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Overview of Talk

Communications setup

Linear programming (LP) decoding

Pseudo-codeword spectra

Graph-cover interpretation of pseudo-codewords

Influence of redundant rows in the parity-check matrix and of

cycles in the Tanner graph

Pseudo-codwords and the edge zeta function

Canonical completion construction

LP decoding thresholds for the binary symmetric channel (BSC)

Note: see appendices for more details.
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0

[bits / channel use]

capacity Crate R

A channel is characterized by a number C called the capacity.

A code is characterized by a number R called the rate.

If R < C: there are codes, encoders, and decoders such that

arbitrarily low error probabilities can be guaranteed (as long as one

allows arbitrarily long codes).

Shannon’s proof was though non-constructive, i.e. it was not clear

at all how to obtain specific well-performing finite-length codes

that possess efficient encoders and decoders.
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“Traditional” vs. “Modern”
Coding and Decoding

”Traditional”

”Modern”

Code design Decoding

etc.

Reed-Solomon codes Berlekamp-Massey decoder

etc.

Codes on Graphs

(LDPC/Turbo codes, etc.)

Iterative decoding

LP decoding

Message-passing



Communication Model (Part 1)

Channel Channel
DecodingCoding

SinkDMS Channel
XU Y X̂ Û
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Channel Channel
DecodingCoding

SinkDMS Channel
XU Y X̂ Û

Information word: u = (u1, . . . , uk) ∈ Uk

Sent codeword: x = (x1, . . . , xn) ∈ C ⊆ X n

Received word: y = (y1, . . . , yn) ∈ Yn

Decoding: Based on y we would like to estimate the transmitted

codeword x̂ or the information word û.

Depending on what criterion we optimize, we obtain different decoding

algorithms.
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Channel Channel
DecodingCoding

SinkBSS Channel
XU Y X̂ Û

Min. the block error prob. results in block-wise MAP decoding

ûblock
MAP(y) = argmax

u∈Uk

PU|Y(u|y) = argmax
u∈Uk

PU,Y(u,y).

This can also be written as

x̂block
MAP(y) = argmax

x∈Xn

PX|Y(x|y) = argmax
x∈Xn

PX,Y(x,y).

If all codewords are equally likely then

x̂block
MAP(y) = argmax

x∈Xn

PX(x)PY|X(y|x) = argmax
x∈C

PY|X(y|x) , x̂block
ML (y).
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Linear Code Representations

Image representation (based on generator matrix G):

C =
{
x ∈ Fn

∣
∣ there exists u ∈ Fk such that x = u · G

}
.

Kernel representation (based on parity-check matrix H):

C =
{
x ∈ Fn

∣
∣ x · HT = 0

}
.
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Linear Code Representations (Example 2)

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







Tanner / factor graph representation:

fXOR(1)X2

X1

X3

X4

X5

fXOR(2)

fXOR(3)

Note: in contrast to Example 1, this Tanner graph has cycles.
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the solution of a linear program
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For memoryless channels, block-wise ML decoding of a binary code can

be written as a linear program.

x̂block
ML (y) = arg max

x∈C
PY|X(y|x) = arg min

x∈C

n∑

i=1

xiλi,

where

λi , λi(yi) , log
PY |X(yi|0)

PY |X(yi|1)
.
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ML Decoding as an LP

x̂block
ML (y) = arg min

x∈conv(C)

n∑

i=1

xiλi,

This is a linear program.

However, the
number of variables / equalities / inequalities

needed to describe the polytope conv(C) is (usually)
exponential in n.
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Relaxing the Previous LP

arg min
x∈conv (C)

n∑

i=1

λixi

is replaced by

arg min
x∈relax(conv (C))

n∑

i=1

λixi

Desirable features:

old vertices are also vertices in relaxation;

relaxation has simple description.
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A Interesting Relaxation

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒ C1

⇒ C2

⇒ C3

⇒ conv(C1)

⇒ conv(C2)

⇒ conv(C3)

⇒ C =

m⋂

j=1

Cj ⇒ P(H)=

m⋂

j=1

conv(Cj)

︸ ︷︷ ︸

relaxation
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Block-wise ML Decoding
vs. LP Decoding

Block-wise ML decoding:

x̂block
ML (y) = arg min

x∈conv(∩m
j=1Cj)

n∑

i=1

xiλi.

LP decoding:

ω̂LP(y) = arg min
ω∈∩m

j=1 conv(Cj)

n∑

i=1

ωiλi.

