Linear and conic programming relaxations: Graph structure and message-passing

Martin Wainwright

UC Berkeley Departments of EECS and Statistics

Banff Workshop

Partially supported by grants from:

National Science Foundation Alfred P. Sloan Foundation

Outline

• Conic programming relaxations based on moments

- ▶ From integer program to linear program
- Codeword and marginal polytopes
- First-order relaxation and tightness
- ▶ Sherali-Adams and Lasserre sequences
- Analysis of LP relaxations in coding
 - geometry and pseudocodeword
 - worst-case guarantees for expanders
 - some probabilistic analysis
 - ▶ primal-dual witnesses in LP decoding

Parity check matrices and factor graphs

Binary linear code as null space:

$$\mathbb{C} = \left\{ \mathbf{x} \in \{0,1\}^n \mid H\mathbf{x} = 0 \right\},\$$

for some parity check matrix $H \in \mathbb{R}^{m \times n}$.

Example: m = 3 constraints over n = 7 bits

$$H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Optimal (maximum likelihood) decoding

Given: Likelihood vector $\theta = (\theta_1, \theta_2, \dots, \theta_n)$ (typically from stochastic communication channel)

Goal: Determine most likely codeword:

$$\widehat{\mathbf{x}}_{MAP} = \arg \max_{\mathbf{x} \in C} \sum_{i=1}^{n} \theta_i x_i.$$

• known to be difficult in general (NP-complete)

- certain sub-classes of codes are polynomial-time decodable:
 - ▶ trellis codes
 - tree-structured codes
 - cut-set codes on planar graphs
 - ▶ more generally: codes with *sum-of-circuits* property (Seymour, 1981)
- meta-"theorem" in information theory: codes exactly decodable in polynomial-time are not "good"

From integer program to linear program

Any integer program (IP) can be converted to a linear program.

• re-write IP as maximization over convex hull:

$$\max_{\mathbf{x}\in\mathbb{C}}\sum_{i=1}^{n}\theta_{i}x_{i} = \max_{\substack{p(\mathbf{x})\geq 0\\\sum_{\mathbf{x}\in\mathbb{C}}p(\mathbf{x})=1}}\sum_{\mathbf{x}\in\mathbb{C}}p(\mathbf{x})\left\{\sum_{i=1}^{n}\theta_{i}x_{i}\right\}.$$

From integer program to linear program

Any integer program (IP) can be converted to a linear program.

• re-write IP as maximization over convex hull:

$$\max_{\mathbf{x}\in\mathbb{C}}\sum_{i=1}^{n}\theta_{i}x_{i} = \max_{\substack{p(\mathbf{x})\geq 0\\\sum_{\mathbf{x}\in\mathbb{C}}p(\mathbf{x})=1}}\sum_{\mathbf{x}\in\mathbb{C}}p(\mathbf{x})\left\{\sum_{i=1}^{n}\theta_{i}x_{i}\right\}.$$

• use linearity of expectation:

$$\max_{\substack{p(\mathbf{x}) \ge 0\\ \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) = 1}} \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) \sum_{i=1}^{n} x_i \theta_i = \max_{\substack{p(\mathbf{x}) \ge 0\\ \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) = 1}} \sum_{i=1}^{n} \underbrace{\left\{\sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) x_i\right\}}_{\mathbf{x} \in \mathbb{C}} \theta_i}_{= \max_{\mu \in \mathcal{M}(\mathbb{C})} \sum_{i=1}^{n} \mu_i \theta_i}$$

From integer program to linear program

Any integer program (IP) can be converted to a linear program.

• re-write IP as maximization over convex hull:

$$\max_{\mathbf{x}\in\mathbb{C}}\sum_{i=1}^{n}\theta_{i}x_{i} = \max_{\substack{p(\mathbf{x})\geq 0\\\sum_{\mathbf{x}\in\mathbb{C}}p(\mathbf{x})=1}}\sum_{\mathbf{x}\in\mathbb{C}}p(\mathbf{x})\left\{\sum_{i=1}^{n}\theta_{i}x_{i}\right\}.$$

• use linearity of expectation:

$$\max_{\substack{p(\mathbf{x}) \ge 0\\ \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) = 1}} \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) \sum_{i=1}^{n} x_i \theta_i = \max_{\substack{p(\mathbf{x}) \ge 0\\ \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) = 1}} \sum_{i=1}^{n} \underbrace{\left\{ \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) x_i \right\}}_{\mathbf{x} \in \mathbb{C}} \theta_i}_{= \max_{\mu \in \mathcal{M}(\mathbb{C})} \sum_{i=1}^{n} \mu_i \theta_i}$$

Key question:

What is the set $\mathcal{M}(\mathbb{C})$ of $(\mu_1, \mu_2, \dots, \mu_n)$ that are realizable in this way?

