1 constraints in total, where
da = |N(a)|.

Example: For check a = {1, 2, 3}, require 23−1 = 4 constraints:

(1 − µ1) + µ2 + µ3 ≥ 0

µ1 + (1 − µ2) + µ3 ≥ 0

µ1 + µ2 + (1 − µ3) ≥ 0

(1 − µ1) + (1 − µ2) + (1 − µ3) ≥ 0

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 15 / 33

Different types of channels

communication channel modeled as a conditional distribution

P[y | x] = prob. of observing y given that x transmitted

channels are often modeled as memoryless: P[y | x] =
∏n

i=1 P[yi | xi]

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 16 / 33

Different types of channels

communication channel modeled as a conditional distribution

P[y | x] = prob. of observing y given that x transmitted

channels are often modeled as memoryless: P[y | x] =
∏n

i=1 P[yi | xi]

some examples:
◮ binary erasure channel (BEC) with erasure prob. α ∈ [0, 1]:

yi =

(

xi with prob. 1 − α

∗ with prob. α.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 16 / 33

Different types of channels

communication channel modeled as a conditional distribution

P[y | x] = prob. of observing y given that x transmitted

channels are often modeled as memoryless: P[y | x] =
∏n

i=1 P[yi | xi]

some examples:
◮ binary erasure channel (BEC) with erasure prob. α ∈ [0, 1]:

yi =

(

xi with prob. 1 − α

∗ with prob. α.

◮ binary symmetric channel (BSC) with flip prob. p ∈ [0, 1]:

yi =

(

xi with prob. 1−

1 − xi with prob. p.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 16 / 33

Different types of channels

communication channel modeled as a conditional distribution

P[y | x] = prob. of observing y given that x transmitted

channels are often modeled as memoryless: P[y | x] =
∏n

i=1 P[yi | xi]

some examples:
◮ binary erasure channel (BEC) with erasure prob. α ∈ [0, 1]:

yi =

(

xi with prob. 1 − α

∗ with prob. α.

◮ binary symmetric channel (BSC) with flip prob. p ∈ [0, 1]:

yi =

(

xi with prob. 1−

1 − xi with prob. p.

◮ additive white Gaussian noise channel (AWGN):

yi = (2xi − 1) + σwi where wi ∼ N(0, 1)

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 16 / 33

Different types of channels

communication channel modeled as a conditional distribution

P[y | x] = prob. of observing y given that x transmitted

channels are often modeled as memoryless: P[y | x] =
∏n

i=1 P[yi | xi]

some examples:
◮ binary erasure channel (BEC) with erasure prob. α ∈ [0, 1]:

yi =

(

xi with prob. 1 − α

∗ with prob. α.

◮ binary symmetric channel (BSC) with flip prob. p ∈ [0, 1]:

yi =

(

xi with prob. 1−

1 − xi with prob. p.

◮ additive white Gaussian noise channel (AWGN):

yi = (2xi − 1) + σwi where wi ∼ N(0, 1)

input to LP decoding algorithm: likelihoods θi = log P[yi|xi=1]
P[yi|xi=0]

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 16 / 33

Geometry of LP decoding

0

θ1θ2

M(C)

L1(C)

NL1(0) = normal cone of L1(C)

NM(0) = normal cone of M(C)

Prob. of successful ML decoding = P
[
θ ∈ NM(0)

]

Prob. of successful LP decoding = P
[
θ ∈ NL1

(0)
]

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 17 / 33

Some known results
LP decoding equivalent to message-passing for binary erasure channel
(stopping sets ⇐⇒ pseudocodewords)

Some known results
LP decoding equivalent to message-passing for binary erasure channel
(stopping sets ⇐⇒ pseudocodewords)

positive results:
◮ linear LP pseudoweight for expander codes and BSC (Feldman et al., 2004)
◮ linear pseudoweight scaling for truncated Gaussian (Feldman et al., 2005)

