# Pseudo-Codewords: Fractional Vectors in Coding Theory

Pascal O. Vontobel Information Theory Research Group Hewlett-Packard Laboratories Palo Alto

BIRS Workshop, Banff, Alberta, Canada, August 3, 2009



© 2009 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

#### Overview of Talk

- Communications setup
- Linear programming (LP) decoding
- Pseudo-codeword spectra
- Graph-cover interpretation of pseudo-codewords
- Influence of redundant rows in the parity-check matrix and of cycles in the Tanner graph
- Pseudo-codwords and the edge zeta function
- Canonical completion construction
- LP decoding thresholds for the binary symmetric channel (BSC)

Note: see appendices for more details.



### Communication systems and Shannon's channel coding theorem



#### Communication System (Part 1)

Source

 $\operatorname{Sink}$ 









#### Shannon (1948): it is a good idea to use channel codes!





#### Shannon (1948): it is a good idea to use channel codes!





• A channel is characterized by a number C called the capacity.





- A channel is characterized by a number C called the capacity.
- A code is characterized by a number R called the rate.





- A channel is characterized by a number C called the capacity.
- A code is characterized by a number R called the rate.
- If R < C: there are codes, encoders, and decoders such that arbitrarily low error probabilities can be guaranteed (as long as one allows arbitrarily long codes).





- A channel is characterized by a number C called the capacity.
- A code is characterized by a number R called the rate.
- If R < C: there are codes, encoders, and decoders such that arbitrarily low error probabilities can be guaranteed (as long as one allows arbitrarily long codes).
- Shannon's proof was though non-constructive, i.e. it was not clear at all how to obtain specific well-performing finite-length codes that possess efficient encoders and decoders.

#### "Traditional" vs. "Modern" Coding and Decoding





#### "Traditional" vs. "Modern" Coding and Decoding





#### "Traditional" vs. "Modern" Coding and Decoding







Information word:

Sent codeword:

Received word:

 $\mathbf{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$  $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C} \subseteq \mathcal{X}^n$  $\mathbf{y} = (y_1, \dots, y_n) \in \mathcal{Y}^n$ 





Information word:

Sent codeword:

Received word:

 $\mathbf{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$  $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C} \subseteq \mathcal{X}^n$  $\mathbf{y} = (y_1, \dots, y_n) \in \mathcal{Y}^n$ 

Decoding: Based on y we would like to estimate the transmitted codeword  $\hat{\mathbf{x}}$  or the information word  $\hat{\mathbf{u}}$ .





Information word: $\mathbf{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$ Sent codeword: $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C} \subseteq \mathcal{X}^n$ Received word: $\mathbf{y} = (y_1, \dots, y_n) \in \mathcal{Y}^n$ 

Decoding: Based on y we would like to estimate the transmitted codeword  $\hat{\mathbf{x}}$  or the information word  $\hat{\mathbf{u}}$ .

Depending on what criterion we optimize, we obtain different decoding algorithms.



• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$





• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$

• This can also be written as

$$\hat{\mathbf{x}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{x}\in\mathcal{X}^n} P_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{x}\in\mathcal{X}^n} P_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}).$$





• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$

This can also be written as

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y})$$

• If all codewords are equally likely then

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}}(\mathbf{x}) P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \underset{\mathbf{x}\in\mathcal{C}}{\operatorname{argmax}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$$



• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$

• This can also be written as

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}).$$

• If all codewords are equally likely then

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}}(\mathbf{x}) P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \underset{\mathbf{x}\in\mathcal{C}}{\operatorname{argmax}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) \triangleq \hat{\mathbf{x}}_{\text{ML}}^{\text{block}}(\mathbf{y})$$

#### Linear Code Representations

Image representation:

Kernel representation:



#### Linear Code Representations

Image representation (based on generator matrix G):

 $\mathcal{C} = \left\{ \mathbf{x} \in \mathbb{F}^n \mid \text{there exists } \mathbf{u} \in \mathbb{F}^k \text{ such that } \mathbf{x} = \mathbf{u} \cdot \mathbf{G} \right\}.$ 

Kernel representation:



#### Linear Code Representations

Image representation (based on generator matrix G):

$$\mathcal{C} = \left\{ \mathbf{x} \in \mathbb{F}^n \mid \text{there exists } \mathbf{u} \in \mathbb{F}^k \text{ such that } \mathbf{x} = \mathbf{u} \cdot \mathbf{G} \right\}.$$

Kernel representation (based on parity-check matrix H):

$$\mathcal{C} = \left\{ \mathbf{x} \in \mathbb{F}^n \mid \mathbf{x} \cdot \mathbf{H}^\mathsf{T} = \mathbf{0} \right\}.$$



Linear Code Representations (Example 1)

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \qquad \mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$



Linear Code Representations (Example 1)

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \qquad \mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Tanner / factor graph representation:





Linear Code Representations (Example 1)

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \qquad \mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Tanner / factor graph representation:



### Linear Code Representations (Example 2) $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$



## Linear Code Representations (Example 2) $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$

Tanner / factor graph representation:





### Linear Code Representations (Example 2) $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$

Tanner / factor graph representation:





### Linear Code Representations (Example 2) $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$ Tanner / factor graph representation: $X_{1}$ $f_{\rm XOR(1)}$ $X_{2}$ $X_3$ $f_{\rm XOR(2)}$ $X_4$

Note: in contrast to Example 1, this Tanner graph has cycles.

 $X_5$ 

 $f_{\rm XOR(3)}$ 

# Expressing a decoder as the solution of a linear program



#### ML Decoding as an *Integer* LP

For memoryless channels, block-wise ML decoding of a binary code can be written as a linear program.

 $\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$ 



#### ML Decoding as an *Integer* LP

For memoryless channels, block-wise ML decoding of a binary code can be written as a linear program.

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \arg \min_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} x_{i} \lambda_{i},$$



#### ML Decoding as an *Integer* LP

For memoryless channels, block-wise ML decoding of a binary code can be written as a linear program.

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \arg \min_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} x_{i} \lambda_{i},$$

where

$$\lambda_i \triangleq \lambda_i(y_i) \triangleq \log \frac{P_{Y|X}(y_i|0)}{P_{Y|X}(y_i|1)}$$



#### ML Decoding as an LP







LABS<sup>hp</sup>





 $\arg\min_{\mathbf{x}\in\mathrm{conv}\,(C)}\sum_{i=1}\lambda_i x_i$ 









 $\stackrel{*}{=} \arg \min_{\mathbf{x} \in \operatorname{conv}(C)} \sum_{i=1}^{i} \lambda_i x_i$ 



e.g.  $\mathcal{C} = \left\{ \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(5)} \right\}$ 



$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_i \lambda_i,$$

This is a linear program.



$$\mathbf{\hat{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_i \lambda_i,$$

This is a linear program.

However, the number of variables / equalities / inequalities needed to describe the polytope  $\operatorname{conv}(\mathcal{C})$  is (usually) exponential in n.



n $\arg\min_{\mathbf{x}\in \operatorname{conv}(C)}\sum_{i=1}^{\lambda_i x_i}$ 







#### is replaced by

$$\arg\min_{\mathbf{x}\in \operatorname{relax}(\operatorname{conv}(C))}\sum_{i=1}^n \lambda_i x_i$$







#### is replaced by

$$\arg\min_{\mathbf{x}\in \operatorname{relax}(\operatorname{conv}(C))}\sum_{i=1}^n \lambda_i x_i$$







#### is replaced by

$$\arg\min_{\mathbf{x}\in \operatorname{relax}(\operatorname{conv}(C))}\sum_{i=1}^n \lambda_i x_i$$

Desirable features:







#### Desirable features:

old vertices are also vertices in relaxation;





#### Desirable features:

- old vertices are also vertices in relaxation;
- relaxation has simple description.



A Interesting Relaxation

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \mathcal{C}_{1}$$
$$\Rightarrow \mathcal{C}_{2}$$
$$\Rightarrow \mathcal{C}_{3}$$

 $\Rightarrow \mathcal{C} = \bigcap_{j=1}^{m} \mathcal{C}_j$ 



#### A Interesting Relaxation

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \xrightarrow{\Rightarrow} \mathcal{C}_1 \qquad \Rightarrow \operatorname{conv}(\mathcal{C}_1) \\ \Rightarrow \mathcal{C}_2 \qquad \Rightarrow \operatorname{conv}(\mathcal{C}_2) \\ \Rightarrow \mathcal{C}_3 \qquad \Rightarrow \operatorname{conv}(\mathcal{C}_3)$$





Block-wise ML decoding:



Block-wise ML decoding:

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_i \lambda_i.$$



Block-wise ML decoding:

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_i \lambda_i.$$

$$\hat{\boldsymbol{\omega}}_{\mathrm{LP}}(\mathbf{y}) = \arg\min_{\boldsymbol{\omega}\in\mathrm{relax}(\mathrm{conv}\,(C))} \sum_{i=1}^n \omega_i \lambda_i.$$



Block-wise ML decoding:

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}\left(\bigcap_{j=1}^{m}\mathcal{C}_{j}\right)} \sum_{i=1}^{n} x_{i}\lambda_{i}.$$

 $\mathbf{n}$ 

$$\hat{\boldsymbol{\omega}}_{\mathrm{LP}}(\mathbf{y}) = \arg\min_{\boldsymbol{\omega}\in\cap_{j=1}^m\operatorname{conv}(\mathcal{C}_j)} \sum_{i=1}^n \omega_i \lambda_i.$$



Block-wise ML decoding:

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}\left(\bigcap_{j=1}^{m}\mathcal{C}_{j}\right)} \sum_{i=1}^{n} x_{i}\lambda_{i}.$$

LP decoding:

$$\hat{\boldsymbol{\omega}}_{\mathrm{LP}}(\mathbf{y}) = \arg\min_{\boldsymbol{\omega}\in\cap_{j=1}^m\operatorname{conv}(\mathcal{C}_j)} \sum_{i=1}^n \omega_i \lambda_i.$$

The above choice of relax(conv(C)) was suggested by [Feldman/Wainwright/Karger:03/05]. (Here,  $C_j$  is the set of vectors that satisfy only the parity-check given by the *j*-th row of **H**.) Fundamental Polytope / Cone  $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \operatorname{conv}(\mathcal{C}_{2})$   $\Rightarrow \operatorname{conv}(\mathcal{C}_{3})$ 







Fundamental Polytope / Cone  $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \operatorname{conv}(\mathcal{C}_{2})$   $\Rightarrow \operatorname{conv}(\mathcal{C}_{3})$ 







Definitions:



Definitions:

• Vectors in the fundamental polytope are called **pseudo-codewords**.



Definitions:

 Vectors in the fundamental polytope are called pseudo-codewords. (Sometimes only the vertices of the fundamental polytope are called pseudo-codewords.)



Definitions:

- Vectors in the fundamental polytope are called pseudo-codewords. (Sometimes only the vertices of the fundamental polytope are called pseudo-codewords.)
- Vectors in the fundamental cone are also called pseudo-codewords.



Definitions:

- Vectors in the fundamental polytope are called pseudo-codewords. (Sometimes only the vertices of the fundamental polytope are called pseudo-codewords.)
- Vectors in the fundamental cone are also called pseudo-codewords.
- Edges of the fundamental polytope/cone through origin are called minimal pseudo-codewords.



Definitions:

- Vectors in the fundamental polytope are called pseudo-codewords. (Sometimes only the vertices of the fundamental polytope are called pseudo-codewords.)
- Vectors in the fundamental cone are also called pseudo-codewords.
- Edges of the fundamental polytope/cone through origin are called minimal pseudo-codewords.

Very important: the fundamental polytope is a function of the parity-check matrix representing a code — differrent parity-check matrices for the same code can yield different fundamental polytopes.







Consider the PG(2,2)-based [7,3,4] binary linear code. Here is its minimal pseudo-codeword spectrum:





Consider the EG(2,4)-based [15, 7, 5] binary linear code.

Here are some minimal pseudo-codeword spectra for different parity-check matrices of this code:



Consider the PG(2,4)-based [21, 11, 6] binary linear code.





Some remarks:

• Haley / Grant paper (ISIT 2005) presented a class of LDPC codes



Some remarks:

Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
where the minimal BEC pseudo-weight grows with growing block length,



Some remarks:

- Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
  - where the minimal BEC pseudo-weight grows with growing block length,
  - but where the minimual AWGNC pseudo-weight is bounded from above.



Some remarks:

- Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
  - where the minimal BEC pseudo-weight grows with growing block length,
  - but where the minimual AWGNC pseudo-weight is bounded from above.
  - $\Rightarrow$  It is important which channel is used!



Some remarks:

- Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
  - where the minimal BEC pseudo-weight grows with growing block length,
  - but where the minimual AWGNC pseudo-weight is bounded from above.
  - $\Rightarrow$  It is important which channel is used!
- Chertkov / Stepanov paper (ISIT 2007) presented an intesting heuristic for approximating the pseudo-weight spectra of minimal codewords for a given code.



Graph-cover interpretation of pseudo-codewords



#### Graph Covers (Part 1)



**Definition**: A double cover of a graph is . . . Note: the above graph has  $2! \cdot 2! \cdot 2! \cdot 2! \cdot 2! = 32$  double covers.



### Graph Covers (Part 2)



Besides double covers, a graph also has many triple covers, quadruple covers, quintuple covers, etc.



### Graph Covers (Part 3)



An *m*-fold cover is also called a cover of degree m. Do not confuse this degree with the degree of a vertex! Note: there are many possible *m*-fold covers of a graph.

We can also consider covers of Tanner/factor graphs. Here is e.g. a possible double cover of some Tanner/factor graph.