Codeword polytope (\equiv cycle polytope)

Definition:

The codeword polytope $\mathcal{M}(\mathbb{C}) \subseteq [0,1]^n$ is the convex hull of all codewords

$$\mathcal{M}(\mathbb{C}) = \left\{ \begin{array}{ll} \mu \in [0,1]^n \mid \text{ there exists } p(\mathbf{x}) \ge 0 \text{ with } \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) = 1, \\ \text{ such that } \mu_s = \sum_{\mathbf{x} \in \mathbb{C}} p(\mathbf{x}) x_s \text{ for all } s = 1, 2, \dots, n \end{array} \right\}$$

• $\mathcal{M}(\mathbb{C}) \subseteq [0,1]^n$, with vertices corresponding to codewords

• useful to think of $\{p(\mathbf{x}), \mathbf{x} \in \mathbb{C}\}$ as a probability distribution over codewords

First-order linear programming relaxation

• each parity check $a \in C$ defines a local codeword polytope $\mathcal{L}_1(a) \equiv \mathcal{M}(a)$

• first-order relaxation obtained by imposing all local constraints:

$$\mathcal{L}_1(\mathbb{C}) := \cap_{a \in C} \mathcal{L}_1(a).$$

1

Illustration: A fractional vertex (pseudocodeword)

Exactness for trees

Proposition:

On any tree, first-order LP relaxation is exact, and max-product algorithm solves the dual LP. (WaiJaaWil02, WaiJor03)

Proof sketch:

• given $(\mu_1, \ldots, \mu_n) \in \mathcal{L}_1(\mathbb{C})$, need to construct a global distribution $p(\cdot)$ such that

$$\sum_{\mathbf{x}\in\mathbb{C}} p(\mathbf{x})x_i = \mu_i \quad \text{for all } i = 1, \dots, n.$$

Exactness for trees

Proposition:

On any tree, first-order LP relaxation is exact, and max-product algorithm solves the dual LP. (WaiJaaWil02, WaiJor03)

Proof sketch:

• given $(\mu_1, \ldots, \mu_n) \in \mathcal{L}_1(\mathbb{C})$, need to construct a global distribution $p(\cdot)$ such that

$$\sum_{\mathbf{x}\in\mathbb{C}} p(\mathbf{x})x_i = \mu_i \quad \text{for all } i = 1, \dots, n.$$

• consider local code $\mathbb{C}(a)$ defined over each parity check: e.g., if $a = \{4, 7, 9\}$, and $x_a = (x_4, x_7, x_9)$: $\mathbb{C}(a) = \{(x_4, x_7, x_9) \mid x_4 \oplus x_7 \oplus x_9 = 0\}$

Exactness for trees

Proposition:

On any tree, first-order LP relaxation is exact, and max-product algorithm solves the dual LP. (WaiJaaWil02, WaiJor03)

Proof sketch:

• given $(\mu_1, \ldots, \mu_n) \in \mathcal{L}_1(\mathbb{C})$, need to construct a global distribution $p(\cdot)$ such that

$$\sum_{\mathbf{x}\in\mathbb{C}} p(\mathbf{x})x_i = \mu_i \quad \text{for all } i = 1, \dots, n.$$

• consider local code $\mathbb{C}(a)$ defined over each parity check: e.g., if $a = \{4, 7, 9\}$, and $x_a = (x_4, x_7, x_9)$: $\mathbb{C}(a) = \{(x_4, x_7, x_9) \mid x_4 \oplus x_7 \oplus x_9 = 0\}$

• by definition of $\mathcal{L}_1(\mathbb{C})$, there exist marginal distributions $\{\mu_a(x_a) \mid x_a \in \mathbb{C}(a)\}$ for each parity check such that:

$$\sum_{x'_a \in \mathbb{C}(a), \ x'_i = x_i} \mu_a(x'_a) = \mu_i(x_i) \qquad \text{for all } i \in a.$$

Proof sketch (continued):

• we now have the following objects:

Bit marginals
$$\mu_i(x_i) = \begin{cases} 1 - \mu_i \\ \mu_i \end{cases}$$

Check-based marginals $\mu_a(x_a)$ over local codes $\mathbb{C}(a)$.

Proof sketch (continued):

• we now have the following objects:

Bit marginals $\mu_i(x_i) = \begin{cases} 1 - \mu_i \\ \mu_i \end{cases}$ Check-based marginals $\mu_a(x_a)$ over local codes $\mathbb{C}(a)$.

• consider candidate distribution $p_{\mu}(\cdot)$ given by

$$p_{\mu}(x_1, x_2, \dots, x_n) = \frac{1}{Z(\mu)} \prod_{i=1}^n \mu_i(x_i) \prod_{a \in C} \frac{\mu_a(x_a)}{\prod_{i \in a} \mu_i(x_i)}$$

Proof sketch (continued):

• we now have the following objects:

Bit marginals $\mu_i(x_i) = \begin{cases} 1 - \mu_i \\ \mu_i \end{cases}$ Check-based marginals $\mu_a(x_a)$ over local codes $\mathbb{C}(a)$.

• consider candidate distribution $p_{\mu}(\cdot)$ given by

$$p_{\mu}(x_1, x_2, \dots, x_n) = \frac{1}{Z(\mu)} \prod_{i=1}^n \mu_i(x_i) \prod_{a \in C} \frac{\mu_a(x_a)}{\prod_{i \in a} \mu_i(x_i)}$$

- Key property of tree-structured graphs:
 - distribution is already normalized: $Z(\mu) = 1$
 - Bitwise consistency: $\sum_{\mathbf{x}\in\mathbb{C}} p(\mathbf{x})x_i = \mu_i$ for all i = 1, 2, ..., n.

Proof sketch (continued):

• we now have the following objects:

Bit marginals $\mu_i(x_i) = \begin{cases} 1 - \mu_i \\ \mu_i \end{cases}$ Check-based marginals $\mu_a(x_a)$ over local codes $\mathbb{C}(a)$.