The above choice of relax(conv (C)) was suggested by

[Feldman/Wainwright/Karger:03/05]. (Here, Cj is the set of vectors

that satisfy only the parity-check given by the j-th row of H.)
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Fundamental Polytope / Cone

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒ conv(C1)

⇒ conv(C2)

⇒ conv(C3)

⇒ conic(C1)

⇒ conic(C2)

⇒ conic(C3)

⇒ P(H)=
m⋂

j=1

conv(Cj)

︸ ︷︷ ︸

Fundamental polytope

⇒ K(H)=
m⋂

j=1

conic(Cj)

︸ ︷︷ ︸

Fundamental cone

0

FP

0

FP
FC
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Fundamental Polytope / Cone

Definitions:

Vectors in the fundamental polytope are called pseudo-codewords.

(Sometimes only the vertices of the fundamental polytope are

called pseudo-codewords.)

Vectors in the fundamental cone are also called pseudo-codewords.

Edges of the fundamental polytope/cone through origin are called

minimal pseudo-codewords.

Very important: the fundamental polytope is a function of the

parity-check matrix representing a code — differrent parity-check

matrices for the same code can yield different fundamental polytopes.
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Consider the PG(2,2)-based [7, 3, 4] binary linear code.

Here is its minimal pseudo-codeword spectrum:
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Pseudo-Codeword Spectra
Consider the EG(2,4)-based [15, 7, 5] binary linear code.

Here are some minimal pseudo-codeword spectra for different parity-check matrices of this code:
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Pseudo-Codeword Spectra

Consider the PG(2,4)-based [21, 11, 6] binary linear code.
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Pseudo-Codeword Spectra

Some remarks:

Haley / Grant paper (ISIT 2005) presented a class of LDPC codes

where the minimal BEC pseudo-weight grows with growing

block length,

but where the minimual AWGNC pseudo-weight is bounded

from above.

⇒ It is important which channel is used!

Chertkov / Stepanov paper (ISIT 2007) presented an intesting

heuristic for approximating the pseudo-weight spectra of minimal

codewords for a given code.
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Graph Covers (Part 1)

original graph
sample of possible
double covers of

the original graph

Definition: A double cover of a graph is . . .

Note: the above graph has 2! · 2! · 2! · 2! · 2! = 32 double covers.



Graph Covers (Part 2)

original graph double cover of triple cover of
(a possible)

the original graph the original graph

(a possible)

· · ·

Besides double covers, a graph also has many triple covers, quadruple

covers, quintuple covers, etc.



Graph Covers (Part 3)

original graph
(possible)

m-fold cover of
original graph

· · ·

· · · · · ·

· · ·

m

π2 π3

π1

π5

π4

An m-fold cover is also called a cover of degree m. Do not confuse this

degree with the degree of a vertex!

Note: there are many possible m-fold covers of a graph.
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Codewords in Graph Covers (Part 1)

We can also consider covers of Tanner/factor graphs. Here is e.g. a

possible double cover of some Tanner/factor graph.

X1

X3

X7X2

X5

X6

X4
X′′

1 X′
1

X′′
2

X′
2

X′
3

X′′
3

X′′
4

X′
4

X′
5

X′′
5

X′
7

X′′
7

X′′
6X′

6

Base factor/Tanner graph

of a length-7 code

Possible double cover of

the base Tanner/factor graph

Let us study the codes defined by the graph covers of the base

Tanner/factor graph.
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Obviously, any codeword in the base Tanner/factor graph can be lifted

to a codeword in the double cover of the base Tanner/factor graph.
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(1, 1, 1, 0, 0, 0, 0) (1:1, 1:1, 1:1, 0:0, 0:0, 0:0, 0:0)



Codewords in Graph Covers (Part 3)

But in the double cover of the base Tanner/factor graph there are also

codewords that are not liftings of codewords in the base Tanner/factor

graph!
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Codewords in Graph Covers (Part 3)

But in the double cover of the base Tanner/factor graph there are also

codewords that are not liftings of codewords in the base Tanner/factor

graph!
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? (1:0, 1:0, 1:0, 1:1, 1:0, 1:0, 0:1)
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Codewords in Graph Covers (Part 4)

Theorem:

Let P , P(H) be the fundamental polytope of a parity-check

matrix H.

Let P ′ be the set of all vectors obtained through codewords in

finite covers.

Then, P ′ is dense in P , i.e.