Base factor/Tanner graph of a length-7 code



We can also consider covers of Tanner/factor graphs. Here is e.g. a possible double cover of some Tanner/factor graph.





Base factor/Tanner graph of a length-7 code Possible double cover of the base Tanner/factor graph



We can also consider covers of Tanner/factor graphs. Here is e.g. a possible double cover of some Tanner/factor graph.



Base factor/Tanner graph of a length-7 code Possible double cover of the base Tanner/factor graph

 $X_4''$ 

Let us study the codes defined by the graph covers of the base Tanner/factor graph.



 $X_5''$ 

 $X'_7$ 

 $X'_6 \diamondsuit$ 

 $\oint X_6''$ 

Obviously, any codeword in the base Tanner/factor graph can be lifted to a codeword in the double cover of the base Tanner/factor graph.



(1, 1, 1, 0, 0, 0, 0)



Obviously, any codeword in the base Tanner/factor graph can be lifted to a codeword in the double cover of the base Tanner/factor graph.



(1, 1, 1, 0, 0, 0, 0) (1:1, 1:1, 1:1, 0:0, 0:0, 0:0, 0:0)



?

But in the double cover of the base Tanner/factor graph there are also codewords that are not liftings of codewords in the base Tanner/factor graph!



(1:0, 1:0, 1:0, 1:1, 1:0, 1:0, 0:1)



But in the double cover of the base Tanner/factor graph there are also codewords that are not liftings of codewords in the base Tanner/factor graph!





**Theorem:** 



#### **Theorem:**

• Let  $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$  be the fundamental polytope of a parity-check matrix  $\mathbf{H}$ .



#### **Theorem:**

- Let  $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$  be the fundamental polytope of a parity-check matrix  $\mathbf{H}$ .
- Let *P*' be the set of all vectors obtained through codewords in finite covers.



#### **Theorem:**

- Let  $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$  be the fundamental polytope of a parity-check matrix  $\mathbf{H}$ .
- Let *P*' be the set of all vectors obtained through codewords in finite covers.
- Then,  $\mathcal{P}'$  is dense in  $\mathcal{P}$ , i.e.

 $\mathcal{P}' = \mathcal{P} \cap \mathbb{Q}^n$  $\mathcal{P} = \text{closure}(\mathcal{P}').$ 



#### **Theorem:**

- Let  $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$  be the fundamental polytope of a parity-check matrix  $\mathbf{H}$ .
- Let *P*' be the set of all vectors obtained through codewords in finite covers.
- Then,  $\mathcal{P}'$  is dense in  $\mathcal{P}$ , i.e.

 $\mathcal{P}' = \mathcal{P} \cap \mathbb{Q}^n$  $\mathcal{P} = \text{closure}(\mathcal{P}').$ 

Moreover, note that all vertices of  $\mathcal{P}$  are vectors with rational entries and are therefore also in  $\mathcal{P}'$ .

#### Influence

#### of redundant rows in the parity-check matrix

#### and of cycles in the Tanner graph



#### A Tanner Graph with Four-Cycles

Observation:

$$\mathbf{H} = \begin{pmatrix} \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots \\ \cdots & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix} \qquad \begin{array}{c} \cdots \\ \Rightarrow & \begin{array}{c} \omega \in \operatorname{conv}(\mathcal{C}_1) \\ \omega \in \operatorname{conv}(\mathcal{C}_2) \\ \cdots \end{array}$$



### A Tanner Graph with Four-Cycles

Observation:





#### A Tanner Graph with Four-Cycles

Observation:



If the support of the blue and the green line coincide in at least two position then we have

 $\operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \supseteq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_{12}).$ 

#### A Tanner Graph without Four-Cycles

Observation:

$$\mathbf{H} = \begin{pmatrix} \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots \\ \cdots & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix} \qquad \begin{array}{c} \cdots \\ \Rightarrow & \begin{array}{c} \omega \in \operatorname{conv}(\mathcal{C}_1) \\ \omega \in \operatorname{conv}(\mathcal{C}_2) \\ \cdots \end{array}$$



#### A Tanner Graph without Four-Cycles

Observation:





#### A Tanner Graph without Four-Cycles

Observation:



If the support of the blue and the green line coincide in at most one position then we have

 $\operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) = \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_{12}).$ 

#### Tanner Graphs with/without Four-Cycles

**Proposition:** It seems to be favorable to have no four-cycles in the Tanner graph: "we get some inequalities for free!"



#### Tanner Graphs with/without Four-Cycles

**Proposition:** It seems to be favorable to have no four-cycles in the Tanner graph: "we get some inequalities for free!"

Note: this argument can be easily extended to Tanner graphs with no six-cycles, no eight-cycles, etc.



### Obtaining tighter Relaxations

Let the relaxation  $\operatorname{relax}(\mathcal{C})$  of  $\mathcal{C}$  be the set of all vectors  $\omega \in \mathbb{R}^5$  that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \Rightarrow \qquad \mathbf{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \mathbf{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \mathbf{\omega} \in \operatorname{conv}(\mathcal{C}_3) \end{cases}$$

Therefore,

$$\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3).$$

How well can we do by adding more (redundand) lines to the parity-check matrix?



#### Obtaining tighter Relaxations (Part 2)

What about taking a parity-check matrix  $\mathbf{H}'$  that contains all the non-zero codewords from the dual code?

$$\mathbf{H}' = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{l} \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{1}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{12}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{13}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{23}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{23}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{123}) \end{array}$$

 $\operatorname{relax}'(\mathcal{C}) \triangleq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3) \cap \operatorname{conv}(\mathcal{C}_{12}) \cap \operatorname{conv}(\mathcal{C}_{13}) \cap \operatorname{conv}(\mathcal{C}_{23}) \cap \operatorname{conv}(\mathcal{C}_{123}).$ 

#### Obtaining tighter Relaxations (Part 3)

Translating a theorem from matroid theory we get the following result: **Theorem** (Seymour 1981) We have

 $\operatorname{relax}'(\mathcal{C}) = \operatorname{conv}(\mathcal{C})$ 

if and only if there is no way to shorten and puncture C such that we get the codes  $F_7^*$ ,  $M(K_5)$ , or  $R_{10}$ .

| $F_{7}^{*}$ : | $\left[7,3,4 ight]$ code  |
|---------------|---------------------------|
| $M(K_5)$ :    | [10,6,3] code             |
| $R_{10}$ :    | $\left[10,5,4 ight]$ code |



#### Pseudo-codwords and the edge zeta function



# Tanner/Factor Graph of a Cycle Code

Cycle codes are codes which have a Tanner/factor graph where all bit nodes have degree two. (Equivalently, the parity-check matrix has two ones per column.)

Example:



Tanner/factor graph



# Tanner/Factor Graph of a Cycle Code

Cycle codes are codes which have a Tanner/factor graph where all bit nodes have degree two. (Equivalently, the parity-check matrix has two ones per column.)

Example:



Tanner/factor graph



Corresponding normal factor graph (LABS<sup>hp</sup>)

# Tanner/Factor Graph of a Cycle Code

Cycle codes are called cycle codes because codewords correspond to simple cycles (or to the symmetric difference set of simple cycles) in the Tanner/factor graph.

Example:



Tanner/factor graph

 $X_1$   $X_3$   $X_4$   $X_6$   $X_2$   $X_7$ 

Corresponding normal factor graph



Definition (Hashimoto, see also Stark/Terras):



Here:  $\Gamma = (e_1, e_2, e_3)$ 

Let  $\Gamma$  be a path in a graph X with edge-set E; write

$$\Gamma = (e_{i_1}, \dots, e_{i_k})$$

to indicate that  $\Gamma$  begins with the edge  $e_{i_1}$  and ends with the edge  $e_{i_k}$ .



Definition (Hashimoto, see also Stark/Terras):



Here: 
$$\Gamma = (e_1, e_2, e_3)$$



Let  $\Gamma$  be a path in a graph X with edge-set E; write

 $\Gamma = (e_{i_1}, \dots, e_{i_k})$ 

to indicate that  $\Gamma$  begins with the edge  $e_{i_1}$  and ends with the edge  $e_{i_k}$ .

The monomial of  $\Gamma$  is given by

 $g(\Gamma) \triangleq u_{i_1} \cdots u_{i_k},$ 

where the  $u_i$ 's are indeterminates.

**Definition (Hashimoto, see also Stark/Terras):** The edge zeta function of X is defined to be the power series

$$\zeta_X(u_1,\ldots,u_n)\in\mathbb{Z}[[u_1,\ldots,u_n]]$$

given by

$$\zeta_X(u_1,\ldots,u_n) = \prod_{[\Gamma]\in A(X)} \frac{1}{1-g(\Gamma)},$$

where A(X) is the collection of equivalence classes of backtrackless, tailless, primitive cycles in X.

Note: unless X contains only one cycle, the set A(X) will be countably infinite.

#### Theorem (Bass):

- The edge zeta function  $\zeta_X(u_1, \ldots, u_n)$  is a rational function.
- More precisely, for any directed graph  $\vec{X}$  of X, we have

$$\zeta_X(u_1,\ldots,u_n) = \frac{1}{\det\left(\mathbf{I} - \mathbf{U}\mathbf{M}(\vec{X})\right)} = \frac{1}{\det\left(\mathbf{I} - \mathbf{M}(\vec{X})\mathbf{U}\right)}$$

where

- I is the identity matrix of size 2n,
- U = diag $(u_1, \ldots, u_n, u_1, \ldots, u_n)$  is a diagonal matrix of indeterminants.
- $\mathbf{M}(\vec{X})$  is a  $2n \times 2n$  matrix derived from some directed graph version  $\vec{X}$  of X.

#### Relationship Pseudo-Codewords and Edge Zeta Function (Part 1: Theorem)

#### Theorem:

- Let C be a cycle code defined by a parity-check matrix **H** having normal graph  $N \triangleq N(\mathbf{H})$ .
- Let n = n(N) be the number of edges of N.
- Let  $\zeta_N(u_1, \ldots, u_n)$  be the edge zeta function of N.
- Then

the monomial  $u_1^{p_1} \dots u_n^{p_n}$  has a nonzero coefficient in the Taylor series expansion of  $\zeta_N$  if and only if

the corresponding exponent vector  $(p_1, \ldots, p_n)$ is an unscaled pseudo-codeword for C.

#### Relationship Pseudo-Codewords and Edge Zeta Function (Part 2: Example)



This normal graph N has the following inverse edge zeta function:

$$\zeta_N(u_1,\ldots,u_7) = \frac{1}{\det(\mathbf{I}_{14} - \mathbf{UM})}$$

$$= - 1$$

 $1 - 2u_{1}u_{2}u_{3} + u_{1}^{2}u_{2}^{2}u_{3}^{2} - 2u_{5}u_{6}u_{7} + 4u_{1}u_{2}u_{3}u_{5}u_{6}u_{7} - 2u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{5}u_{6}u_{7}$  $-4u_{1}u_{2}u_{3}u_{4}^{2}u_{5}u_{6}u_{7} + 4u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{4}^{2}u_{5}u_{6}u_{7} + u_{5}^{2}u_{6}^{2}u_{7}^{2} - 2u_{1}u_{2}u_{3}u_{5}^{2}u_{6}^{2}u_{7}^{2}$  $+u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{5}^{2}u_{6}^{2}u_{7}^{2} + 4u_{1}u_{2}u_{3}u_{4}^{2}u_{5}^{2}u_{6}^{2}u_{7}^{2} - 4u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{4}^{2}u_{5}^{2}u_{6}^{2}u_{7}^{2}$  $(LABS^{hp})$ 

#### Relationship Pseudo-Codewords and Edge Zeta Function (Part 3: Example)





 $= 1 + 2u_1u_2u_3 + 3u_1^2u_2^2u_3^2 + 2u_5u_6u_7$  $+ 4u_1u_2u_3u_5u_6u_7 + 6u_1^2u_2^2u_3^2u_5u_6u_7$  $+ 4u_1u_2u_3u_4^2u_5u_6u_7 + 12u_1^2u_2^2u_3^2u_4^2u_5u_6u_7$  $+ \cdots$ 

We get the following exponent vectors:

(0, 0, 0, 0, 0, 0, 0)codeword (1, 1, 1, 0, 0, 0, 0)codeword (2, 2, 2, 0, 0, 0, 0)pseudo-codeword (in  $\mathbb{Z}$ -span) (0, 0, 0, 0, 1, 1, 1)codeword (1, 1, 1, 0, 1, 1, 1)codeword (2, 2, 2, 0, 1, 1, 1)pseudo-codeword (in  $\mathbb{Z}$ -span) pseudo-codeword (not in Z-span) (1, 1, 1, 2, 1, 1, 1)pseudo-codeword (in  $\mathbb{Z}$ -span) (2, 2, 2, 2, 1, 1, 1)



# The Newton Polytope of a Polynomial



Here:  $P(u_1, u_2)$ =  $u_1^0 u_2^0 + 3u_1^1 u_2^2 + 4u_1^3 u_2^1 - 2u_1^4 u_2^5$ 

#### **Definition:**

The Newton polytope of a polynomial  $P(u_1, \ldots, u_n)$  in n indeterminates is the convex hull of the points in n-dimensional space given by the exponent vectors of the nonzero monomials appearing in  $P(u_1, \ldots, u_n)$ .

Similarly, we can associate a polyhedron to a power series.

#### Characterizing the Fundamental Cone Through the Zeta Function

Collecting the results from the previous slides we get:

**Proposition:** Let C be some cycle code with parity-check matrix **H** and normal factor graph  $N(\mathbf{H})$ .

The Newton polyhedron of the zeta function of  $N(\mathbf{H})$ equals the fundamental cone  $\mathcal{K}(\mathbf{H})$ .