• consider candidate distribution $p_{\mu}(\cdot)$ given by

$$p_{\mu}(x_1, x_2, \dots, x_n) = \frac{1}{Z(\mu)} \prod_{i=1}^n \mu_i(x_i) \prod_{a \in C} \frac{\mu_a(x_a)}{\prod_{i \in a} \mu_i(x_i)}$$

- Key property of tree-structured graphs:
 - distribution is already normalized: $Z(\mu) = 1$
 - Bitwise consistency: $\sum_{\mathbf{x}\in\mathbb{C}} p(\mathbf{x})x_i = \mu_i$ for all i = 1, 2, ..., n.
- proof via induction:
 - ▶ orient tree: specify some arbitrary vertex as the root
 - perform leaf-stripping operation

Hierarchies of relaxations

Moment-based perspective leads naturally to hierarchies via lifting operations.

Example:

• say given binary quadratic program over ordinary graph G = (V, E):

$$\max_{\mathbf{x}\in\{0,1\}^n} \Big\{ \sum_{i=1}^n \theta_i x_i + \sum_{(i,j)\in E} \theta_{ij} x_i x_j \Big\}.$$

• relevant moments after converting to linear program: Vertex-based moment: $\mu_i = \mathbb{P}[x_i = 1]$ for all i = 1, ..., nEdge-based moment: $\mu_{ij} = \mathbb{P}[x_i = 1, x_j = 1]$ for all $(i, j) \in E$

Hierarchies of relaxations

Moment-based perspective leads naturally to hierarchies via lifting operations.

Example:

• say given binary quadratic program over ordinary graph G = (V, E):

$$\max_{\mathbf{x}\in\{0,1\}^n} \Big\{ \sum_{i=1}^n \theta_i x_i + \sum_{(i,j)\in E} \theta_{ij} x_i x_j \Big\}.$$

- relevant moments after converting to linear program: Vertex-based moment: $\mu_i = \mathbb{P}[x_i = 1]$ for all i = 1, ..., nEdge-based moment: $\mu_{ij} = \mathbb{P}[x_i = 1, x_j = 1]$ for all $(i, j) \in E$
- moment polytope: cut or correlation polytope (Deza & Laurent, 1997)
- first-order LP relaxation involves four constraints per edge:

$$\begin{split} \mathbb{P}[x_i = 1, x_j = 1] &= \mu_{ij} \ge 0 \\ \mathbb{P}[x_i = 1, x_j = 0] &= \mu_i - \mu_{ij} \ge 0 \\ \mathbb{P}[x_i = 0, x_j = 1] &= \mu_j - \mu_{ij} \ge 0 \\ \mathbb{P}[x_i = 0, x_j = 0] &= 1 + \mu_{ij} - \mu_i - \mu_j \ge 0. \end{split}$$

Example: Sherali-Adams relaxations for n = 3

First-order: Imposes positive semidefinite constraints on three 4×4 sub-matrices.

1	μ_1	μ_2	μ_3	μ_{12}	μ_{23}	μ_{13}	μ_{123}
μ_1	μ_1	μ_{12}	μ_{13}	μ_{12}	μ_{123}	μ_{13}	μ_{123}
μ_2	μ_{12}	μ_2	μ_{23}	μ_{12}	μ_{23}	μ_{123}	μ_{123}
μ_3	μ_{13}	μ_{23}	μ_3	μ_{123}	μ_{23}	μ_{13}	μ_{123}
μ_{12}	μ_{12}	μ_{12}	μ_{123}	μ_{12}	μ_{123}	μ_{123}	μ_{123}
μ_{23}	μ_{123}	μ_{23}	μ_{23}	μ_{123}	μ_{23}	μ_{123}	μ_{123}
μ_{13}	μ_{13}	μ_{123}	μ_{13}	μ_{123}	μ_{123}	μ_{13}	μ_{123}
μ_{123}							

(Sherali & Adams, 1990)

Example: Sherali-Adams relaxations for n = 3

First-order: Imposes positive semidefinite constraints on three 4×4 sub-matrices.

Another matrix controlled by the first-order relaxation.

1	μ_1	μ_2	μ_3	μ_{12}	μ_{23}	μ_{13}	μ_{123}
μ_1	μ_1	μ_{12}	μ_{13}	μ_{12}	μ_{123}	μ_{13}	μ_{123}
μ_2	μ_{12}	μ_2	μ_{23}	μ_{12}	μ_{23}	μ_{123}	μ_{123}
μ_3	μ_{13}	μ_{23}	μ_3	μ_{123}	μ_{23}	μ_{13}	μ_{123}
μ_{12}	μ_{12}	μ_{12}	μ_{123}	μ_{12}	μ_{123}	μ_{123}	μ_{123}
μ_{23}	μ_{123}	μ_{23}	μ_{23}	μ_{123}	μ_{23}	μ_{123}	μ_{123}
μ_{13}	μ_{13}	μ_{123}	μ_{13}	μ_{123}	μ_{123}	μ_{13}	μ_{123}
μ_{123}							

(Sherali & Adams, 1990)

Example: Lasserre relaxations for n = 3

First-order: Imposes positive semidefinite constraint on 4×4 matrix.