P ′ = P ∩ Qn

P = closure(P ′).

Moreover, note that all vertices of P are vectors with rational entries

and are therefore also in P ′.



Influence

of redundant rows in the parity-check matrix

and of cycles in the Tanner graph
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If the support of the blue and the green line coincide in at least two position then we have

conv(C1) ∩ conv(C2) ⊇ conv(C1) ∩ conv(C2) ∩ conv(C12).
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Tanner Graphs
with/without Four-Cycles

Proposition: It seems to be favorable to have no four-cycles in the

Tanner graph: “we get some inequalities for free!”

Note: this argument can be easily extended to Tanner graphs with no

six-cycles, no eight-cycles, etc.



Obtaining tighter Relaxations

Let the relaxation relax(C) of C be the set of all vectors ω ∈ R5 that

fulfill three conditions:

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒

ω ∈ conv(C1)

ω ∈ conv(C2)

ω ∈ conv(C3)

Therefore,

relax(C) , conv(C1) ∩ conv(C2) ∩ conv(C3).

How well can we do by adding more (redundand) lines to the

parity-check matrix?



Obtaining tighter Relaxations (Part 2)

What about taking a parity-check matrix H′ that contains all the

non-zero codewords from the dual code?

H
′ =



















1 1 1 0 0

0 1 0 1 1

0 0 1 1 1

1 0 1 1 1

1 1 0 1 1

0 1 1 0 0

1 0 0 0 0



















⇒

ω ∈ conv(C1)

ω ∈ conv(C2)

ω ∈ conv(C3)

ω ∈ conv(C12)

ω ∈ conv(C13)

ω ∈ conv(C23)

ω ∈ conv(C123)

relax′(C) , conv(C1) ∩ conv(C2) ∩ conv(C3) ∩ conv(C12)∩

conv(C13) ∩ conv(C23) ∩ conv(C123).



Obtaining tighter Relaxations (Part 3)

Translating a theorem from matroid theory we get the following result:

Theorem (Seymour 1981) We have

relax′(C) = conv(C)

if and only if there is no way to shorten and puncture C such that we

get the codes F ∗
7 , M(K5), or R10.

F ∗
7 : [7, 3, 4] code

M(K5): [10, 6, 3] code

R10: [10, 5, 4] code



Pseudo-codwords and the edge zeta function



Tanner/Factor Graph of a Cycle Code

Cycle codes are codes which have a Tanner/factor graph where all bit

nodes have degree two. (Equivalently, the parity-check matrix has two

ones per column.)

Example:
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Tanner/Factor Graph of a Cycle Code

Cycle codes are called cycle codes because codewords correspond to

simple cycles (or to the symmetric difference set of simple cycles) in the

Tanner/factor graph.

Example:

X2

X1

X3

X4

X5

X6

X7

X1

X2

X3

X4

X7

X5

X6

Tanner/factor graph
Corresponding

normal factor graph



The Edge Zeta Function of a Graph

Definition (Hashimoto, see also Stark/Terras):

e1

e2

e3

e4

e7

e5

e6

Here: Γ = (e1, e2, e3)

Let Γ be a path in a graph X with

edge-set E; write

Γ = (ei1 , . . . , eik)

to indicate that Γ begins with the edge

ei1 and ends with the edge eik .



The Edge Zeta Function of a Graph

Definition (Hashimoto, see also Stark/Terras):

e1

e2

e3

e4

e7

e5

e6

Here: Γ = (e1, e2, e3)

Let Γ be a path in a graph X with

edge-set E; write

Γ = (ei1 , . . . , eik)

to indicate that Γ begins with the edge

ei1 and ends with the edge eik .

u1

u2

u3

u4

u7

u5

u6

Here: g(Γ) = u1u2u3

The monomial of Γ is given by

g(Γ) , ui1 · · · uik ,

where the ui’s are indeterminates.



The Edge Zeta Function of a Graph

Definition (Hashimoto, see also Stark/Terras):

The edge zeta function of X is defined to be the power series

ζX(u1, . . . , un) ∈ Z[[u1, . . . , un]]

given by

ζX(u1, . . . , un) =
∏

[Γ]∈A(X)

1

1 − g(Γ)
,

where A(X) is the collection of equivalence classes of backtrackless,

tailless, primitive cycles in X.

Note: unless X contains only one cycle, the set A(X) will be countably

infinite.



The Edge Zeta Function of a Graph

Theorem (Bass):

The edge zeta function ζX(u1, . . . , un) is a rational function.