#### The canonical completion



#### Trying to Construct a Codeword





Example: [7, 4, 3] binary Hamming code.









The canonical completion for a (j = 3, k = 4)-regular LDPC code. On check-regular graphs the (scaled) canonical completion always gives a (valid) pseudo-codeword.

# An Upper Bound on the Minimum Pseudo-Weight based on Can. Compl.



An Upper Bound on the Minimum Pseudo-Weight based on Can. Compl.

**Theorem:** Let C be a (j, k)-regular LDPC code with  $3 \le j < k$ . Then the minimum pseudo-weight is upper bounded by

 $w_{\mathrm{p,min}}^{\mathrm{AWGNC}}(\mathcal{C}) \leq \beta'_{j,k} \cdot n^{\beta_{j,k}},$ 

where

$$\beta_{j,k}' = \left(\frac{j(j-1)}{j-2}\right)^2, \quad \beta_{j,k} = \frac{\log\left((j-1)^2\right)}{\log\left((j-1)(k-1)\right)} < 1.$$



An Upper Bound on the Minimum Pseudo-Weight based on Can. Compl.

**Theorem:** Let C be a (j, k)-regular LDPC code with  $3 \le j < k$ . Then the minimum pseudo-weight is upper bounded by

 $w_{\mathrm{p,min}}^{\mathrm{AWGNC}}(\mathcal{C}) \leq \beta'_{j,k} \cdot n^{\beta_{j,k}},$ 

where

$$\beta_{j,k}' = \left(\frac{j(j-1)}{j-2}\right)^2, \quad \beta_{j,k} = \frac{\log\left((j-1)^2\right)}{\log\left((j-1)(k-1)\right)} < 1.$$

**Corollary:** The minimum relative pseudo-weight for any sequence  $\{C_i\}$  of (j, k)-regular LDPC codes of increasing length satisfies

$$\lim_{n \to \infty} \left( \frac{w_{\mathrm{p,min}}^{\mathrm{AWGNC}}(\mathcal{C}_i)}{n} \right) = 0.$$



#### LP decoding thresholds for the BSC





Let  $\varepsilon \in [0, 1]$ . The binary symmetric channel (BSC) with cross-over probability  $\varepsilon$  is a discrete memoryless channel





Let  $\varepsilon \in [0, 1]$ . The binary symmetric channel (BSC) with cross-over probability  $\varepsilon$  is a discrete memoryless channel

• with input alphabet  $\mathcal{X} = \{0, 1\}$ ,





Let  $\varepsilon \in [0, 1]$ . The binary symmetric channel (BSC) with cross-over probability  $\varepsilon$  is a discrete memoryless channel

- with input alphabet  $\mathcal{X} = \{0, 1\}$ ,
- with output alphabet  $\mathcal{Y} = \{0, 1\}$ ,





Let  $\varepsilon \in [0, 1]$ . The binary symmetric channel (BSC) with cross-over probability  $\varepsilon$  is a discrete memoryless channel

- with input alphabet  $\mathcal{X} = \{0, 1\}$ ,
- with output alphabet  $\mathcal{Y} = \{0, 1\}$ ,
- and with conditional probability mass function

$$P_{Y_i|X_i}(y_i|x_i) = \begin{cases} 1 - \varepsilon & (y_i = x_i) \\ \varepsilon & (y_i \neq x_i) \end{cases}.$$



The capacity for the BSC as a function of the cross-over probability arepsilon is

 $C_{\rm BSC} = 1 - h_2(\varepsilon),$ 

where  $h_2(\varepsilon) \triangleq -\varepsilon \log_2(\varepsilon) - (1-\varepsilon) \log_2(1-\varepsilon)$ .





The capacity for the BSC as a function of the cross-over probability arepsilon is

 $C_{\rm BSC} = 1 - h_2(\varepsilon),$ 

where  $h_2(\varepsilon) \triangleq -\varepsilon \log_2(\varepsilon) - (1-\varepsilon) \log_2(1-\varepsilon)$ .



#### 

Assume that the channel is a BSC with cross-over probability  $\varepsilon$ .





Assume that the channel is a BSC with cross-over probability  $\varepsilon$ . Channel capacity:

- Channel coding theorem
- Converse to the channel coding theorem





Assume that the channel is a BSC with cross-over probability  $\varepsilon$ . Channel capacity:

- Channel coding theorem (Gallager's random coding error exponent, etc.)
- Converse to the channel coding theorem

(Fano's inequality, etc.)







Assume that the channel is a BSC with cross-over probability  $\varepsilon$ . Channel capacity:

- Channel coding theorem (Gallager's random coding error exponent, etc.)
- Converse to the channel coding theorem

(Fano's inequality, etc.)



Important: we are allowed to use the best available coding and decoding schemes for a given rate R.



Assume that the channel is a BSC with cross-over probability  $\varepsilon$ . Additionally, assume that we put restrictions on the coding schemes and/or on the decoding schemes.





Assume that the channel is a BSC with cross-over probability  $\varepsilon$ . Additionally, assume that we put restrictions on the coding schemes and/or on the decoding schemes.

 $\Rightarrow$  Thresholds.





Assume that the channel is a BSC with cross-over probability  $\varepsilon$ . Additionally, assume that we put restrictions on the coding schemes and/or on the decoding schemes.

 $\Rightarrow$  Thresholds.



#### Existence of LP Decoding Thresholds

• A priori it is not clear for what families/ensembles of codes there is an LP decoding threshold.



#### Existence of LP Decoding Thresholds

- A priori it is not clear for what families/ensembles of codes there is an LP decoding threshold.
- The tight connection between min-sum algorithm decoding and LP decoding suggests that families/ensembles that have a threshold under min-sum algorithm decoding also have a threshold under LP decoding.



## Existence of LP Decoding Thresholds

- A priori it is not clear for what families/ensembles of codes there is an LP decoding threshold.
- The tight connection between min-sum algorithm decoding and LP decoding suggests that families/ensembles that have a threshold under min-sum algorithm decoding also have a threshold under LP decoding.
- [Koetter:Vontobel:06]: there is an LP decoding threshold for  $(w_{col}, w_{row})$ -regular LDPC codes where  $2 < w_{col} < w_{row}$ .



#### BSC: An Upper Bound on the Threshold (Part 1)

#### Theorem:

- Consider a family of  $(w_{col}, w_{row})$ -regular codes of increasing block length n.
- Consider a BSC with cross-over probability  $\varepsilon$ .
- In the limit  $n \to \infty$ , if

$$\varepsilon > \frac{1}{w_{\rm row}}$$

then with probability 1 the LP decoder will not decode to the transmitted codeword.



#### BSC: An Upper Bound on the Threshold (Part 2)





#### BSC: An Upper Bound on the Threshold (Part 2)



LABShp

#### BSC: An Upper Bound on the Threshold (Part 3)

**Theorem:** Consider a family of codes where the minimal row-degree goes to  $w_{\text{row}}^{\min}(\infty)$  when  $n \to \infty$  and a BSC with cross-over probability  $\varepsilon$ . In the limit  $n \to \infty$ , if

$$\varepsilon > \frac{1}{w_{\rm row}^{\rm min}(\infty)}$$

then with probability 1 the LP decoder will not decode to the transmitted codeword.



**Theorem:** Consider a family of codes where the minimal row-degree goes to  $w_{\text{row}}^{\min}(\infty)$  when  $n \to \infty$  and a BSC with cross-over probability  $\varepsilon$ . In the limit  $n \to \infty$ , if

$$\varepsilon > \frac{1}{w_{\rm row}^{\rm min}(\infty)}$$

then with probability 1 the LP decoder will not decode to the transmitted codeword.

**Corollary:** For any family of codes where  $w_{row}^{min}(n)$  grows unboundedly, i.e. where

 $\lim_{n \to \infty} w_{\rm row}^{\rm min}(n) = \infty,$ 

the above right-hand side expression goes to 0.

Linear programming (LP) decoding:

$$\hat{\boldsymbol{\omega}} = \arg\min_{\boldsymbol{\omega}\in\mathcal{P}(\mathbf{H})}\sum_{i=1}^n \lambda_i \omega_i.$$



Linear programming (LP) decoding:

$$\hat{\boldsymbol{\omega}} = \arg\min_{\boldsymbol{\omega}\in\mathcal{P}(\mathbf{H})}\sum_{i=1}^n \lambda_i \omega_i.$$

Assume that the zero codeword has been sent. LP decoding does not decide for the all-zeros codeword if there is a vector

 $\boldsymbol{\omega} \in \mathcal{P}(\mathbf{H}) \setminus \{\mathbf{0}\}$ 

such that

$$\sum_{i=1}^{n} \lambda_i \omega_i < 0.$$





Linear programming (LP) decoding:

$$\hat{\boldsymbol{\omega}} = \arg\min_{\boldsymbol{\omega}\in\mathcal{P}(\mathbf{H})}\sum_{i=1}^n \lambda_i \omega_i.$$

Assume that the zero codeword has been sent. LP decoding does not decides for the all-zeros codeword if there is a vector

 $\boldsymbol{\omega} \in \mathcal{K}(\mathbf{H}) \setminus \{\mathbf{0}\}$ 

such that

$$\sum_{i=1}^{n} \lambda_i \omega_i < 0.$$





• Assume that we have a  $(w_{col}, w_{row})$ -regular LDPC code.



- Assume that we have a  $(w_{col}, w_{row})$ -regular LDPC code.
- Moreover, let  $\omega \in \mathbb{R}^n$  be a vector with the following entries:

$$\omega_i \triangleq \begin{cases} \frac{1}{w_{\rm row} - 1} & \text{if } \lambda_i \ge 0\\ 1 & \text{if } \lambda_i < 0 \end{cases}$$



- Assume that we have a  $(w_{col}, w_{row})$ -regular LDPC code.
- Moreover, let  $\omega \in \mathbb{R}^n$  be a vector with the following entries:

$$\omega_i \triangleq \begin{cases} \frac{1}{w_{\text{row}} - 1} & \text{if } \lambda_i \ge 0\\ 1 & \text{if } \lambda_i < 0 \end{cases}$$

One can easily verify that  $\omega \in \mathcal{K}(\mathbf{H})$ .



- Assume that we have a  $(w_{col}, w_{row})$ -regular LDPC code.
- Moreover, let  $\omega \in \mathbb{R}^n$  be a vector with the following entries:

$$\omega_i \triangleq \begin{cases} \frac{1}{w_{\text{row}} - 1} & \text{if } \lambda_i \ge 0\\ 1 & \text{if } \lambda_i < 0 \end{cases}$$

One can easily verify that  $\omega \in \mathcal{K}(\mathbf{H})$ .

Note: this pseudo-codeword construction is inspired by the canonical completion contruction.



- Assume that we have a  $(w_{col}, w_{row})$ -regular LDPC code.
- Moreover, let  $\omega \in \mathbb{R}^n$  be a vector with the following entries:

$$\omega_i \triangleq \begin{cases} \frac{1}{w_{\text{row}} - 1} & \text{if } \lambda_i \ge 0\\ 1 & \text{if } \lambda_i < 0 \end{cases}$$

One can easily verify that  $\boldsymbol{\omega} \in \mathcal{K}(\mathbf{H})$ .

Note: this pseudo-codeword construction is inspired by the canonical completion contruction.

 In the rest of the proof, one shows for which ε this pseudo-codeword leads to a decoding error (details omitted).



#### 2-Neighborhood-Based Bounds on the Threshold





# The fundamental polytope in various contexts







Finite-length analysis of iterative decoding based on graph covers







Finite-length analysis of iterative decoding based on graph covers











(Koetter/Li/Vontobel/Walker, ITW2004)







#### References

• More details: see the appendices.

Papers listed at www.pseudocodewords.info



# Thank you!

#### **Appendices**



# Communication systems and Shannon's channel coding theorem



## Communication System (Part 1)

Source

 $\operatorname{Sink}$ 









#### Shannon (1948): it is a good idea to use channel codes!





#### Shannon (1948): it is a good idea to use channel codes!





• A channel is characterized by a number C called the capacity.





- A channel is characterized by a number C called the capacity.
- A code is characterized by a number R called the rate.





- A channel is characterized by a number C called the capacity.
- A code is characterized by a number R called the rate.
- If R < C: there are codes, encoders, and decoders such that arbitrarily low error probabilities can be guaranteed (as long as one allows arbitrarily long codes).





- A channel is characterized by a number C called the capacity.
- A code is characterized by a number R called the rate.
- If R < C: there are codes, encoders, and decoders such that arbitrarily low error probabilities can be guaranteed (as long as one allows arbitrarily long codes).
- Shannon's proof was though non-constructive, i.e. it was not clear at all how to obtain specific well-performing finite-length codes that possess efficient encoders and decoders.

|               | Code design        | Decoding                                             |
|---------------|--------------------|------------------------------------------------------|
| "Traditional" | Reed-Solomon codes | ?                                                    |
| "Modern"      | ? -                | Message-passing<br>iterative decoding<br>LP decoding |



|               | Code design        | Decoding                                             |
|---------------|--------------------|------------------------------------------------------|
| "Traditional" | Reed-Solomon codes | Berlekamp-Massey decoder etc.                        |
| "Modern"      | ? —                | Message-passing<br>iterative decoding<br>LP decoding |



|               | Code design                                 | Decoding                                             |
|---------------|---------------------------------------------|------------------------------------------------------|
| "Traditional" | Reed-Solomon codesetc.                      | Berlekamp-Massey decoder<br>etc.                     |
| "Modern"      | Codes on Graphs<br>(LDPC/Turbo codes, etc.) | Message-passing<br>Iterative decoding<br>LP decoding |



|               | Code design                | Decoding                                             |
|---------------|----------------------------|------------------------------------------------------|
| "Traditional" | Reed-Solomon codes<br>etc. | Berlekamp-Massey decoder<br>etc.                     |
| "Modern"      | Codes on Graphs            | Message-passing<br>Iterative decoding<br>LP decoding |

In both "traditional" and "modern" coding theory, "structure" is an important keyword. By imposing structural constraints

- one usually loses somewhat in generality;
- however, (mathematical) tools become available that can yield big analytical and practical gains.