1	μ_1	μ_2	μ_3	μ_{12}	μ_{23}	μ_{13}	μ_{123}
μ_1	μ_1	μ_{12}	μ_{13}	μ_{12}	μ_{123}	μ_{13}	μ_{123}
μ_2	μ_{12}	μ_2	μ_{23}	μ_{12}	μ_{23}	μ_{123}	μ_{123}
μ_3	μ_{13}	μ_{23}	μ_3	μ_{123}	μ_{23}	μ_{13}	μ_{123}
μ_{12}	μ_{12}	μ_{12}	μ_{123}	μ_{12}	μ_{123}	μ_{123}	μ_{123}
μ_{23}	μ_{123}	μ_{23}	μ_{23}	μ_{123}	μ_{23}	μ_{123}	μ_{123}
μ_{13}	μ_{13}	μ_{123}	μ_{13}	μ_{123}	μ_{123}	μ_{13}	μ_{123}
μ_{123}							

(Lasserre, 2001)

Example: Lasserre relaxations for n = 3

Second-order: Imposes positive semidefinite constraint on 7×7 matrix.

1	μ_1	μ_2	μ_3	μ_{12}	μ_{23}	μ_{13}	μ_{123}
μ_1	μ_1	μ_{12}	μ_{13}	μ_{12}	μ_{123}	μ_{13}	μ_{123}
μ_2	μ_{12}	μ_2	μ_{23}	μ_{12}	μ_{23}	μ_{123}	μ_{123}
μ_3	μ_{13}	μ_{23}	μ_3	μ_{123}	μ_{23}	μ_{13}	μ_{123}
μ_{12}	μ_{12}	μ_{12}	μ_{123}	μ_{12}	μ_{123}	μ_{123}	μ_{123}
μ_{23}	μ_{123}	μ_{23}	μ_{23}	μ_{123}	μ_{23}	μ_{123}	μ_{123}
μ_{13}	μ_{13}	μ_{123}	μ_{13}	μ_{123}	μ_{123}	μ_{13}	μ_{123}
μ_{123}							

(Lasserre, 2001)

Tightness and hypergraph structure

Question: When are these relaxations tight?

- always tight after n stages of lifting (constraining all 2^n moments)
- exist (binary) problems that require n steps
- in a worst-case sense: tightness determined by treewidth

Tightness and hypergraph structure

Question: When are these relaxations tight?

- always tight after n stages of lifting (constraining all 2^n moments)
- exist (binary) problems that require n steps
- in a worst-case sense: tightness determined by treewidth

Consider family of $\{0, 1\}$ -polynomial programs:

 $\max \sum_{i=1}^{n} \theta_i x_i \qquad \text{subject to polynomial constraints} \\ g_{\ell}(x_1, \dots, x_n) \leq 0, \quad \ell = 1, \dots, M$

Tightness and hypergraph structure

Question: When are these relaxations tight?

- always tight after n stages of lifting (constraining all 2^n moments)
- exist (binary) problems that require n steps
- in a worst-case sense: tightness determined by treewidth

Consider family of $\{0, 1\}$ -polynomial programs:

 $\max \sum_{i=1}^{n} \theta_{i} x_{i} \qquad \text{subject to polynomial constraints}$ $g_{\ell}(x_{1}, \dots, x_{n}) \leq 0, \quad \ell = 1, \dots, M$

Theorem

Form the hypergraph G with vertex $V = \{1, 2, ..., n\}$ and hyperedge set $E = \{V(g_\ell), \ \ell = 1, ..., M\}$, and let t be its treewidth.

- (a) The Sherali-Adams relaxation is tight at order t.
- (b) The Lasserre relaxation is tight at order t + 1.

Martin Wainwright (UC Berkeley) Linear and conic programming relaxatio

(WaiJor03)

Linear programming (LP) decoding

Based on first-order LP relaxation of ML integer program:

$$\max_{\mathbf{x}\in\mathbb{C}}\sum_{i=1}^{n}\theta_{i}x_{i} \leq \max_{\mu\in\mathcal{L}_{1}(\mathbb{C})}\sum_{i=1}^{n}\theta_{i}\mu_{i}$$

where the vectors $\mu = (\mu_1, \dots, \mu_n)$ belong to the relaxed constraint set:

$$\mathcal{L}_1(\mathbb{C}) = \begin{cases} \mu \in [0,1]^n & |\sum_{i \in N(a)} |\mu_i - z_i| \ge 1 \quad \forall \text{ odd parity } z_a \in \{0,1\}^{|N(a)|} \\ \text{and for all checks } a \in C \end{cases}$$

Relaxed set $\mathcal{L}_1(\mathbb{C})$ defined by $T = \sum_{a \in C} 2^{d_a - 1}$ constraints in total, where $d_a = |N(a)|$.

Example: For check $a = \{1, 2, 3\}$, require $2^{3-1} = 4$ constraints:

$$(1 - \mu_1) + \mu_2 + \mu_3 \ge 0$$

$$\mu_1 + (1 - \mu_2) + \mu_3 \ge 0$$

$$\mu_1 + \mu_2 + (1 - \mu_3) \ge 0$$

$$(1 - \mu_1) + (1 - \mu_2) + (1 - \mu_3) \ge 0$$

• communication channel modeled as a conditional distribution

 $\mathbb{P}[\mathbf{y} \mid \mathbf{x}] = \text{prob. of observing } \mathbf{y} \text{ given that } \mathbf{x} \text{ transmitted}$

• channels are often modeled as memoryless: $\mathbb{P}[\mathbf{y} \mid \mathbf{x}] = \prod_{i=1}^{n} \mathbb{P}[y_i \mid x_i]$