More precisely, for any directed graph ~X of X, we have

ζX(u1, . . . , un) =
1

det
(

I − UM( ~X)
) =

1

det
(

I − M( ~X)U
)

where

I is the identity matrix of size 2n,

U = diag(u1, . . . , un, u1, . . . , un) is a diagonal matrix of

indeterminants.

M( ~X) is a 2n × 2n matrix derived from some directed graph

version ~X of X.



Relationship Pseudo-Codewords
and Edge Zeta Function (Part 1: Theorem)

Theorem:

Let C be a cycle code defined by a parity-check matrix H having

normal graph N , N(H).

Let n = n(N) be the number of edges of N .

Let ζN (u1, . . . , un) be the edge zeta function of N .

Then

the monomial up1

1 . . . upn
n has a nonzero coefficient

in the Taylor series expansion of ζN

if and only if

the corresponding exponent vector (p1, . . . , pn)

is an unscaled pseudo-codeword for C.



Relationship Pseudo-Codewords
and Edge Zeta Function (Part 2: Example)

u1

u2

u3

u4

u7

u5

u6

This normal graph N has the following inverse edge zeta function:

ζN (u1, . . . , u7) =
1

det(I14 − UM)

=
1

1 − 2u1u2u3 + u2
1u

2
2u

2
3 − 2u5u6u7 + 4u1u2u3u5u6u7 − 2u2

1u
2
2u

2
3u5u6u7

−4u1u2u3u
2
4u5u6u7 + 4u2

1u
2
2u

2
3u

2
4u5u6u7 + u2

5u
2
6u

2
7 − 2u1u2u3u

2
5u

2
6u

2
7

+u2
1u

2
2u

2
3u

2
5u

2
6u

2
7 + 4u1u2u3u

2
4u

2
5u

2
6u

2
7 − 4u2

1u
2
2u

2
3u

2
4u

2
5u

2
6u

2
7



Relationship Pseudo-Codewords
and Edge Zeta Function (Part 3: Example)

u1

u2

u3

u4

u7

u5

u6

The Taylor series exansion is

ζN (u1, . . . , u7)

= 1 + 2u1u2u3 + 3u2
1u

2
2u

2
3 + 2u5u6u7

+ 4u1u2u3u5u6u7 + 6u2
1u

2
2u

2
3u5u6u7

+ 4u1u2u3u
2
4u5u6u7 + 12u2

1u
2
2u

2
3u

2
4u5u6u7

+ · · ·

We get the following exponent vectors:
(0, 0, 0, 0, 0, 0, 0) codeword

(1, 1, 1, 0, 0, 0, 0) codeword

(2, 2, 2, 0, 0, 0, 0) pseudo-codeword (in Z-span)

(0, 0, 0, 0, 1, 1, 1) codeword

(1, 1, 1, 0, 1, 1, 1) codeword

(2, 2, 2, 0, 1, 1, 1) pseudo-codeword (in Z-span)

(1, 1, 1, 2, 1, 1, 1) pseudo-codeword (not in Z-span)

(2, 2, 2, 2, 1, 1, 1) pseudo-codeword (in Z-span)



The Newton Polytope of a Polynomial

p2

p1

Here: P (u1, u2)

= u0
1u

0
2 +3u1

1u
2
2 +4u3

1u
1
2−2u4

1u
5
2

Definition:

The Newton polytope of a

polynomial P (u1, . . . , un) in n

indeterminates is the convex hull

of the points in n-dimensional

space given by the exponent

vectors of the nonzero monomi-

als appearing in P (u1, . . . , un).

Similarly, we can associate a

polyhedron to a power series.



Characterizing the Fundamental Cone
Through the Zeta Function

Collecting the results from the previous slides we get:

Proposition: Let C be some cycle code with parity-check matrix H

and normal factor graph N(H).

The Newton polyhedron of the zeta function of N(H)

equals

the fundamental cone K(H).



The canonical completion



Trying to Construct a Codeword

0 1 2 3 4Tier:

2(
ℓ
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1)

2ℓ
−

1

2ℓ



Pseudo-Codewords:
the Canonical Completion

Example: [7, 4, 3] binary Hamming code.

Note that all checks have degree k = 4. ⇒ completion factor 1
k−1

= 1
3
.
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Example: [7, 4, 3] binary Hamming code.
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Note that all checks have degree k = 4. ⇒ completion factor 1
k−1

= 1
3
.