#### Communication Model (Part 1)



Information word:

Sent codeword:

Received word:

 $\mathbf{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$  $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C} \subseteq \mathcal{X}^n$  $\mathbf{y} = (y_1, \dots, y_n) \in \mathcal{Y}^n$ 



#### Communication Model (Part 1)



Information word:

Sent codeword:

Received word:

 $\mathbf{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$  $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C} \subseteq \mathcal{X}^n$  $\mathbf{y} = (y_1, \dots, y_n) \in \mathcal{Y}^n$ 

Decoding: Based on y we would like to estimate the transmitted codeword  $\hat{\mathbf{x}}$  or the information word  $\hat{\mathbf{u}}$ .



### Communication Model (Part 1)



Information word: $\mathbf{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$ Sent codeword: $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C} \subseteq \mathcal{X}^n$ Received word: $\mathbf{y} = (y_1, \dots, y_n) \in \mathcal{Y}^n$ 

Decoding: Based on y we would like to estimate the transmitted codeword  $\hat{\mathbf{x}}$  or the information word  $\hat{\mathbf{u}}$ .

Depending on what criterion we optimize, we obtain different decoding algorithms.



• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$





• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$

• This can also be written as

$$\hat{\mathbf{x}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{x}\in\mathcal{X}^n} P_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{x}\in\mathcal{X}^n} P_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}).$$





• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$

This can also be written as

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y})$$

• If all codewords are equally likely then

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}}(\mathbf{x}) P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \underset{\mathbf{x}\in\mathcal{C}}{\operatorname{argmax}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$$



• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$

• This can also be written as

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}).$$

• If all codewords are equally likely then

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}}(\mathbf{x}) P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \underset{\mathbf{x}\in\mathcal{C}}{\operatorname{argmax}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) \triangleq \hat{\mathbf{x}}_{\text{ML}}^{\text{block}}(\mathbf{y})$$

#### **Binary linear codes**



Let **H** be a parity-check matrix, e.g.

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

٠



Let H be a parity-check matrix, e.g.

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

The code  $\boldsymbol{\mathcal{C}}$  described by  $\mathbf{H}$  is then

$$\mathcal{C} = \left\{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}_2^5 \mid \mathbf{H} \cdot \mathbf{x}^\mathsf{T} = \mathbf{0}^\mathsf{T} \pmod{2} \right\}.$$



Let **H** be a parity-check matrix, e.g.

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

The code  $\boldsymbol{\mathcal{C}}$  described by  $\mathbf{H}$  is then

$$\mathcal{C} = \Big\{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}_2^5 \ \Big| \ \mathbf{H} \cdot \mathbf{x}^\mathsf{T} = \mathbf{0}^\mathsf{T} \pmod{2} \Big\}.$$

A vector  $\mathbf{x} \in \mathbb{F}_2^5$  is a codeword if and only if

$$\mathbf{H} \cdot \mathbf{x}^{\mathsf{T}} = \mathbf{0}^{\mathsf{T}} \pmod{2}$$



This means that  $\mathbf{x}$  is a codeword if and only if  $\mathbf{x}$  fulfills the following two equations:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$



This means that  $\mathbf{x}$  is a codeword if and only if  $\mathbf{x}$  fulfills the following two equations:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix} \quad \Rightarrow \quad \begin{array}{c} x_1 + x_2 + x_3 = 0 \pmod{2} \\ \Rightarrow \end{array}$$



This means that  $\mathbf{x}$  is a codeword if and only if  $\mathbf{x}$  fulfills the following two equations:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix} \implies \begin{array}{c} x_1 + x_2 + x_3 = 0 \pmod{2} \\ x_2 + x_4 + x_5 = 0 \pmod{2} \end{array}$$



This means that  $\mathbf{x}$  is a codeword if and only if  $\mathbf{x}$  fulfills the following two equations:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix} \Rightarrow \begin{aligned} x_1 + x_2 + x_3 &= 0 \pmod{2} \\ x_2 + x_4 + x_5 &= 0 \pmod{2} \end{aligned}$$

In summary,

$$\mathcal{C} = \left\{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}_2^5 \mid \mathbf{H} \cdot \mathbf{x}^\mathsf{T} = \mathbf{0}^\mathsf{T} \pmod{2} \right\}$$
$$= \left\{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}_2^5 \mid \begin{array}{l} x_1 + x_2 + x_3 = 0 \pmod{2} \\ x_2 + x_4 + x_5 = 0 \pmod{2} \end{array} \right\}.$$

Defining the codes  $\mathcal{C}_1$  and  $\mathcal{C}_2$  where

$$\mathcal{C}_1 = \left\{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}_2^5 \mid x_1 + x_2 + x_3 = 0 \pmod{2} \right\},\$$



Defining the codes  $C_1$  and  $C_2$  where

$$\mathcal{C}_1 = \left\{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}_2^5 \mid x_1 + x_2 + x_3 = 0 \pmod{2} \right\},\$$
  
$$\mathcal{C}_2 = \left\{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}_2^5 \mid x_2 + x_4 + x_5 = 0 \pmod{2} \right\},\$$



Defining the codes  $\mathcal{C}_1$  and  $\mathcal{C}_2$  where

$$\mathcal{C}_{1} = \left\{ (x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) \in \mathbb{F}_{2}^{5} \mid x_{1} + x_{2} + x_{3} = 0 \pmod{2} \right\},\$$
$$\mathcal{C}_{2} = \left\{ (x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) \in \mathbb{F}_{2}^{5} \mid x_{2} + x_{4} + x_{5} = 0 \pmod{2} \right\},\$$

the code C can be written as the intersection of  $C_1$  and  $C_2$ :

$$\mathcal{C} = \mathcal{C}_1 \cap \mathcal{C}_2.$$









 $x_4()$ 

 $x_{5}()$ 

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$





$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$





$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

()

 $\bigcap$ 

 $\bigcirc$ 

 $\bigcirc$ 

 $\bigcirc$ 

| 0000000 |            | 01111111111111111   | $x_1$ |
|---------|------------|---------------------|-------|
| 0000000 | 0011111111 | 100000000111111111  | $x_2$ |
| 0000111 | 1100001111 | 10000111100001111   | $x_3$ |
| 0011001 | 110011001  | 10011001100110000   | $x_4$ |
| 0101010 |            | 1010101010101010101 | $x_5$ |



$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

| 0000 | 0000  |          |
|------|-------|----------|
| 0000 | 1111  | 00001111 |
| 0000 | 11111 | 11110000 |
| 0011 | 0011  | 00110011 |
| 0101 | 0101  | 01010101 |





$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

| 0 0 | 00 | 1 | 1 1 1 |
|-----|----|---|-------|
| 0 0 | 11 | 0 | 01 1  |
| 0 0 | 11 | 1 | 10 0  |
| 0 1 | 01 | 0 | 10 1  |
| 0 0 | 10 | 0 | 10 0  |





$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

| 0000 | 0000 |          |
|------|------|----------|
| 0000 | 1111 | 00001111 |
| 0000 | 1111 | 11110000 |
| 0011 | 0011 | 00110011 |
| 0101 | 0101 | 01010101 |



 $\mathsf{code}\ \mathcal{C}_1$ 

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

| 0 | 00 | 0 00  | 00 1 | 11 | 1 $11$ | 1 $1$ |
|---|----|-------|------|----|--------|-------|
| 0 | 00 | 0  11 | 11 0 | 00 | 0 11   | 1 1   |
| 0 | 01 | 1 00  | 11 0 | 01 | 1 00   | 1 $1$ |
| 0 | 10 | 1 01  | 01 0 | 10 | 1 01   | 0 0   |
| 0 | 10 | 1 10  | 10 0 | 10 | 1 10   | 1 1   |

 $x_1 \bigcirc$ 





 $\mathsf{code}\ \mathcal{C}_2$ 

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

| 00  | 00 |        |
|-----|----|--------|
| 0 0 | 11 | 0 01 1 |
| 0 0 | 11 | 1 10 0 |
| 0 1 | 01 | 0 10 1 |
| 0 0 | 10 | 0 10 0 |





 $\mathcal{C} = \mathcal{C}_1 \cap \mathcal{C}_2$ 

# FG of a Data Communication System based on a parity-check code

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$





# FG of a Data Communication System based on a parity-check code

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$





# FG of a Data Communication System based on a parity-check code

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$





# Expressing a decoder as the solution of a linear program



For memoryless channels, block-wise ML decoding of a binary code can be written as a linear program.

 $\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$ 



For memoryless channels, block-wise ML decoding of a binary code can be written as a linear program.

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \arg \min_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} x_{i} \lambda_{i},$$



For memoryless channels, block-wise ML decoding of a binary code can be written as a linear program.

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \arg \min_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} x_{i} \lambda_{i},$$

where

$$\lambda_i \triangleq \lambda_i(y_i) \triangleq \log \frac{P_{Y|X}(y_i|0)}{P_{Y|X}(y_i|1)}$$



Derivation (we assume to have a memoryless channel):

 $\arg\max_{\mathbf{x}\in\mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$ 



Derivation (we assume to have a memoryless channel):

 $\arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$  $= \arg \max_{\mathbf{x} \in \mathcal{C}} \log \prod_{i=1}^{n} P_{Y_i|X_i}(y_i|x_i)$ 



Derivation (we assume to have a memoryless channel):

$$\arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$$

$$= \arg \max_{\mathbf{x} \in \mathcal{C}} \log \prod_{i=1}^{n} P_{Y_i|X_i}(y_i|x_i)$$

$$= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} \log P_{Y_i|X_i}(y_i|x_i)$$



Derivation (we assume to have a memoryless channel):

 $\arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$   $= \arg \max_{\mathbf{x} \in \mathcal{C}} \log \prod_{i=1}^{n} P_{Y_i|X_i}(y_i|x_i)$   $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} \log P_{Y_i|X_i}(y_i|x_i)$   $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} \left( x_i \log \frac{P_{Y_i|X_i}(y_i|1)}{P_{Y_i|X_i}(y_i|0)} + \log P_{Y_i|X_i}(y_i|0) \right)$ 



### ML Decoding as an Integer LP

Derivation (we assume to have a memoryless channel):

 $\arg\max_{\mathbf{x}\in\mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$  $= \arg \max_{\mathbf{x} \in \mathcal{C}} \log \prod_{i=1}^{n} P_{Y_i|X_i}(y_i|x_i)$  $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{\mathbf{x} \in \mathcal{C}} \log P_{Y_i|X_i}(y_i|x_i)$  $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} \left( x_i \log \frac{P_{Y_i|X_i}(y_i|1)}{P_{Y_i|X_i}(y_i|0)} + \log P_{Y_i|X_i}(y_i|0) \right)$  $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{\infty} x_i(-\lambda_i)$ 

#### ML Decoding as an Integer LP

Derivation (we assume to have a memoryless channel):

 $\arg\max_{\mathbf{x}\in\mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$  $= \arg \max_{\mathbf{x} \in \mathcal{C}} \log \prod_{i \in \mathcal{C}} P_{Y_i|X_i}(y_i|x_i)$  $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{\mathbf{x} \in \mathcal{C}} \log P_{Y_i|X_i}(y_i|x_i)$  $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} \left( x_i \log \frac{P_{Y_i|X_i}(y_i|1)}{P_{Y_i|X_i}(y_i|0)} + \log P_{Y_i|X_i}(y_i|0) \right)$  $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} x_i(-\lambda_i) = \arg \min_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} x_i \lambda_i.$ 











n $\arg\min_{\mathbf{x}\in\operatorname{conv}(C)}\sum_{i=1}^{\lambda_i x_i}$ 



e.g.  $\mathcal{C} = \left\{ \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(5)} \right\}$ 









e.g.  $\mathcal{C} = \left\{ \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(5)} \right\}$ 











Because the cost function is linear and because  $\mathcal{A}$  is a polytope, one of the vertices of  $\mathcal{A}$  is always in the solution set.



















$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_i \lambda_i,$$

This is a linear program.



$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_{i}\lambda_{i},$$

This is a linear program.

However, the

number of variables / equalities / inequalities needed to describe the polytope  $\operatorname{conv}(\mathcal{C})$  is (usually) exponential in n.



#### **Relaxed linear programs and LP decoding**



#### Relaxed Linear Programs (Part 1)







#### Relaxed Linear Programs (Part 1)



#### is replaced by







#### Relaxed Linear Programs (Part 1)



#### is replaced by







#### Relaxed Linear Programs (Part 2)







### Relaxed Linear Programs (Part 2)





#### is replaced by





### LP Decoding (Part 1)





### LP Decoding (Part 1)

$$\hat{\boldsymbol{\omega}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = rg\min_{\boldsymbol{\omega}\in\mathrm{conv}(\mathcal{C})} \; \sum_{i=1}^n \omega_i \lambda_i.$$

A standard approach in optimization theory is then to relax the set  $\operatorname{conv}(\mathcal{C})$  to a set  $\operatorname{relax}(\operatorname{conv}(\mathcal{C}))$  whose description complexity is much lower:

$$\hat{\boldsymbol{\omega}}_{\mathrm{LP}}(\mathbf{y}) = \arg\min_{\boldsymbol{\omega}\in\mathrm{relax}(\mathrm{conv}(\mathcal{C}))} \sum_{i=1}^{n} \omega_i \lambda_i.$$



How do we obtain a suitable relaxation?