Some known results
LP decoding equivalent to message-passing for binary erasure channel
(stopping sets ⇐⇒ pseudocodewords)

positive results:
◮ linear LP pseudoweight for expander codes and BSC (Feldman et al., 2004)
◮ linear pseudoweight scaling for truncated Gaussian (Feldman et al., 2005)

negative results:
◮ sublinear LP pseudoweight for AWGN (Koetter & Vontobel, 2003, 2005)
◮ bounds on BSC pseudodistance (Vontobel & Koetter, 2006)

Some known results
LP decoding equivalent to message-passing for binary erasure channel
(stopping sets ⇐⇒ pseudocodewords)

positive results:
◮ linear LP pseudoweight for expander codes and BSC (Feldman et al., 2004)
◮ linear pseudoweight scaling for truncated Gaussian (Feldman et al., 2005)

negative results:
◮ sublinear LP pseudoweight for AWGN (Koetter & Vontobel, 2003, 2005)
◮ bounds on BSC pseudodistance (Vontobel & Koetter, 2006)

various extensions to basic LP algorithm:
◮ stopping set redundancy for BEC (Vardy et al., 2006)
◮ facet guessing (Dimakis et al., 2006, 2009)
◮ loop corrections for LP decoding (Chertkov et al., 2006)
◮ higher-order relaxations (Feldman et al., 2005, others...)

various iterative “message-passing” algorithms for solving LP:
◮ tree-reweighted (TRW) max-product (WaiJaaWil03, Kolmogorov, 2005)
◮ zero-temperature limits of convex BP (Weiss et al., 2006, Johnson et al., 2008)
◮ adaptive LP-solver (Taghavi & Siegel, 2006)
◮ interior-point methods (Vontobel, 2008)
◮ proximal methods (Agarwal et al., 2009)

Performance for the BEC

standard iterative decoding (sum-product; belief propagation) takes a
very simple form in the BEC: (e.g., Luby et al., 2001)

While there exists at least one erased (∗) bit:

1 Find check node with exactly one erased bit nbr.

2 Set erased bit neighbor to the XOR of other bit neighbors.

3 Repeat.

success/failure is determined by presence/absence of stopping sets in the
erased bits (Di et al., 2002)

for LP decoding, cost vector takes form θs =






−1 if ys = 1

1 if ys = 0

0 if ys erased

.

stopping sets correspond to cost vectors that lie outside the relaxed
normal cone NL1

(0)

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 19 / 33

Stopping sets for the BEC

Definition: A stopping set S is a set of bits such that:

every bit in S is erased

every check that is adjacent to S has degree at least two (with respect to
S)

0 0 ∗ 0 0 0 0 ∗

0 0 2 2

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 20 / 33

LP decoding in the BEC

The performance of the LP decoder in the BEC is completely characterized by
stopping sets:

Theorem

(a) LP decoding succeeds in the BEC if and only the set of erasures does not
contain a stopping set.

(b) Therefore, the performance of (first-order) LP decoding is equivalent to
sum-product/belief propagation decoding in the BEC.

(Feldman et al., 2003)

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 21 / 33

LP decoding in the BEC

The performance of the LP decoder in the BEC is completely characterized by
stopping sets:

Theorem

(a) LP decoding succeeds in the BEC if and only the set of erasures does not
contain a stopping set.

(b) Therefore, the performance of (first-order) LP decoding is equivalent to
sum-product/belief propagation decoding in the BEC.

(Feldman et al., 2003)

Shannon capacity: a code of rate R = 1−m/n should be able to correct a
fraction m/n of erasures

Corollary: With appropriate choices of low-density parity check codes,
LP decoding can achieve capacity in the BEC.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 21 / 33

Codes based on expander graphs

previous work on expander codes (e.g., SipSpi02; BurMil02; BarZem02)

graph expansion: yields stronger results beyond girth-based analysis

|S| ≤ α|V |

|C(S)| ≥ ρ|S|

Definition: Let α ∈ (0, 1). A factor graph G = (V,C,E) is a (α, ρ)-expander
if for all subsets S ⊂ V with |S| ≤ α|V |, at least ρ|S| check nodes are incident
to S.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 22 / 33