• communication channel modeled as a conditional distribution

 $\mathbb{P}[\mathbf{y} \mid \mathbf{x}] = \text{prob. of observing } \mathbf{y} \text{ given that } \mathbf{x} \text{ transmitted}$

- channels are often modeled as memoryless: $\mathbb{P}[\mathbf{y} \mid \mathbf{x}] = \prod_{i=1}^{n} \mathbb{P}[y_i \mid x_i]$
- some examples:
 - ▶ binary erasure channel (BEC) with erasure prob. $\alpha \in [0, 1]$:

$$y_i = \begin{cases} x_i & \text{with prob. } 1 - \alpha \\ * & \text{with prob. } \alpha. \end{cases}$$

• communication channel modeled as a conditional distribution

 $\mathbb{P}[\mathbf{y} \mid \mathbf{x}] = \text{prob. of observing } \mathbf{y} \text{ given that } \mathbf{x} \text{ transmitted}$

- channels are often modeled as memoryless: $\mathbb{P}[\mathbf{y} \mid \mathbf{x}] = \prod_{i=1}^{n} \mathbb{P}[y_i \mid x_i]$
- some examples:
 - ▶ binary erasure channel (BEC) with erasure prob. $\alpha \in [0, 1]$:

$$y_i = \begin{cases} x_i & \text{with prob. } 1 - \alpha \\ * & \text{with prob. } \alpha. \end{cases}$$

▶ binary symmetric channel (BSC) with flip prob. $p \in [0, 1]$:

$$y_i = \begin{cases} x_i & \text{with prob. } 1-\\ 1-x_i & \text{with prob. } p. \end{cases}$$

• communication channel modeled as a conditional distribution

 $\mathbb{P}[\mathbf{y} \mid \mathbf{x}] = \text{prob. of observing } \mathbf{y} \text{ given that } \mathbf{x} \text{ transmitted}$

- channels are often modeled as memoryless: $\mathbb{P}[\mathbf{y} \mid \mathbf{x}] = \prod_{i=1}^{n} \mathbb{P}[y_i \mid x_i]$
- some examples:
 - ▶ binary erasure channel (BEC) with erasure prob. $\alpha \in [0, 1]$:

$$y_i = \begin{cases} x_i & \text{with prob. } 1 - \alpha \\ * & \text{with prob. } \alpha. \end{cases}$$

▶ binary symmetric channel (BSC) with flip prob. $p \in [0, 1]$:

$$y_i = \begin{cases} x_i & \text{with prob. } 1-\\ 1-x_i & \text{with prob. } p. \end{cases}$$

▶ additive white Gaussian noise channel (AWGN):

$$y_i = (2x_i - 1) + \sigma w_i$$
 where $w_i \sim N(0, 1)$

• communication channel modeled as a conditional distribution

 $\mathbb{P}[\mathbf{y} \mid \mathbf{x}] = \text{prob. of observing } \mathbf{y} \text{ given that } \mathbf{x} \text{ transmitted}$

- channels are often modeled as memoryless: $\mathbb{P}[\mathbf{y} \mid \mathbf{x}] = \prod_{i=1}^{n} \mathbb{P}[y_i \mid x_i]$
- some examples:
 - ▶ binary erasure channel (BEC) with erasure prob. $\alpha \in [0, 1]$:

$$y_i = \begin{cases} x_i & \text{with prob. } 1 - \alpha \\ * & \text{with prob. } \alpha. \end{cases}$$

▶ binary symmetric channel (BSC) with flip prob. $p \in [0, 1]$:

$$y_i = \begin{cases} x_i & \text{with prob. } 1-\\ 1-x_i & \text{with prob. } p. \end{cases}$$

▶ additive white Gaussian noise channel (AWGN):

$$y_i = (2x_i - 1) + \sigma w_i$$
 where $w_i \sim N(0, 1)$

• input to LP decoding algorithm: likelihoods $\theta_i = \log \frac{\mathbb{P}[y_i|x_i=1]}{\mathbb{P}[y_i|x_i=0]}$

Geometry of LP decoding

Prob. of successful ML decoding = $\mathbb{P}[\theta \in N_{\mathcal{M}}(\mathbf{0})]$ Prob. of successful LP decoding = $\mathbb{P}[\theta \in N_{\mathcal{L}_1}(\mathbf{0})]$

• LP decoding equivalent to message-passing for binary erasure channel (stopping sets \iff pseudocodewords)

- LP decoding equivalent to message-passing for binary erasure channel (stopping sets ⇐⇒ pseudocodewords)
- positive results:
 - ▶ linear LP pseudoweight for expander codes and BSC (Feldman et al., 2004)
 - ▶ linear pseudoweight scaling for truncated Gaussian

(Feldman et al., 2004) (Feldman et al., 2005)

- LP decoding equivalent to message-passing for binary erasure channel (stopping sets ⇐⇒ pseudocodewords)
- positive results:
 - ▶ linear LP pseudoweight for expander codes and BSC (Feldman et al., 2004)
 - ▶ linear pseudoweight scaling for truncated Gaussian
- (Feldman et al., 2004) (Feldman et al., 2005)

- negative results:
 - ▶ sublinear LP pseudoweight for AWGN
 - bounds on BSC pseudodistance

(Koetter & Vontobel, 2003, 2005) (Vontobel & Koetter, 2006)