How do we obtain a suitable relaxation? The following approach was proposed by Feldman / Karger / Wainwright and seems to work well for LDPC codes.



How do we obtain a suitable relaxation? The following approach was proposed by Feldman / Karger / Wainwright and seems to work well for LDPC codes.

Before showing how this relaxation works, let us remember how we define a code using a parity-check matrix.

Let **H** be a parity-check matrix, e.g.

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$



How do we obtain a suitable relaxation? The following approach was proposed by Feldman / Karger / Wainwright and seems to work well for LDPC codes.

Before showing how this relaxation works, let us remember how we define a code using a parity-check matrix.

Let **H** be a parity-check matrix, e.g.

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

A vector  $\mathbf{x} \in \mathbb{F}_2^5$  is a codeword if and only if

```
\mathbf{H}\mathbf{x}^{\mathsf{T}} = \mathbf{0}^{\mathsf{T}}.
```



$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$



$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \quad \Rightarrow$$

$$x_1 + x_2 + x_3 = 0 \pmod{2}$$



$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \implies x_1 + x_2 + x_3 = 0 \pmod{2}$$
$$\Rightarrow x_2 + x_4 + x_5 = 0 \pmod{2}$$



$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \begin{aligned} x_1 + x_2 + x_3 &= 0 \pmod{2} \\ x_2 + x_4 + x_5 &= 0 \pmod{2} \\ x_3 + x_4 + x_5 &= 0 \pmod{2} \end{aligned}$$



In our case this means that  $\mathbf{x}$  is a codeword if and only if  $\mathbf{x}$  fulfills the following three equations:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \begin{aligned} x_1 + x_2 + x_3 &= 0 \pmod{2} \\ x_2 + x_4 + x_5 &= 0 \pmod{2} \\ x_3 + x_4 + x_5 &= 0 \pmod{2} \end{aligned}$$

Therefore,  $\mathcal{C}$  can be seen as the intersection of three codes

$$\mathcal{C}=\mathcal{C}_1\cap\mathcal{C}_2\cap\mathcal{C}_3,$$



In our case this means that  $\mathbf{x}$  is a codeword if and only if  $\mathbf{x}$  fulfills the following three equations:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \begin{aligned} x_1 + x_2 + x_3 &= 0 \pmod{2} \\ x_2 + x_4 + x_5 &= 0 \pmod{2} \\ x_3 + x_4 + x_5 &= 0 \pmod{2} \end{aligned}$$

Therefore,  $\mathcal C$  can be seen as the intersection of three codes

$$\mathcal{C}=\mathcal{C}_1\cap\mathcal{C}_2\cap\mathcal{C}_3,$$

where

$$\mathcal{C}_{1} \triangleq \left\{ \mathbf{x} \in \mathbb{F}_{2}^{5} \mid \mathbf{h}_{1}\mathbf{x}^{\mathsf{T}} = 0 \pmod{2} \right\},\$$
$$\mathcal{C}_{2} \triangleq \left\{ \mathbf{x} \in \mathbb{F}_{2}^{5} \mid \mathbf{h}_{2}\mathbf{x}^{\mathsf{T}} = 0 \pmod{2} \right\},\$$
$$\mathcal{C}_{3} \triangleq \left\{ \mathbf{x} \in \mathbb{F}_{2}^{5} \mid \mathbf{h}_{3}\mathbf{x}^{\mathsf{T}} = 0 \pmod{2} \right\}.$$



Let the relaxation  $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$  of  $\mathcal{C}$  be the set of all vectors  $\omega \in \mathbb{R}^5$  that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$



Let the relaxation  $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$  of  $\mathcal{C}$  be the set of all vectors  $\omega \in \mathbb{R}^5$  that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \quad \Rightarrow$$



Let the relaxation  $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$  of  $\mathcal{C}$  be the set of all vectors  $\omega \in \mathbb{R}^5$  that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \quad \Rightarrow \qquad \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1)$$



Let the relaxation  $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$  of  $\mathcal{C}$  be the set of all vectors  $\omega \in \mathbb{R}^5$  that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \quad \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1)$$
$$\Rightarrow \quad \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_2)$$



Let the relaxation  $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$  of  $\mathcal{C}$  be the set of all vectors  $\omega \in \mathbb{R}^5$  that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \begin{array}{l} \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_3) \end{array}$$



Let the relaxation  $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$  of  $\mathcal{C}$  be the set of all vectors  $\omega \in \mathbb{R}^5$  that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \Rightarrow \qquad \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_3) \end{cases}$$

Therefore,

#### $\operatorname{relax}(\operatorname{conv}(\mathcal{C}))$

Let the relaxation  $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$  of  $\mathcal{C}$  be the set of all vectors  $\omega \in \mathbb{R}^5$  that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \Rightarrow \qquad \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_3) \end{cases}$$

Therefore,

$$\operatorname{relax}(\operatorname{conv}(\mathcal{C})) \triangleq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3)$$

Let the relaxation  $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$  of  $\mathcal{C}$  be the set of all vectors  $\omega \in \mathbb{R}^5$  that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \begin{array}{l} \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_3) \\ \end{array}$$

Therefore,

$$\operatorname{relax}(\operatorname{conv}(\mathcal{C})) \triangleq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3).$$

Fundamental polytope  $\mathcal{P}(\mathbf{H})$ 

Let the relaxation  $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$  of  $\mathcal{C}$  be the set of all vectors  $\omega \in \mathbb{R}^5$  that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \Rightarrow \qquad \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_3) \end{cases}$$

Therefore,

$$\operatorname{conv}(\mathcal{C}) \subseteq \operatorname{relax}(\operatorname{conv}(\mathcal{C})) \triangleq \underbrace{\operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3)}_{\mathsf{Fundamental polytope } \mathcal{P}(\mathbf{H})}.$$

Let the relaxation  $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$  of  $\mathcal{C}$  be the set of all vectors  $\omega \in \mathbb{R}^5$  that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \Rightarrow \qquad \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_3) \end{cases}$$

Therefore,

 $\mathcal{C} \subset \operatorname{conv}(\mathcal{C}) \subseteq \operatorname{relax}(\operatorname{conv}(\mathcal{C})) \triangleq \underbrace{\operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3)}_{\mathsf{Fundamental polytope } \mathcal{P}(\mathbf{H})}.$ 

# Block-wise ML Decoding vs. LP Decoding

Block-wise ML decoding:

LP decoding:

LABShp

#### Block-wise ML Decoding vs. LP Decoding

Block-wise ML decoding:

$$\mathbf{\hat{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_i \lambda_i.$$

LP decoding:



#### Block-wise ML Decoding vs. LP Decoding

Block-wise ML decoding:

$$\mathbf{\hat{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_i \lambda_i.$$

LP decoding:

$$\hat{\boldsymbol{\omega}}_{\mathrm{LP}}(\mathbf{y}) = \arg\min_{\boldsymbol{\omega}\in\mathcal{P}(\mathbf{H})} \sum_{i=1}^{n} \omega_i \lambda_i.$$



#### Block-wise ML Decoding vs. LP Decoding

Block-wise ML decoding:

$$\mathbf{\hat{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = rg\min_{\mathbf{x}\in\mathrm{conv}\left(\cap_{j=1}^{m}\mathcal{C}_{j}
ight)} \sum_{i=1}^{n} x_{i}\lambda_{i}.$$

LP decoding:

$$\hat{\boldsymbol{\omega}}_{\mathrm{LP}}(\mathbf{y}) = rg\min_{\boldsymbol{\omega}\in\cap_{j=1}^m\operatorname{conv}(\mathcal{C}_j)} \sum_{i=1}^n \omega_i \lambda_i.$$



Fundamental Polytope

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \mathcal{C}_{2}$$
$$\Rightarrow \mathcal{C}_{3}$$

$$\Rightarrow \mathcal{C} = \bigcap_{j=1}^{m} \mathcal{C}_j$$



#### Fundamental Polytope

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \xrightarrow{\Rightarrow} \mathcal{C}_1 \qquad \Rightarrow \operatorname{conv}(\mathcal{C}_1) \\ \Rightarrow \mathcal{C}_2 \qquad \Rightarrow \operatorname{conv}(\mathcal{C}_2) \\ \Rightarrow \mathcal{C}_3 \qquad \Rightarrow \operatorname{conv}(\mathcal{C}_3)$$





Fundamental Polytope / Cone (Part 1)  $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \operatorname{conv}(\mathcal{C}_{1})$   $\Rightarrow \operatorname{conv}(\mathcal{C}_{2})$   $\Rightarrow \operatorname{conv}(\mathcal{C}_{3})$ 







Fundamental Polytope / Cone (Part 1)  $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \operatorname{conv}(\mathcal{C}_{1})$   $\Rightarrow \operatorname{conv}(\mathcal{C}_{2})$   $\Rightarrow \operatorname{conv}(\mathcal{C}_{3})$ 







Fundamental Polytope / Cone (Part 1)  $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \xrightarrow{\Rightarrow} \operatorname{conv}(\mathcal{C}_1) \qquad \Rightarrow \operatorname{conic}(\mathcal{C}_1) \\ \Rightarrow \operatorname{conv}(\mathcal{C}_2) \qquad \Rightarrow \operatorname{conic}(\mathcal{C}_2) \\ \Rightarrow \operatorname{conv}(\mathcal{C}_3) \qquad \Rightarrow \operatorname{conic}(\mathcal{C}_3)$ 



#### **Convex hull of simple codes**



#### Convex Hull of Simple Codes (Part 1)

Let  $\ensuremath{\mathcal{C}}$  be defined by the parity-check matrix

$$\mathbf{H} = \begin{pmatrix} 1 & 1 \end{pmatrix}$$

Then

$$C = \{(0,0), (1,1)\}$$

 $\mathsf{and}$ 

$$\operatorname{conv}(\mathcal{C}) = \left\{ \boldsymbol{\omega} \in [0,1]^2 \middle| \begin{array}{c} -\omega_1 + \omega_2 \ge 0 \\ +\omega_1 - \omega_2 \ge 0 \end{array} \right\},$$

where  $[0,1] = \{r \in \mathbb{R} \mid 0 \le r \le 1\}.$ 



#### Convex Hull of Simple Codes (Part 2)

Let  $\ensuremath{\mathcal{C}}$  be defined by the parity-check matrix

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

Then

$$\mathcal{C} = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\}$$

and

$$\operatorname{conv}(\mathcal{C}) = \left\{ \boldsymbol{\omega} \in [0,1]^3 \middle| \begin{array}{c} -\omega_1 + \omega_2 + \omega_3 \ge 0 \\ +\omega_1 - \omega_2 + \omega_3 \ge 0 \\ +\omega_1 + \omega_2 - \omega_3 \ge 0 \\ -\omega_1 - \omega_2 - \omega_3 \ge -2 \end{array} \right\}$$

#### Conic Hull of Simple Codes (Part 1)

Let  $\ensuremath{\mathcal{C}}$  be defined by the parity-check matrix

$$\mathbf{H} = \begin{pmatrix} 1 & 1 \end{pmatrix}$$

Then

$$C = \{(0,0), (1,1)\}$$

 $\mathsf{and}$ 

$$\operatorname{conic}(\mathcal{C}) = \left\{ \boldsymbol{\omega} \in \mathbb{R}^2_+ \middle| \begin{array}{c} -\omega_1 + \omega_2 \ge 0 \\ +\omega_1 - \omega_2 \ge 0 \end{array} \right\},$$

where  $\mathbb{R}_+ = \{r \in \mathbb{R} \mid r \ge 0\}.$ 



#### Conic Hull of Simple Codes (Part 2)

Let  $\ensuremath{\mathcal{C}}$  be defined by the parity-check matrix

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

Then

$$C = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\}$$

and

$$\operatorname{conic}(\mathcal{C}) = \left\{ \boldsymbol{\omega} \in \mathbb{R}^3_+ \middle| \begin{array}{c} -\omega_1 + \omega_2 + \omega_3 \ge 0 \\ +\omega_1 - \omega_2 + \omega_3 \ge 0 \\ +\omega_1 + \omega_2 - \omega_3 \ge 0 \end{array} \right\}.$$



#### A Simple Code (Part 1)

Let us consider the length-3 code  $\mathcal C$  defined by the parity-check matrix

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

The code  $\mathcal{C}$  can be written as  $\mathcal{C} = \mathcal{C}_1 \cap \mathcal{C}_2 \cap \mathcal{C}_3$  with

$$\mathcal{C}_1 = \{(0,0,0), (1,1,0), (0,0,1), (1,1,1)\}$$
$$\mathcal{C}_2 = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\}$$
$$\mathcal{C}_3 = \{(0,0,0), (0,1,1), (1,0,0), (1,1,1)\}$$