Worst-case constant fraction for expanders

Theorem (Linear fraction guarantee)

Let C be an LDPC described by a factor graph G with regular variable (bit)
degree dv. Suppose that G is an (α, δdv)-expander, where δ > 2/3 + 1/(3dv)
and δdv is an integer.
Then the LP decoder can correct any pattern of 3δ−2

2δ−1 (αn) bit flips.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 23 / 33

Worst-case constant fraction for expanders

Theorem (Linear fraction guarantee)

Let C be an LDPC described by a factor graph G with regular variable (bit)
degree dv. Suppose that G is an (α, δdv)-expander, where δ > 2/3 + 1/(3dv)
and δdv is an integer.
Then the LP decoder can correct any pattern of 3δ−2

2δ−1 (αn) bit flips.

key technical device: use of dual witness

◮ by code/polytope symmetry: assume WLOG that 0n sent

◮ LP succeeds when 0n sent ⇐⇒ primal optimum p∗ = 0

◮ suffices to construct dual optimal solution with q∗ = 0

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 23 / 33

Worst-case constant fraction for expanders

Theorem (Linear fraction guarantee)

Let C be an LDPC described by a factor graph G with regular variable (bit)
degree dv. Suppose that G is an (α, δdv)-expander, where δ > 2/3 + 1/(3dv)
and δdv is an integer.
Then the LP decoder can correct any pattern of 3δ−2

2δ−1 (αn) bit flips.

key technical device: use of dual witness

◮ by code/polytope symmetry: assume WLOG that 0n sent

◮ LP succeeds when 0n sent ⇐⇒ primal optimum p∗ = 0

◮ suffices to construct dual optimal solution with q∗ = 0

caveat: constant fraction very low (e.g., c = 0.00017 for R = 0.5)

potential gaps in the analysis

◮ analysis adversarial in nature
◮ dual witness relatively weak

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 23 / 33

Proof technique: Construction of dual witness

Primal LP: Vars. {µi, i ∈ V }, {µa,J , a ∈ F, J ⊆ N(a), |J | even}

min.
∑

i∈V

θiµi s.t.






µa,J ≥ 0
∑

J∈C(a)

µa,J = 1

∑
J∈C(a),Jv=1

µa,J = µv

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 24 / 33

Proof technique: Construction of dual witness

Primal LP: Vars. {µi, i ∈ V }, {µa,J , a ∈ F, J ⊆ N(a), |J | even}

min.
∑

i∈V

θiµi s.t.






µa,J ≥ 0
∑

J∈C(a)

µa,J = 1

∑
J∈C(a),Jv=1

µa,J = µv

Dual LP: Vars. {va, a ∈ F} {τia, (i, a) ∈ E} unconstrained

max.
∑

a∈F

va s.t.






∑
i∈S

τia ≥ va for all a ∈ C, J ⊆ C(a), |J | even

∑
a∈N(i)

τia ≤ θi for all i ∈ V

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 24 / 33

Dual witness to zero-valued primal solution

assume WLOG that 0n is sent: suffices to construct a dual solution with
value q∗ = 0

dual LP simplifies substantially as follows:

Dual feasibility: Find real numbers {τia, (i, a) ∈ E} such that

τia + τja ≥ 0 ∀ a ∈ C, and i, j ∈ N(a)
X

a∈N(i)

τia < θi for all i ∈ V

random weights θi ∈ R defined by channel; e.g., for binary symmetric
channel

θi =

{
1 with prob. 1 − p

−1 with prob. p

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 25 / 33

Probabilistic analysis of LP decoding over BSC

Consider an ensemble of LDPC codes with rate R, regular vertex degree dv,

and blocklength n. Suppose that the code is a (ν,
(

p
dv

)
dv) expander.