- LP decoding equivalent to message-passing for binary erasure channel (stopping sets ⇐⇒ pseudocodewords)
- positive results:
 - ▶ linear LP pseudoweight for expander codes and BSC (Feldman et al., 2004)
 - ▶ linear pseudoweight scaling for truncated Gaussian
- negative results:
 - ▶ sublinear LP pseudoweight for AWGN
 - ▶ bounds on BSC pseudodistance

(Koetter & Vontobel, 2003, 2005) (Vontobel & Koetter, 2006)

(Feldman et al., 2005)

(Vardy et al., 2006)

- various extensions to basic LP algorithm:
 - stopping set redundancy for BEC
 - ► facet guessing (Dimakis et al.,
 - ▶ loop corrections for LP decoding
 - higher-order relaxations
- various iterative "message-passing" algorithms for solving LP:
 - ▶ tree-reweighted (TRW) max-product (WaiJaaWil03, Kolmogorov, 2005)
 - ▶ zero-temperature limits of convex BP (Weiss et al., 2006, Johnson et al., 2008)
 - adaptive LP-solver
 - interior-point methods
 - proximal methods

(Taghavi & Siegel, 2006) (Vontobel, 2008)

(Agarwal et al., 2009)

(Dimakis et al., 2006, 2009) (Chertkov et al., 2006) Foldman et al. 2005, ethers.)

(Feldman et al., 2005, others...)

Performance for the BEC

• standard iterative decoding (sum-product; belief propagation) takes a very simple form in the BEC: (e.g., Luby et al., 2001)

While there exists at least one erased (*) bit:

Find check node with exactly one erased bit nbr.

Set erased bit neighbor to the XOR of other bit neighbors.

🚳 Repeat.

• success/failure is determined by presence/absence of stopping sets in the erased bits (Di et al., 2002)

• for LP decoding, cost vector takes form $\theta_s = \begin{cases} -1 & \text{if } y_s = 1 \\ 1 & \text{if } y_s = 0 \\ 0 & \text{if } y_s \text{ erased} \end{cases}$.

 stopping sets correspond to cost vectors that lie outside the relaxed normal cone N_{L1}(0)

Stopping sets for the BEC

Definition: A *stopping set* S is a set of bits such that:

- every bit in S is erased
- every check that is adjacent to S has degree at least two (with respect to S)

LP decoding in the BEC

The performance of the LP decoder in the BEC is completely characterized by stopping sets:

Theorem

- (a) LP decoding succeeds in the BEC if and only the set of erasures does not contain a stopping set.
- **(b)** Therefore, the performance of (first-order) LP decoding is equivalent to sum-product/belief propagation decoding in the BEC.

(Feldman et al., 2003)

LP decoding in the BEC

The performance of the LP decoder in the BEC is completely characterized by stopping sets:

Theorem

- (a) LP decoding succeeds in the BEC if and only the set of erasures does not contain a stopping set.
- **(b)** Therefore, the performance of (first-order) LP decoding is equivalent to sum-product/belief propagation decoding in the BEC.

(Feldman et al., 2003)

- Shannon capacity: a code of rate R = 1 m/n should be able to correct a fraction m/n of erasures
- **Corollary:** With appropriate choices of low-density parity check codes, LP decoding can achieve capacity in the BEC.

Codes based on expander graphs

- previous work on expander codes (e.g., SipSpi02; BurMil02; BarZem02)
- graph expansion: yields stronger results beyond girth-based analysis

Definition: Let $\alpha \in (0, 1)$. A factor graph G = (V, C, E) is a (α, ρ) -expander if for all subsets $S \subset V$ with $|S| \leq \alpha |V|$, at least $\rho |S|$ check nodes are incident to S.

Worst-case constant fraction for expanders

Theorem (Linear fraction guarantee)

Let \mathbb{C} be an LDPC described by a factor graph G with regular variable (bit) degree d_v . Suppose that G is an $(\alpha, \delta d_v)$ -expander, where $\delta > 2/3 + 1/(3d_v)$ and δd_v is an integer.

Then the LP decoder can correct any pattern of $\frac{3\delta-2}{2\delta-1}(\alpha n)$ bit flips.

Worst-case constant fraction for expanders

Theorem (Linear fraction guarantee)

Let \mathbb{C} be an LDPC described by a factor graph G with regular variable (bit) degree d_v . Suppose that G is an $(\alpha, \delta d_v)$ -expander, where $\delta > 2/3 + 1/(3d_v)$ and δd_v is an integer.

Then the LP decoder can correct any pattern of $\frac{3\delta-2}{2\delta-1}(\alpha n)$ bit flips.

• key technical device: use of dual witness

- ▶ by code/polytope symmetry: assume WLOG that 0^n sent
- LP succeeds when 0^n sent \iff primal optimum $p^* = 0$
- ▶ suffices to construct dual optimal solution with $q^* = 0$

Worst-case constant fraction for expanders

Theorem (Linear fraction guarantee)

Let \mathbb{C} be an LDPC described by a factor graph G with regular variable (bit) degree d_v . Suppose that G is an $(\alpha, \delta d_v)$ -expander, where $\delta > 2/3 + 1/(3d_v)$ and δd_v is an integer.

Then the LP decoder can correct any pattern of $\frac{3\delta-2}{2\delta-1}(\alpha n)$ bit flips.