#### A Simple Code (Part 2)

The fundamental polytope is  $\mathcal{P}(\mathbf{H}) = \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3)$  with

$$\operatorname{conv}(\mathcal{C}_{1}) = \operatorname{conv}\left(\left\{(0,0,0), (1,1,0), (0,0,1), (1,1,1)\right\}\right)$$
$$= \left\{\omega \in [0,1]^{3} \middle| \begin{array}{c} -\omega_{1} + \omega_{2} \ge 0\\ +\omega_{1} - \omega_{2} \ge 0 \end{array}\right\}$$
$$\operatorname{conv}(\mathcal{C}_{2}) = \operatorname{conv}\left(\left\{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\right\}\right)$$
$$= \left\{\omega \in [0,1]^{3} \middle| \begin{array}{c} -\omega_{1} + \omega_{2} + \omega_{3} \ge 0\\ +\omega_{1} - \omega_{2} + \omega_{3} \ge 0\\ +\omega_{1} - \omega_{2} - \omega_{3} \ge 0\\ -\omega_{1} - \omega_{2} - \omega_{3} \ge -2 \end{array}\right\}$$
$$\operatorname{conv}(\mathcal{C}_{3}) = \operatorname{conv}\left(\left\{(0,0,0), (0,1,1), (1,0,0), (1,1,1)\right\}\right)$$
$$= \left\{\omega \in [0,1]^{3} \middle| \begin{array}{c} -\omega_{2} + \omega_{3} \ge 0\\ +\omega_{2} - \omega_{3} \ge 0\\ +\omega_{2} - \omega_{3} \ge 0 \end{array}\right\}$$



# A Simple Code (Part 3)





(1, 1, 0)

 $\blacktriangleright \omega_1$ 

 $\blacktriangleright \omega_1$ 

#### **Pseudo-codewords and Tanner graphs**



# Tanner / Factor graphs



$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Codeword indicator function:

$$egin{aligned} &I_1(x_1,x_2,x_5)\cdot I_2(x_2,x_3,x_4)\cdot I_3(x_4,x_5,x_6)\ &=\left[(x_1,x_2,x_5)\in\mathcal{C}_1
ight]\,\cdot\ &\left[(x_2,x_3,x_4)\in\mathcal{C}_2
ight]\,\cdot\ &\left[(x_4,x_5,x_6)\in\mathcal{C}_3
ight] \end{aligned}$$

Note:  $x_i \in \{0, 1\}$ 



### Pseudo-Codewords / Fundamental Polytope





Codeword indicator function:

$$egin{aligned} &I_1(x_1,x_2,x_5)\cdot I_2(x_2,x_3,x_4)\cdot I_3(x_4,x_5,x_6)\ &=\left[(x_1,x_2,x_5)\in\mathcal{C}_1
ight]\,\cdot\ &\left[(x_2,x_3,x_4)\in\mathcal{C}_2
ight]\,\cdot\ &\left[(x_4,x_5,x_6)\in\mathcal{C}_3
ight]\,\end{aligned}$$

Note:  $x_i \in \{0, 1\}$ 

Pseudo-codeword indicator function:

$$\hat{I}_{1}(\omega_{1}, \omega_{2}, \omega_{5}) \cdot \hat{I}_{2}(\omega_{2}, \omega_{3}, \omega_{4}) \cdot \hat{I}_{3}(\omega_{4}, \omega_{5}, \omega_{6})$$

$$= \left[ (\omega_{1}, \omega_{2}, \omega_{5}) \in \operatorname{conv}(\mathcal{C}_{1}) \right] \cdot \left[ (\omega_{2}, \omega_{3}, \omega_{4}) \in \operatorname{conv}(\mathcal{C}_{2}) \right] \cdot \left[ (\omega_{4}, \omega_{5}, \omega_{6}) \in \operatorname{conv}(\mathcal{C}_{3}) \right]$$

Note:  $0 \leq \omega_i \leq 1$ 



#### Pseudo-Codewords / Fundamental Cone





Codeword indicator function:

$$egin{aligned} &I_1(x_1,x_2,x_5)\cdot I_2(x_2,x_3,x_4)\cdot I_3(x_4,x_5,x_6)\ &=\left[(x_1,x_2,x_5)\in\mathcal{C}_1
ight]\,\cdot\ &\left[(x_2,x_3,x_4)\in\mathcal{C}_2
ight]\,\cdot\ &\left[(x_4,x_5,x_6)\in\mathcal{C}_3
ight]\,\end{aligned}$$

Note:  $x_i \in \{0, 1\}$ 

Pseudo-codeword indicator function:

$$\hat{I}_{1}(\omega_{1}, \omega_{2}, \omega_{5}) \cdot \hat{I}_{2}(\omega_{2}, \omega_{3}, \omega_{4}) \cdot \hat{I}_{3}(\omega_{4}, \omega_{5}, \omega_{6})$$

$$= \left[ (\omega_{1}, \omega_{2}, \omega_{5}) \in \operatorname{conic}(\mathcal{C}_{1}) \right] \cdot \left[ (\omega_{2}, \omega_{3}, \omega_{4}) \in \operatorname{conic}(\mathcal{C}_{2}) \right] \cdot \left[ (\omega_{4}, \omega_{5}, \omega_{6}) \in \operatorname{conic}(\mathcal{C}_{3}) \right]$$

Note:  $0 \leq \omega_i$ 



#### Pseudo-Codewords / Fundamental Cone

E.g.

$$[(\omega_1, \omega_2, \omega_5) \in \operatorname{conic}(\mathcal{C}_1)] = 1$$

if and only if

$$\omega_1 \le \omega_2 + \omega_5$$
$$\omega_2 \le \omega_1 + \omega_5$$
$$\omega_5 \le \omega_1 + \omega_2$$



Pseudo-codeword indicator function:

$$\begin{split} \omega_{1} \geq 0 \\ \omega_{2} \geq 0 \\ \omega_{3} \geq 0 \end{split} \\ \hat{I}_{1}(\omega_{1}, \omega_{2}, \omega_{5}) \cdot \hat{I}_{2}(\omega_{2}, \omega_{3}, \omega_{4}) \cdot \hat{I}_{3}(\omega_{4}, \omega_{5}, \omega_{6}) \\ &= \left[ (\omega_{1}, \omega_{2}, \omega_{5}) \in \operatorname{conic}(\mathcal{C}_{1}) \right] \cdot \\ &\left[ (\omega_{2}, \omega_{3}, \omega_{4}) \in \operatorname{conic}(\mathcal{C}_{2}) \right] \cdot \end{split}$$

 $\left[(\omega_4,\omega_5,\omega_6)\in\operatorname{conic}(\mathcal{C}_3)\right]$ 

Note:  $0 \leq \omega_i$ 



#### **Pseudo-codeword spectra**



#### Pseudo-Codeword Spectra (Part 1)



Consider the PG(2,2)-based [7,3,4] binary linear code. Here is its minimal pseudo-codeword spectrum:





#### Pseudo-Codeword Spectra (Part 2)

Consider the EG(2,4)-based [15, 7, 5] binary linear code.

Here are some minimal pseudo-codeword spectra for different parity-check matrices of this code:



LABShp

#### Pseudo-Codeword Spectra (Part 3)

Consider the EG(2,4)-based [15, 7, 5] binary linear code. The following plot shows upper and lower bounds on the word error rate of LP and ML decoding.



#### Pseudo-Codeword Spectra (Part 4)

Consider the EG(2,4)-based [15,7,5] binary linear code. The following plot shows the word error rate for different decoding algorithms. (Note:

LP/ML WER curves for small WER can be obtained from bounds shown in the previous plot.)



#### Pseudo-Codeword Spectra (Part 5)

Consider the PG(2,4)-based [21, 11, 6] binary linear code.





#### Pseudo-Codeword Spectra (Part 6)

Some remarks:

• Haley / Grant paper (ISIT 2005) presented a class of LDPC codes



Some remarks:

Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
where the minimal BEC pseudo-weight grows with growing block length,



Some remarks:

- Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
  - where the minimal BEC pseudo-weight grows with growing block length,
  - but where the minimual AWGNC pseudo-weight is bounded from above.



Some remarks:

- Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
  - where the minimal BEC pseudo-weight grows with growing block length,
  - but where the minimual AWGNC pseudo-weight is bounded from above.
  - $\Rightarrow$  It is important which channel is used!



Some remarks:

- Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
  - where the minimal BEC pseudo-weight grows with growing block length,
  - but where the minimual AWGNC pseudo-weight is bounded from above.
  - $\Rightarrow$  It is important which channel is used!
- Chertkov / Stepanov paper (ISIT 2007) presented an intesting heuristic for approximating the pseudo-weight spectra of minimal codewords for a given code.



Graph-cover interpretation of pseudo-codewords



#### Graph Covers (Part 1)



**Definition**: A double cover of a graph is . . . Note: the above graph has  $2! \cdot 2! \cdot 2! \cdot 2! \cdot 2! = 32$  double covers.

## Graph Covers (Part 2)



Besides double covers, a graph also has many triple covers, quadruple covers, quintuple covers, etc.



# Graph Covers (Part 3)



An *m*-fold cover is also called a cover of degree m. Do not confuse this degree with the degree of a vertex! Note: there are many possible *m*-fold covers of a graph.

We can also consider covers of Tanner/factor graphs. Here is e.g. a possible double cover of some Tanner/factor graph.



Base factor/Tanner graph of a length-7 code



We can also consider covers of Tanner/factor graphs. Here is e.g. a possible double cover of some Tanner/factor graph.





Base factor/Tanner graph of a length-7 code Possible double cover of the base Tanner/factor graph



We can also consider covers of Tanner/factor graphs. Here is e.g. a possible double cover of some Tanner/factor graph.





Base factor/Tanner graph of a length-7 code Possible double cover of the base Tanner/factor graph

Let us study the codes defined by the graph covers of the base Tanner/factor graph.

Obviously, any codeword in the base Tanner/factor graph can be lifted to a codeword in the double cover of the base Tanner/factor graph.



(1, 1, 1, 0, 0, 0, 0)



Obviously, any codeword in the base Tanner/factor graph can be lifted to a codeword in the double cover of the base Tanner/factor graph.



(1, 1, 1, 0, 0, 0, 0) (1:1, 1:1, 1:1, 0:0, 0:0, 0:0, 0:0)



?

But in the double cover of the base Tanner/factor graph there are also codewords that are not liftings of codewords in the base Tanner/factor graph!



(1:0, 1:0, 1:0, 1:1, 1:0, 1:0, 0:1)



But in the double cover of the base Tanner/factor graph there are also codewords that are not liftings of codewords in the base Tanner/factor graph!





**Theorem:** 



#### **Theorem:**

• Let  $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$  be the fundamental polytope of a parity-check matrix  $\mathbf{H}$ .



#### **Theorem:**

- Let  $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$  be the fundamental polytope of a parity-check matrix  $\mathbf{H}$ .
- Let *P*' be the set of all vectors obtained through codewords in finite covers.



#### **Theorem:**

- Let  $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$  be the fundamental polytope of a parity-check matrix  $\mathbf{H}$ .
- Let *P*' be the set of all vectors obtained through codewords in finite covers.
- Then,  $\mathcal{P}'$  is dense in  $\mathcal{P}$ , i.e.

 $\mathcal{P}' = \mathcal{P} \cap \mathbb{Q}^n$  $\mathcal{P} = \text{closure}(\mathcal{P}').$ 



#### **Theorem:**

- Let  $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$  be the fundamental polytope of a parity-check matrix  $\mathbf{H}$ .
- Let *P*' be the set of all vectors obtained through codewords in finite covers.
- Then,  $\mathcal{P}'$  is dense in  $\mathcal{P}$ , i.e.

 $\mathcal{P}' = \mathcal{P} \cap \mathbb{Q}^n$  $\mathcal{P} = \text{closure}(\mathcal{P}').$ 

Moreover, note that all vertices of  $\mathcal{P}$  are vectors with rational entries and are therefore also in  $\mathcal{P}'$ .

#### The canonical completion



#### Trying to Construct a Codeword





Example: [7, 4, 3] binary Hamming code.









The canonical completion for a (j = 3, k = 4)-regular LDPC code. On check-regular graphs the (scaled) canonical completion always gives a (valid) pseudo-codeword.

# An Upper Bound on the Minimum Pseudo-Weight based on Can. Compl.



An Upper Bound on the Minimum Pseudo-Weight based on Can. Compl.

**Theorem:** Let C be a (j, k)-regular LDPC code with  $3 \le j < k$ . Then the minimum pseudo-weight is upper bounded by

 $w_{\mathrm{p,min}}^{\mathrm{AWGNC}}(\mathcal{C}) \leq \beta'_{j,k} \cdot n^{\beta_{j,k}},$ 

where

$$\beta_{j,k}' = \left(\frac{j(j-1)}{j-2}\right)^2, \quad \beta_{j,k} = \frac{\log\left((j-1)^2\right)}{\log\left((j-1)(k-1)\right)} < 1.$$



An Upper Bound on the Minimum Pseudo-Weight based on Can. Compl.