Theorem

For each (R, dv, n), there is a fraction α > 0 and error exponent c > 0 such
that the LP decoder succeeds with probability 1 − exp(−cn) over the space of
bit flips ≤ ⌊αn⌋. (DasDimKarWai07)

Remarks:

the correctable fraction α is always larger than the worst case guarantee
3 p

dv
−2

2 p

dv
−1ν.

concrete example: rate R = 0.5, degree dv = 8 and p = 6 yields a
correctable fraction α = 0.002.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 26 / 33

Hyperflow-based dual witness

A hyperflow is a collection of weights
{τia, (i, a) ∈ E} such that:
(a) for each check a ∈ F , exists some
γa ≥ 0 and privileged neighbor i∗ ∈
N(a) such that

τia =

(

−γa for i = i∗

+γa for i 6= i∗.
.

(b)
P

a∈N(i)

τia < θi for all i ∈ V .

Proposition:

A hyperflow exists ⇐⇒
∃ a dual feasible point with zero value.

X
1 X

2 X
3

+

X
4

X
5

X
6

X
7

X
8

+ +

+ +

X
4

0.6

0.6
0.6

0.5

0.5
0.5

0.5 0.5
0.5

0.4

0.40.4

Hyperflow-based dual witness

A hyperflow is a collection of weights
{τia, (i, a) ∈ E} such that:
(a) for each check a ∈ F , exists some
γa ≥ 0 and privileged neighbor i∗ ∈
N(a) such that

τia =

(

−γa for i = i∗

+γa for i 6= i∗.
.

(b)
P

a∈N(i)

τia < θi for all i ∈ V .

Proposition:

A hyperflow exists ⇐⇒
∃ a dual feasible point with zero value.

X
1 X

2 X
3

+

X
4

X
5

X
6

X
7

X
8

+ +

+ +

X
4

0.6

0.6
0.6

0.5

0.5
0.5

0.5 0.5
0.5

0.4

0.40.4

Hyperflow (epidemic) interpretation:

each flipped bit adds 1 unit of “poison”; each clean bit absorbs at most 1
unit
each infected check relays poison to all of its neighbors

Naive routing of poison may fail

overloaded bit
D

Dirty checks N(D)

Dc

need to route 1 unit of poison away from each flipped bit

each unflipped bit j ∈ Dc can neutralize at most one unit

Consequence: naive routing of poison can lead to overload

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 28 / 33

Routing poison via generalized matching

D

Potentially dirty checks N(D)

Dc

Definition: For positive integers p, q, a (p, q)-matching is defined by the
conditions:
(i) every flipped bit i ∈ D is matched with p distinct checks.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 29 / 33

Routing poison via generalized matching

D

Potentially dirty checks N(D)

Dc

Definition: For positive integers p, q, a (p, q)-matching is defined by the
conditions:
(i) every flipped bit i ∈ D is matched with p distinct checks.

(ii) every unflipped bit j ∈ Dc matched with max{Zj − (dv − q), 0}
checks from N(D), where Zj = |N(j) ∩ N(D)|.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 29 / 33

Generalized matching implies hyperflow

Lemma

Any (p, q) matching with 2p + q > 2dv can be used to construct a valid
hyperflow.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 30 / 33

Generalized matching implies hyperflow

Lemma

Any (p, q) matching with 2p + q > 2dv can be used to construct a valid
hyperflow.

Proof sketch:

construct hyperflow with each flipped bit routing γ ≥ 0 units to each of p
checks

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 30 / 33

Generalized matching implies hyperflow

Lemma

Any (p, q) matching with 2p + q > 2dv can be used to construct a valid
hyperflow.

Proof sketch:

construct hyperflow with each flipped bit routing γ ≥ 0 units to each of p
checks

each flipped bit can receive at most (dv − p)γ units from other dirty
checks (to which it is not matched)

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 30 / 33

Generalized matching implies hyperflow

Lemma

Any (p, q) matching with 2p + q > 2dv can be used to construct a valid
hyperflow.

Proof sketch:

construct hyperflow with each flipped bit routing γ ≥ 0 units to each of p
checks

each flipped bit can receive at most (dv − p)γ units from other dirty
checks (to which it is not matched)

hence we require that −pγ + (dv − p)γ < −1, or γ > 1/(2p − dv)

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 30 / 33

Generalized matching implies hyperflow

Lemma

Any (p, q) matching with 2p + q > 2dv can be used to construct a valid
hyperflow.