- key technical device: use of dual witness
 - ▶ by code/polytope symmetry: assume WLOG that 0^n sent
 - LP succeeds when 0^n sent \iff primal optimum $p^* = 0$
 - ▶ suffices to construct dual optimal solution with $q^* = 0$
- caveat: constant fraction very low (e.g., c = 0.00017 for R = 0.5)
- potential gaps in the analysis
 - analysis adversarial in nature
 - dual witness relatively weak

Proof technique: Construction of dual witness

Primal LP: Vars. $\{\mu_i, i \in V\}, \{\mu_{a,J}, a \in F, J \subseteq N(a), |J| \text{ even}\}$

min.
$$\sum_{i \in V} \theta_i \mu_i \quad \text{s.t.} \begin{cases} \mu_{a,J} \ge 0 \\ \sum_{J \in \mathbb{C}(a)} \mu_{a,J} = 1 \\ \sum_{J \in \mathbb{C}(a), J_v = 1} \mu_{a,J} \\ \sum_{J \in \mathbb{C}(a), J_v = 1} \mu_{a,J} \end{cases}$$

Proof technique: Construction of dual witness

Primal LP: Vars. $\{\mu_i, i \in V\}, \{\mu_{a,J}, a \in F, J \subseteq N(a), |J| \text{ even}\}$

min.
$$\sum_{i \in V} \theta_i \mu_i \quad \text{s.t.} \begin{cases} \mu_{a,J} \ge 0 \\ \sum_{J \in \mathbb{C}(a)} \mu_{a,J} = 1 \\ \sum_{J \in \mathbb{C}(a), J_v = 1} \mu_{a,J} \end{cases} = \mu_v$$

Dual LP: Vars. $\{v_a, a \in F\} \quad \{\tau_{ia}, (i, a) \in E\}$ unconstrained

$$\max \qquad \sum_{a \in F} v_a \quad \text{s.t.} \begin{cases} \sum_{i \in S} \tau_{ia} \ge v_a \text{ for all } & a \in C, J \subseteq C(a), |J| \text{ even} \\ \sum_{a \in N(i)} \tau_{ia} \le \theta_i & \text{ for all } i \in V \end{cases}$$

Dual witness to zero-valued primal solution

- assume WLOG that 0^n is sent: suffices to construct a dual solution with value $q^* = 0$
- dual LP simplifies substantially as follows:

Dual feasibility: Find real numbers $\{\tau_{ia}, (i, a) \in E\}$ such that

$$\begin{array}{lcl} \tau_{ia} + \tau_{ja} & \geq & 0 & \forall \ a \in C, \ \mathrm{and} \ i, j \in N(a) \\ \sum_{a \in N(i)} \tau_{ia} & < & \theta_i & \text{ for all } i \in V \end{array}$$

 \bullet random weights $\theta_i \in \mathbb{R}$ defined by channel; e.g., for binary symmetric channel

$$\theta_i = \begin{cases} 1 & \text{with prob. } 1-p \\ -1 & \text{with prob. } p \end{cases}$$

Probabilistic analysis of LP decoding over BSC

Consider an ensemble of LDPC codes with rate R, regular vertex degree d_v , and blocklength n. Suppose that the code is a $\left(\nu, \left(\frac{p}{d_v}\right)d_v\right)$ expander.

Theorem

For each (R, d_v, n) , there is a fraction $\alpha > 0$ and error exponent c > 0 such that the LP decoder succeeds with probability $1 - \exp(-cn)$ over the space of bit flips $\leq \lfloor \alpha n \rfloor$. (DasDimKarWai07)

Remarks:

- the correctable fraction α is always larger than the worst case guarantee $\frac{3\frac{p}{d_v}-2}{2\frac{p}{d_v}-1}\nu$.
- concrete example: rate R = 0.5, degree $d_v = 8$ and p = 6 yields a correctable fraction $\alpha = 0.002$.

Hyperflow-based dual witness

A hyperflow is a collection of weights $\{\tau_{ia}, (i, a) \in E\}$ such that: (a) for each check $a \in F$, exists some $\gamma_a \ge 0$ and privileged neighbor $i^* \in N(a)$ such that

$$\tau_{ia} = \begin{cases} -\gamma_a & \text{for } i = i^* \\ +\gamma_a & \text{for } i \neq i^*. \end{cases}$$

(b)
$$\sum_{a \in N(i)} \tau_{ia} < \theta_i$$
 for all $i \in V$.

Proposition:

A hyperflow exists \iff \exists a dual feasible point with zero value.

Hyperflow-based dual witness

A hyperflow is a collection of weights $\{\tau_{ia}, (i, a) \in E\}$ such that: (a) for each check $a \in F$, exists some $\gamma_a \ge 0$ and privileged neighbor $i^* \in N(a)$ such that

$$\tau_{ia} = \begin{cases} -\gamma_a & \text{for } i = i^* \\ +\gamma_a & \text{for } i \neq i^*. \end{cases}$$

(b)
$$\sum_{a \in N(i)} \tau_{ia} < \theta_i$$
 for all $i \in V$.

Proposition:

A hyperflow exists \iff \exists a dual feasible point with zero value.

Hyperflow (epidemic) interpretation:

- each flipped bit adds 1 unit of "poison"; each clean bit absorbs at most 1 unit
- each infected check relays poison to all of its neighbors

Naive routing of poison may fail

- need to route 1 unit of poison away from each flipped bit
- each unflipped bit $j \in D^c$ can neutralize at most one unit
- Consequence: naive routing of poison can lead to overload

Routing poison via generalized matching

Definition: For positive integers p, q, a (p, q)-matching is defined by the conditions:

(i) every flipped bit $i \in D$ is matched with p distinct checks.