**Theorem:** Let C be a (j, k)-regular LDPC code with  $3 \le j < k$ . Then the minimum pseudo-weight is upper bounded by

 $w_{\mathrm{p,min}}^{\mathrm{AWGNC}}(\mathcal{C}) \leq \beta'_{j,k} \cdot n^{\beta_{j,k}},$ 

where

$$\beta_{j,k}' = \left(\frac{j(j-1)}{j-2}\right)^2, \quad \beta_{j,k} = \frac{\log\left((j-1)^2\right)}{\log\left((j-1)(k-1)\right)} < 1.$$

**Corollary:** The minimum relative pseudo-weight for any sequence  $\{C_i\}$  of (j, k)-regular LDPC codes of increasing length satisfies

$$\lim_{n \to \infty} \left( \frac{w_{\mathrm{p,min}}^{\mathrm{AWGNC}}(\mathcal{C}_i)}{n} \right) = 0.$$



#### Influence

#### of redundant rows in the parity-check matrix

#### and of cycles in the Tanner graph



## A Tanner Graph with Four-Cycles

Observation:

$$\mathbf{H} = \begin{pmatrix} \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots \\ \cdots & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix} \qquad \begin{array}{c} \cdots \\ \Rightarrow & \begin{array}{c} \omega \in \operatorname{conv}(\mathcal{C}_1) \\ \omega \in \operatorname{conv}(\mathcal{C}_2) \\ \cdots \end{array}$$



## A Tanner Graph with Four-Cycles

Observation:





#### A Tanner Graph with Four-Cycles

Observation:



If the support of the blue and the green line coincide in at least two position then we have

 $\operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \supseteq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_{12}).$ 

#### A Tanner Graph without Four-Cycles

Observation:

$$\mathbf{H} = \begin{pmatrix} \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots \\ \cdots & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix} \qquad \begin{array}{c} \cdots \\ \Rightarrow & \begin{array}{c} \omega \in \operatorname{conv}(\mathcal{C}_1) \\ \omega \in \operatorname{conv}(\mathcal{C}_2) \\ \cdots \end{array}$$



# A Tanner Graph without Four-Cycles

Observation:





## A Tanner Graph without Four-Cycles

Observation:



If the support of the blue and the green line coincide in at most one position then we have

 $\operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) = \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_{12}).$ 

### Tanner Graphs with/without Four-Cycles

**Proposition:** It seems to be favorable to have no four-cycles in the Tanner graph: "we get some inequalities for free!"



# Tanner Graphs with/without Four-Cycles

**Proposition:** It seems to be favorable to have no four-cycles in the Tanner graph: "we get some inequalities for free!"

Note: this argument can be easily extended to Tanner graphs with no six-cycles, no eight-cycles, etc.



# Obtaining tighter Relaxations

Let the relaxation  $\operatorname{relax}(\mathcal{C})$  of  $\mathcal{C}$  be the set of all vectors  $\omega \in \mathbb{R}^5$  that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \Rightarrow \qquad \mathbf{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \mathbf{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \mathbf{\omega} \in \operatorname{conv}(\mathcal{C}_3) \end{cases}$$

Therefore,

$$\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3).$$

How well can we do by adding more (redundand) lines to the parity-check matrix?



# Obtaining tighter Relaxations (Part 2)

What about taking a parity-check matrix  $\mathbf{H}'$  that contains all the non-zero codewords from the dual code?

$$\mathbf{H}' = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{l} \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{1}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{12}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{13}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{23}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{23}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{123}) \end{array}$$

 $\operatorname{relax}'(\mathcal{C}) \triangleq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3) \cap \operatorname{conv}(\mathcal{C}_{12}) \cap \operatorname{conv}(\mathcal{C}_{13}) \cap \operatorname{conv}(\mathcal{C}_{23}) \cap \operatorname{conv}(\mathcal{C}_{123}).$ 

## Obtaining tighter Relaxations (Part 3)

Translating a theorem from matroid theory we get the following result: **Theorem** (Seymour 1981) We have

 $\operatorname{relax}'(\mathcal{C}) = \operatorname{conv}(\mathcal{C})$ 

if and only if there is no way to shorten and puncture C such that we get the codes  $F_7^*$ ,  $M(K_5)$ , or  $R_{10}$ .

| $F_{7}^{*}$ : | $\left[7,3,4 ight]$ code  |
|---------------|---------------------------|
| $M(K_5)$ :    | [10,6,3] code             |
| $R_{10}$ :    | $\left[10,5,4 ight]$ code |



#### Pseudo-codwords and the edge zeta function



# Tanner/Factor Graph of a Cycle Code

Cycle codes are codes which have a Tanner/factor graph where all bit nodes have degree two. (Equivalently, the parity-check matrix has two ones per column.)

Example:



Tanner/factor graph



# Tanner/Factor Graph of a Cycle Code

Cycle codes are codes which have a Tanner/factor graph where all bit nodes have degree two. (Equivalently, the parity-check matrix has two ones per column.)

Example:



Tanner/factor graph



Corresponding normal factor graph (LABS<sup>hp</sup>)

# Tanner/Factor Graph of a Cycle Code

Cycle codes are called cycle codes because codewords correspond to simple cycles (or to the symmetric difference set of simple cycles) in the Tanner/factor graph.

Example:



Tanner/factor graph

 $X_1$   $X_3$   $X_4$   $X_6$   $X_2$   $X_7$ 

Corresponding normal factor graph



Definition (Hashimoto, see also Stark/Terras):



Here:  $\Gamma = (e_1, e_2, e_3)$ 

Let  $\Gamma$  be a path in a graph X with edge-set E; write

$$\Gamma = (e_{i_1}, \dots, e_{i_k})$$

to indicate that  $\Gamma$  begins with the edge  $e_{i_1}$  and ends with the edge  $e_{i_k}$ .



Definition (Hashimoto, see also Stark/Terras):



Here: 
$$\Gamma = (e_1, e_2, e_3)$$



Let  $\Gamma$  be a path in a graph X with edge-set E; write

 $\Gamma = (e_{i_1}, \dots, e_{i_k})$ 

to indicate that  $\Gamma$  begins with the edge  $e_{i_1}$  and ends with the edge  $e_{i_k}$ .

The monomial of  $\Gamma$  is given by

 $g(\Gamma) \triangleq u_{i_1} \cdots u_{i_k},$ 

where the  $u_i$ 's are indeterminates.

**Definition (Hashimoto, see also Stark/Terras):** The edge zeta function of X is defined to be the power series

$$\zeta_X(u_1,\ldots,u_n)\in\mathbb{Z}[[u_1,\ldots,u_n]]$$

given by

$$\zeta_X(u_1,\ldots,u_n) = \prod_{[\Gamma]\in A(X)} \frac{1}{1-g(\Gamma)},$$

where A(X) is the collection of equivalence classes of backtrackless, tailless, primitive cycles in X.

Note: unless X contains only one cycle, the set A(X) will be countably infinite.

#### Theorem (Bass):

- The edge zeta function  $\zeta_X(u_1, \ldots, u_n)$  is a rational function.
- More precisely, for any directed graph  $\vec{X}$  of X, we have

$$\zeta_X(u_1,\ldots,u_n) = \frac{1}{\det\left(\mathbf{I} - \mathbf{U}\mathbf{M}(\vec{X})\right)} = \frac{1}{\det\left(\mathbf{I} - \mathbf{M}(\vec{X})\mathbf{U}\right)}$$

where

- I is the identity matrix of size 2n,
- U = diag $(u_1, \ldots, u_n, u_1, \ldots, u_n)$  is a diagonal matrix of indeterminants.
- $\mathbf{M}(\vec{X})$  is a  $2n \times 2n$  matrix derived from some directed graph version  $\vec{X}$  of X.

#### Relationship Pseudo-Codewords and Edge Zeta Function (Part 1: Theorem)

#### Theorem:

- Let C be a cycle code defined by a parity-check matrix **H** having normal graph  $N \triangleq N(\mathbf{H})$ .
- Let n = n(N) be the number of edges of N.
- Let  $\zeta_N(u_1, \ldots, u_n)$  be the edge zeta function of N.
- Then

the monomial  $u_1^{p_1} \dots u_n^{p_n}$  has a nonzero coefficient in the Taylor series expansion of  $\zeta_N$  if and only if

the corresponding exponent vector  $(p_1, \ldots, p_n)$ is an unscaled pseudo-codeword for C.

#### Relationship Pseudo-Codewords and Edge Zeta Function (Part 2: Example)



This normal graph N has the following inverse edge zeta function:

$$\zeta_N(u_1,\ldots,u_7) = \frac{1}{\det(\mathbf{I}_{14} - \mathbf{UM})}$$

$$= - 1$$

 $1 - 2u_{1}u_{2}u_{3} + u_{1}^{2}u_{2}^{2}u_{3}^{2} - 2u_{5}u_{6}u_{7} + 4u_{1}u_{2}u_{3}u_{5}u_{6}u_{7} - 2u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{5}u_{6}u_{7}$  $-4u_{1}u_{2}u_{3}u_{4}^{2}u_{5}u_{6}u_{7} + 4u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{4}^{2}u_{5}u_{6}u_{7} + u_{5}^{2}u_{6}^{2}u_{7}^{2} - 2u_{1}u_{2}u_{3}u_{5}^{2}u_{6}^{2}u_{7}^{2}$  $+u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{5}^{2}u_{6}^{2}u_{7}^{2} + 4u_{1}u_{2}u_{3}u_{4}^{2}u_{5}^{2}u_{6}^{2}u_{7}^{2} - 4u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{4}^{2}u_{5}^{2}u_{6}^{2}u_{7}^{2}$  $(LABS^{hp})$ 

#### Relationship Pseudo-Codewords and Edge Zeta Function (Part 3: Example)





 $= 1 + 2u_1u_2u_3 + 3u_1^2u_2^2u_3^2 + 2u_5u_6u_7$  $+ 4u_1u_2u_3u_5u_6u_7 + 6u_1^2u_2^2u_3^2u_5u_6u_7$  $+ 4u_1u_2u_3u_4^2u_5u_6u_7 + 12u_1^2u_2^2u_3^2u_4^2u_5u_6u_7$  $+ \cdots$ 

We get the following exponent vectors:

(0, 0, 0, 0, 0, 0, 0)codeword (1, 1, 1, 0, 0, 0, 0)codeword (2, 2, 2, 0, 0, 0, 0)pseudo-codeword (in  $\mathbb{Z}$ -span) (0, 0, 0, 0, 1, 1, 1)codeword (1, 1, 1, 0, 1, 1, 1)codeword (2, 2, 2, 0, 1, 1, 1)pseudo-codeword (in  $\mathbb{Z}$ -span) pseudo-codeword (not in Z-span) (1, 1, 1, 2, 1, 1, 1)pseudo-codeword (in  $\mathbb{Z}$ -span) (2, 2, 2, 2, 1, 1, 1)



# The Newton Polytope of a Polynomial



Here:  $P(u_1, u_2)$ =  $u_1^0 u_2^0 + 3u_1^1 u_2^2 + 4u_1^3 u_2^1 - 2u_1^4 u_2^5$ 

#### **Definition:**

The Newton polytope of a polynomial  $P(u_1, \ldots, u_n)$  in n indeterminates is the convex hull of the points in n-dimensional space given by the exponent vectors of the nonzero monomials appearing in  $P(u_1, \ldots, u_n)$ .

Similarly, we can associate a polyhedron to a power series.

### Characterizing the Fundamental Cone Through the Zeta Function

Collecting the results from the previous slides we get:

**Proposition:** Let C be some cycle code with parity-check matrix **H** and normal factor graph  $N(\mathbf{H})$ .

The Newton polyhedron of the zeta function of  $N(\mathbf{H})$ equals the fundamental cone  $\mathcal{K}(\mathbf{H})$ .



#### Characterizing the Fundamental Cone Through the Zeta Function

The inverse of the zeta function seems to give some valuable information about the dual cone of the fundamental cone.





#### LP decoding thresholds for the BSC





Let  $\varepsilon \in [0, 1]$ . A simple model is e.g. the binary symmetric channel (BSC) with cross-over probability  $\varepsilon$ . It is a DMC





Let  $\varepsilon \in [0, 1]$ . A simple model is e.g. the binary symmetric channel (BSC) with cross-over probability  $\varepsilon$ . It is a DMC

• with input alphabet  $\mathcal{X} = \{0, 1\}$ ,





Let  $\varepsilon \in [0, 1]$ . A simple model is e.g. the binary symmetric channel (BSC) with cross-over probability  $\varepsilon$ . It is a DMC

- with input alphabet  $\mathcal{X} = \{0, 1\}$ ,
- with output alphabet  $\mathcal{Y} = \{0, 1\}$ ,





Let  $\varepsilon \in [0, 1]$ . A simple model is e.g. the binary symmetric channel (BSC) with cross-over probability  $\varepsilon$ . It is a DMC

- with input alphabet  $\mathcal{X} = \{0, 1\}$ ,
- with output alphabet  $\mathcal{Y} = \{0, 1\}$ ,
- and with conditional probability mass function

$$P_{Y_i|X_i}(y_i|x_i) = \begin{cases} 1 - \varepsilon & (y_i = x_i) \\ \varepsilon & (y_i \neq x_i) \end{cases}.$$



The capacity for the BSC as a function of the cross-over probability arepsilon is

 $C_{\rm BSC} = 1 - h_2(\varepsilon),$ 

where  $h_2(\varepsilon) \triangleq -\varepsilon \log_2(\varepsilon) - (1-\varepsilon) \log_2(1-\varepsilon)$ .





The capacity for the BSC as a function of the cross-over probability arepsilon is

 $C_{\rm BSC} = 1 - h_2(\varepsilon),$ 

where  $h_2(\varepsilon) \triangleq -\varepsilon \log_2(\varepsilon) - (1-\varepsilon) \log_2(1-\varepsilon)$ .



#### 

Assume that the channel is a BSC with cross-over probability  $\varepsilon$ .





Assume that the channel is a BSC with cross-over probability  $\varepsilon$ . Channel capacity:

- Channel coding theorem
- Converse to the channel coding theorem





Assume that the channel is a BSC with cross-over probability  $\varepsilon$ . Channel capacity:

- Channel coding theorem (Gallager's random coding error exponent, etc.)
- Converse to the channel coding theorem

(Fano's inequality, etc.)







Assume that the channel is a BSC with cross-over probability  $\varepsilon$ . Channel capacity:

- Channel coding theorem (Gallager's random coding error exponent, etc.)
- Converse to the channel coding theorem

(Fano's inequality, etc.)



Important: we are allowed to use the best available coding and decoding schemes for a given rate R.



Assume that the channel is a BSC with cross-over probability  $\varepsilon$ . Additionally, assume that we put restrictions on the coding schemes and/or on the decoding schemes.