Proof sketch:

construct hyperflow with each flipped bit routing γ ≥ 0 units to each of p
checks

each flipped bit can receive at most (dv − p)γ units from other dirty
checks (to which it is not matched)

hence we require that −pγ + (dv − p)γ < −1, or γ > 1/(2p − dv)

each unflipped bit receives at most (dv − q)γ units so that we need
γ < 1/(dv − q)

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 30 / 33

Generalized matching and Hall’s theorem

D

S1 S2

Dc

N(D) ∩ N(S2)

N(S1)

by generalized Hall’s theorem, (p, q)-matching fails to exist if only if there
exist subsets S1 ⊆ D and S2 ⊆ Dc that contract:

|N(S1) ∪ [N(S2) ∩ N(D)]|︸ ︷︷ ︸ ≤ p|S1| +
∑

j∈S2

max {0, q − (dv − Zj)} .

︸ ︷︷ ︸
available matches total requests

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 31 / 33

High-level summary of key steps

1 Randomly constructed LDPC is “almost-always” expander with high
probability (w.h.p.)

◮ weaker notion than classical expansion: holds for larger sizes
◮ proof: union bounds plus martingale concentration

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 32 / 33

High-level summary of key steps

1 Randomly constructed LDPC is “almost-always” expander with high
probability (w.h.p.)

◮ weaker notion than classical expansion: holds for larger sizes
◮ proof: union bounds plus martingale concentration

2 Prove that an “almost-always” expander will have a generalized matching
w.h.p.:

◮ requires concentration statements
◮ generalized Hall’s theorem

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 32 / 33

High-level summary of key steps

1 Randomly constructed LDPC is “almost-always” expander with high
probability (w.h.p.)

◮ weaker notion than classical expansion: holds for larger sizes
◮ proof: union bounds plus martingale concentration

2 Prove that an “almost-always” expander will have a generalized matching
w.h.p.:

◮ requires concentration statements
◮ generalized Hall’s theorem

3 Generalized matching guarantees existence of hyperflow.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 32 / 33

High-level summary of key steps

1 Randomly constructed LDPC is “almost-always” expander with high
probability (w.h.p.)

◮ weaker notion than classical expansion: holds for larger sizes
◮ proof: union bounds plus martingale concentration

2 Prove that an “almost-always” expander will have a generalized matching
w.h.p.:

◮ requires concentration statements
◮ generalized Hall’s theorem

3 Generalized matching guarantees existence of hyperflow.

4 Valid hyperflow is a dual witness for LP decoding succcess.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 32 / 33

Summary and some papers

broad families of conic programming (LP, SOCP, SDP) based on moments

worst-case tightness intimately related to (hyper)graph structure

known average-case results also exploit graph structure:
◮ girth and “locally treelike” properties
◮ graph expansion

many open questions remain....

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 33 / 33

Summary and some papers

broad families of conic programming (LP, SOCP, SDP) based on moments

worst-case tightness intimately related to (hyper)graph structure

known average-case results also exploit graph structure:
◮ girth and “locally treelike” properties
◮ graph expansion

many open questions remain....

Some papers:

1 Wainwright, M. J. and Jordan, M. I. (2008) Graphical models, exponential
families, and variational methods. Foundations and Trends in Machine

Learning, Volume 1, Issues 1–2, pages 1–305. December 2008.

2 Daskalakis, C., Dimakis, A. D., Karp, R. and Wainwright, M. J. (2008).
Probabilistic analysis of linear programming decoding. IEEE Transactions on

Information Theory, Vol. 54(8), pp. 3565 - 3578, August 2008

3 Feldman, J., Malkin, T., Servedio, R.A., Stein, C. and Wainwright, M. J.,
(2007). LP Decoding Corrects a Constant Fraction of Errors. IEEE

Transactions on Information Theory, 53(1):82–89, January 2007.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxations August 2009 33 / 33