Routing poison via generalized matching

Definition: For positive integers p, q, a (p, q)-matching is defined by the conditions:

- (i) every flipped bit $i \in D$ is matched with p distinct checks.
- (ii) every unflipped bit $j \in D^c$ matched with $\max\{Z_j (d_v q), 0\}$ checks from N(D), where $Z_j = |N(j) \cap N(D)|$.

Lemma

Any (p,q) matching with $2p + q > 2d_v$ can be used to construct a valid hyperflow.

Lemma

Any (p,q) matching with $2p + q > 2d_v$ can be used to construct a valid hyperflow.

Proof sketch:

 \bullet construct hyperflow with each flipped bit routing $\gamma \geq 0$ units to each of p checks

Lemma

Any (p,q) matching with $2p + q > 2d_v$ can be used to construct a valid hyperflow.

Proof sketch:

- \bullet construct hyperflow with each flipped bit routing $\gamma \geq 0$ units to each of p checks
- each flipped bit can receive at most $(d_v p)\gamma$ units from other dirty checks (to which it is not matched)

Lemma

Any (p,q) matching with $2p + q > 2d_v$ can be used to construct a valid hyperflow.

Proof sketch:

- \bullet construct hyperflow with each flipped bit routing $\gamma \geq 0$ units to each of p checks
- each flipped bit can receive at most $(d_v p)\gamma$ units from other dirty checks (to which it is not matched)
- hence we require that $-p\gamma + (d_v p)\gamma < -1$, or $\gamma > 1/(2p d_v)$

Lemma

Any (p,q) matching with $2p + q > 2d_v$ can be used to construct a valid hyperflow.

Proof sketch:

- construct hyperflow with each flipped bit routing $\gamma \geq 0$ units to each of p checks
- each flipped bit can receive at most $(d_v p)\gamma$ units from other dirty checks (to which it is not matched)
- hence we require that $-p\gamma + (d_v p)\gamma < -1$, or $\gamma > 1/(2p d_v)$
- each unflipped bit receives at most $(d_v q)\gamma$ units so that we need $\gamma < 1/(d_v q)$

Generalized matching and Hall's theorem

• by generalized Hall's theorem, (p, q)-matching fails to exist if only if there exist subsets $S_1 \subseteq D$ and $S_2 \subseteq D^c$ that contract:

$$\underbrace{|N(S_1) \cup [N(S_2) \cap N(D)]|}_{\text{available matches}} \leq \underbrace{p|S_1| + \sum_{j \in S_2} \max\{0, q - (d_v - Z_j)\}}_{\text{total requests}}.$$

- Randomly constructed LDPC is "almost-always" expander with high probability (w.h.p.)
 - ▶ weaker notion than classical expansion: holds for larger sizes
 - ▶ proof: union bounds plus martingale concentration

- Randomly constructed LDPC is "almost-always" expander with high probability (w.h.p.)
 - ▶ weaker notion than classical expansion: holds for larger sizes
 - ▶ proof: union bounds plus martingale concentration
- Prove that an "almost-always" expander will have a generalized matching w.h.p.:
 - requires concentration statements
 - generalized Hall's theorem

- Randomly constructed LDPC is "almost-always" expander with high probability (w.h.p.)
 - ▶ weaker notion than classical expansion: holds for larger sizes
 - ▶ proof: union bounds plus martingale concentration
- Prove that an "almost-always" expander will have a generalized matching w.h.p.:
 - requires concentration statements
 - generalized Hall's theorem
- **3** Generalized matching guarantees existence of hyperflow.

- Randomly constructed LDPC is "almost-always" expander with high probability (w.h.p.)
 - ▶ weaker notion than classical expansion: holds for larger sizes
 - ▶ proof: union bounds plus martingale concentration
- Prove that an "almost-always" expander will have a generalized matching w.h.p.:
 - requires concentration statements
 - generalized Hall's theorem
- **3** Generalized matching guarantees existence of hyperflow.
- 4 Valid hyperflow is a dual witness for LP decoding success.

Summary and some papers

- broad families of conic programming (LP, SOCP, SDP) based on moments
- worst-case tightness intimately related to (hyper)graph structure
- known average-case results also exploit graph structure:
 - ▶ girth and "locally treelike" properties
 - ▶ graph expansion
- many open questions remain....

Summary and some papers

- broad families of conic programming (LP, SOCP, SDP) based on moments
- worst-case tightness intimately related to (hyper)graph structure
- known average-case results also exploit graph structure:
 - ▶ girth and "locally treelike" properties
 - graph expansion
- many open questions remain....

Some papers:

- Wainwright, M. J. and Jordan, M. I. (2008) Graphical models, exponential families, and variational methods. *Foundations and Trends in Machine Learning*, Volume 1, Issues 1–2, pages 1–305. December 2008.
- ② Daskalakis, C., Dimakis, A. D., Karp, R. and Wainwright, M. J. (2008). Probabilistic analysis of linear programming decoding. *IEEE Transactions on Information Theory*, Vol. 54(8), pp. 3565 - 3578, August 2008
- Feldman, J., Malkin, T., Servedio, R.A., Stein, C. and Wainwright, M. J., (2007). LP Decoding Corrects a Constant Fraction of Errors. *IEEE Transactions on Information Theory*, 53(1):82–89, January 2007.