Assume that the channel is a BSC with cross-over probability  $\varepsilon$ . Additionally, assume that we put restrictions on the coding schemes and/or on the decoding schemes.

 $\Rightarrow$  Thresholds.





Assume that the channel is a BSC with cross-over probability  $\varepsilon$ . Additionally, assume that we put restrictions on the coding schemes and/or on the decoding schemes.

 $\Rightarrow$  Thresholds.



# Existence of LP Decoding Thresholds

• A priori it is not clear for what families/ensembles of codes there is an LP decoding threshold.



# Existence of LP Decoding Thresholds

- A priori it is not clear for what families/ensembles of codes there is an LP decoding threshold.
- The tight connection between min-sum algorithm decoding and LP decoding suggests that families/ensembles that have a threshold under min-sum algorithm decoding also have a threshold under LP decoding.



# Existence of LP Decoding Thresholds

- A priori it is not clear for what families/ensembles of codes there is an LP decoding threshold.
- The tight connection between min-sum algorithm decoding and LP decoding suggests that families/ensembles that have a threshold under min-sum algorithm decoding also have a threshold under LP decoding.
- [Koetter:Vontobel:06]: there is an LP decoding threshold for  $(w_{col}, w_{row})$ -regular LDPC codes where  $2 < w_{col} < w_{row}$ .



# BSC: An Upper Bound on the Threshold (Part 1)

#### Theorem:

- Consider a family of  $(w_{col}, w_{row})$ -regular codes of increasing block length n.
- Consider a BSC with cross-over probability  $\varepsilon$ .
- In the limit  $n \to \infty$ , if

$$\varepsilon > \frac{1}{w_{\rm row}}$$

then with probability 1 the LP decoder will not decode to the transmitted codeword.



# BSC: An Upper Bound on the Threshold (Part 2)





# BSC: An Upper Bound on the Threshold (Part 2)



LABShp

## BSC: An Upper Bound on the Threshold (Part 3)

**Theorem:** Consider a family of codes where the minimal row-degree goes to  $w_{\text{row}}^{\min}(\infty)$  when  $n \to \infty$  and a BSC with cross-over probability  $\varepsilon$ . In the limit  $n \to \infty$ , if

$$\varepsilon > \frac{1}{w_{\rm row}^{\rm min}(\infty)}$$

then with probability 1 the LP decoder will not decode to the transmitted codeword.



## BSC: An Upper Bound on the Threshold (Part 3)

**Theorem:** Consider a family of codes where the minimal row-degree goes to  $w_{\text{row}}^{\min}(\infty)$  when  $n \to \infty$  and a BSC with cross-over probability  $\varepsilon$ . In the limit  $n \to \infty$ , if

$$\varepsilon > \frac{1}{w_{\rm row}^{\rm min}(\infty)}$$

then with probability 1 the LP decoder will not decode to the transmitted codeword.

**Corollary:** For any family of codes where  $w_{row}^{min}(n)$  grows unboundedly, i.e. where

 $\lim_{n \to \infty} w_{\rm row}^{\rm min}(n) = \infty,$ 

the above right-hand side expression goes to 0.

Linear programming (LP) decoding:

$$\hat{\boldsymbol{\omega}} = \arg\min_{\boldsymbol{\omega}\in\mathcal{P}(\mathbf{H})}\sum_{i=1}^n \lambda_i \omega_i.$$



Linear programming (LP) decoding:

$$\hat{\boldsymbol{\omega}} = \arg\min_{\boldsymbol{\omega}\in\mathcal{P}(\mathbf{H})}\sum_{i=1}^n \lambda_i \omega_i.$$

Assume that the zero codeword has been sent. LP decoding does not decide for the all-zeros codeword if there is a vector

 $\boldsymbol{\omega} \in \mathcal{P}(\mathbf{H}) \setminus \{\mathbf{0}\}$ 

such that

$$\sum_{i=1}^{n} \lambda_i \omega_i < 0.$$

m





Linear programming (LP) decoding:

$$\hat{\boldsymbol{\omega}} = \arg\min_{\boldsymbol{\omega}\in\mathcal{P}(\mathbf{H})}\sum_{i=1}^n \lambda_i \omega_i.$$

Assume that the zero codeword has been sent. LP decoding does not decides for the all-zeros codeword if there is a vector

 $\boldsymbol{\omega} \in \mathcal{K}(\mathbf{H}) \setminus \{\mathbf{0}\}$ 

such that

$$\sum_{i=1}^n \lambda_i \omega_i < 0.$$





• Assume that we have a  $(w_{col}, w_{row})$ -regular LDPC code.



- Assume that we have a  $(w_{col}, w_{row})$ -regular LDPC code.
- Moreover, let  $\omega \in \mathbb{R}^n$  be a vector with the following entries:

$$\omega_i \triangleq \begin{cases} \frac{1}{w_{\rm row} - 1} & \text{if } \lambda_i \ge 0\\ 1 & \text{if } \lambda_i < 0 \end{cases}$$



- Assume that we have a  $(w_{col}, w_{row})$ -regular LDPC code.
- Moreover, let  $\omega \in \mathbb{R}^n$  be a vector with the following entries:

$$\omega_{i} \triangleq \begin{cases} \frac{1}{w_{\text{row}} - 1} & \text{if } \lambda_{i} \ge 0\\ 1 & \text{if } \lambda_{i} < 0 \end{cases}$$

One can easily verify that  $\omega \in \mathcal{K}(\mathbf{H})$ .



- Assume that we have a  $(w_{col}, w_{row})$ -regular LDPC code.
- Moreover, let  $\omega \in \mathbb{R}^n$  be a vector with the following entries:

$$\omega_{i} \triangleq \begin{cases} \frac{1}{w_{\text{row}}-1} & \text{if } \lambda_{i} \ge 0\\ 1 & \text{if } \lambda_{i} < 0 \end{cases}$$

One can easily verify that  $\omega \in \mathcal{K}(\mathbf{H})$ .

• So, if

$$0 > \sum_{i=1}^{n} \lambda_{i} \omega_{i} = \left(\sum_{\substack{i=1\\\lambda_{i} \ge 0}}^{n} \lambda_{i}\right) \cdot \frac{1}{w_{\text{row}} - 1} + \left(\sum_{\substack{i=1\\\lambda_{i} < 0}}^{n} \lambda_{i}\right) \cdot 1$$

then LP decoding does not decide for the all-zeros codewordBS<sup>hp</sup>

 For simplicity, assume that we are transmitting over a BSC with crossover probability 0 ≤ ε < 1/2.</li>

$$\Rightarrow \lambda_i \in \{\pm L\} \quad \text{where} \quad L \triangleq \log\left(\frac{1-\varepsilon}{\varepsilon}\right) > 0.$$



 For simplicity, assume that we are transmitting over a BSC with crossover probability 0 ≤ ε < 1/2.</li>

$$\Rightarrow \lambda_i \in \{\pm L\}$$
 where  $L \triangleq \log\left(\frac{1-\varepsilon}{\varepsilon}\right) > 0.$ 

$$0 > \sum_{i=1}^{n} \lambda_{i} \omega_{i} = L \cdot \left( (\# \text{not flipped}) \frac{1}{w_{\text{row}} - 1} - (\# \text{flipped}) \right).$$

then LP decoding does not decide for the all-zeros codeword.



So, if

$$0 > \sum_{i=1}^{n} \lambda_{i} \omega_{i} = L \cdot \left( (\# \text{not flipped}) \frac{1}{w_{\text{row}} - 1} - (\# \text{flipped}) \right).$$

then LP decoding does not decide for the all-zeros codeword.



So, if

$$0 > \sum_{i=1}^{n} \lambda_{i} \omega_{i} = L \cdot \left( (\# \text{not flipped}) \frac{1}{w_{\text{row}} - 1} - (\# \text{flipped}) \right).$$

then LP decoding does not decide for the all-zeros codeword.

Upon normalization, the above condition reads

$$0 > \frac{1}{n} \sum_{i=1}^{n} \lambda_i \omega_i = L \cdot \left( \frac{(\# \text{not flipped})}{n} \frac{1}{w_{\text{row}} - 1} - \frac{(\# \text{flipped})}{n} \right).$$



So, if

$$0 > \sum_{i=1}^{n} \lambda_{i} \omega_{i} = L \cdot \left( (\# \text{not flipped}) \frac{1}{w_{\text{row}} - 1} - (\# \text{flipped}) \right).$$

then LP decoding does not decide for the all-zeros codeword.

Upon normalization, the above condition reads

$$0 > \frac{1}{n} \sum_{i=1}^{n} \lambda_i \omega_i = L \cdot \left( \frac{(\# \text{not flipped})}{n} \frac{1}{w_{\text{row}} - 1} - \frac{(\# \text{flipped})}{n} \right).$$

 In the limit n → ∞, the above condition is with probability one equal to the condition

$$0 > \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \lambda_i \omega_i = L \cdot \left( (1 - \varepsilon) \frac{1}{w_{\text{row}} - 1} - \varepsilon \right) \text{(LABS^{hp})}$$

# BSC: An Upper Bound on the Threshold (Part 1)

#### Theorem:

- Consider a family of  $(w_{col}, w_{row})$ -regular codes of increasing block length n.
- Consider a BSC with cross-over probability  $\varepsilon$ .
- In the limit  $n \to \infty$ , if

$$\varepsilon > \frac{1}{w_{\rm row}}$$

then with probability 1 the LP decoder will not decode to the transmitted codeword.



# 0-Neighborhood-Based Bounds (Part 1)



 $\omega$ -vector that we constructed before: note that the the assignment of a value to  $\omega_i$  was based only on the value of  $\lambda_i$ .



# 0-Neighborhood-Based Bounds (Part 2)



 $\omega$ -vector that we constructed before: note that the the assignment of a value to  $\omega_i$  was based only on the value of  $\lambda_i$ :

$$\omega_{i} = f(\lambda_{i}) = f\left(\left\{\lambda_{i'}\right\}_{i' \in \mathcal{N}_{i}^{(0)}}\right).$$



# 0-Neighborhood-Based Bounds (Part 3)

 $\omega$ -vector that we constructed before: note that the the assignment of a value to  $\omega_i$  was based only on the value of  $\lambda_i$ :

$$\omega_{i} = f(\lambda_{i}) = f\left(\left\{\lambda_{i'}\right\}_{i' \in \mathcal{N}_{i}^{(0)}}\right).$$

$$\omega_{i} \triangleq \begin{cases} \frac{1}{w_{\text{row}} - 1} & \text{if } \lambda_{i} \ge 0\\ 1 & \text{if } \lambda_{i} < 0 \end{cases}$$

One can easily check that  $\omega \in \mathcal{K}(\mathbf{H})$ .



# 2-Neighborhood-Based Bounds on the Threshold



Generalization:

$$\omega_{i} = f\left(\left\{\lambda_{i'}\right\}_{i' \in \mathcal{N}_{i}^{(2)}}\right).$$



# 2-Neighborhood-Based Bounds on the Threshold



We must take care of constrains: the map  $f\left(\{\lambda_{i'}\}_{i'\in\mathcal{N}_i^{(2)}}\right)$  has to yield a vector in  $\mathcal{K}(\mathbf{H})$ .



# 2-Neighborhood-Based Bounds on the Threshold



We must take care of constrains: the map  $f\left(\{\lambda_{i'}\}_{i'\in\mathcal{N}_i^{(2)}}\right)$  has to yield a vector in  $\mathcal{K}(\mathbf{H})$ .

 $\Rightarrow$  We can set up a linear program that yields the best possible threshold for a 2-neighborhood. (Graph automorphisms help in simplifying that LP.)

# 2-Neighborhood-Based Bounds on the Threshold





#### Stopping sets, near-codewords, ...



Stopping Sets (Part 1)



received values:

after first iteration:





after first iteration:

















The log-likelihood ratio vector for the above example is  $\lambda = (+\infty, 0, +\infty, 0, 0, 0)$ . Note that under LP decoding the vector (0, 0, 0, 0, 0, 0) (which is a codeword) and the vector  $(0, 0, 0, \frac{2}{3}, \frac{2}{3}, \frac{2}{3})$ (which is a pseudo-codeword) have equal cost, i.e. cost zero.



**Theorem:** 





#### Theorem:

• The support of any pseudo-codeword is a stopping set.



## Stopping Sets (Part 2)

#### Theorem:

- The support of any pseudo-codeword is a stopping set.
- For any stopping set there exists at least one pseudo-codeword such that its support equals that stopping set.



#### Near-Codewords (Part 1)

Example: a [155, 64, 20] binary linear code by Tanner.





### Near-Codewords (Part 1)

Example: a [155, 64, 20] binary linear code by Tanner.



The blue vertices form a so-called (5,3) near-codeword.



### Near-Codewords (Part 2)

Example: a [155, 64, 20] binary linear code by Tanner.



Heuristic why near-codewords are bad for MPI decoding: the canonical completion w.r.t. the set of blue vertices gives a pseudo-codeword which is "bad" itself or is a good starting point for searching "bad" pseudo-codewords in the fundamental cone.



### Near-Codewords (Part 2)

Example: a [155, 64, 20] binary linear code by Tanner.



Heuristic why near-codewords are bad for MPI decoding: the canonical completion w.r.t. the set of blue vertices gives a pseudo-codeword which is "bad" itself or is a good starting point for searching "bad" pseudo-codewords in the fundamental cone. Closely related notions: trapping sets, absorption sets.

# The fundamental polytope in various contexts







Finite-length analysis of iterative decoding based on graph covers







Finite-length analysis of iterative decoding based on graph covers











(Koetter/Li/Vontobel/Walker, ITW2004)