Pseudo-Codewords:
the Canonical Completion

Example: [7, 4, 3] binary Hamming code.
1

1/3

1/9

1/3

1/3

1/9
1/9

Note that all checks have degree k = 4. ⇒ completion factor 1
k−1

= 1
3
.



Pseudo-Codewords:
the Canonical Completion

1
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1
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1
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1
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1
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Pseudo-Codewords:
the Canonical Completion

1

1

1
k−1

1
(k−1)2

1
9

1
3

1
(k−1)ℓ

1
(k−1)ℓ−1

0 1 2 3 4Tier:

2(
ℓ
−

1)

2ℓ
−

1

2ℓ

The canonical completion for a (j = 3, k = 4)-regular LDPC code. On

check-regular graphs the (scaled) canonical completion always gives a

(valid) pseudo-codeword.



An Upper Bound on the Minimum
Pseudo-Weight based on Can. Compl.



An Upper Bound on the Minimum
Pseudo-Weight based on Can. Compl.

Theorem: Let C be a (j, k)-regular LDPC code with 3 ≤ j < k. Then

the minimum pseudo-weight is upper bounded by

wAWGNC
p,min (C) ≤ β′

j,k · n
βj,k ,

where

β′
j,k =

(
j(j − 1)

j − 2

)2

, βj,k =
log ((j − 1)2)

log
(
(j − 1)(k − 1)

)< 1.



An Upper Bound on the Minimum
Pseudo-Weight based on Can. Compl.

Theorem: Let C be a (j, k)-regular LDPC code with 3 ≤ j < k. Then

the minimum pseudo-weight is upper bounded by

wAWGNC
p,min (C) ≤ β′

j,k · n
βj,k ,

where

β′
j,k =

(
j(j − 1)

j − 2

)2

, βj,k =
log ((j − 1)2)

log
(
(j − 1)(k − 1)

)< 1.

Corollary: The minimum relative pseudo-weight for any sequence {Ci}

of (j, k)-regular LDPC codes of increasing length satisfies

lim
n→∞

(

wAWGNC
p,min (Ci)

n

)

= 0.



LP decoding thresholds for the BSC



The Binary Symmetric Channel (Part 1)
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The Binary Symmetric Channel (Part 1)

ε

ε

1 − ε

1 − ε

0

1

0

1

Let ε ∈ [0, 1]. The binary symmetric channel (BSC) with cross-over

probability ε is a discrete memoryless channel

with input alphabet X = {0, 1},

with output alphabet Y = {0, 1},

and with conditional probability mass function

PYi|Xi
(yi|xi) =







1 − ε (yi = xi)

ε (yi 6= xi)
.



The Binary Symmetric Channel (Part 2)
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The capacity for the BSC as a function of the cross-over probability ε is

CBSC = 1 − h2(ε),

where h2(ε) , −ε log2(ε) − (1 − ε) log2(1 − ε).



The Binary Symmetric Channel (Part 2)
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The capacity for the BSC as a function of the cross-over probability ε is

CBSC = 1 − h2(ε),

where h2(ε) , −ε log2(ε) − (1 − ε) log2(1 − ε).
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Assume that the channel is a BSC with cross-over probability ε.
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The Binary Symmetric Channel (Part 3)

Channel
Decoding

Channel
Encoding

SinkBSS Channel
XU Y X̂ Û

Assume that the channel is a BSC with cross-over probability ε.

Channel capacity:

Channel coding theorem

(Gallager’s random coding error exponent, etc.)

Converse to the channel coding theorem

(Fano’s inequality, etc.)

0 1/2
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The Binary Symmetric Channel (Part 3)

Channel
Decoding

Channel
Encoding

SinkBSS Channel
XU Y X̂ Û

Assume that the channel is a BSC with cross-over probability ε.

Channel capacity:

Channel coding theorem

(Gallager’s random coding error exponent, etc.)

Converse to the channel coding theorem

(Fano’s inequality, etc.)

0 1/2
εcap(R)

ε

Important: we are allowed to use the best available coding and decoding

schemes for a given rate R.



The Binary Symmetric Channel (Part 4)

Channel
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SinkBSS Channel
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Assume that the channel is a BSC with cross-over probability ε.

Additionally, assume that we put restrictions on the coding schemes

and/or on the decoding schemes.



The Binary Symmetric Channel (Part 4)

Channel
Decoding

Channel
Encoding

SinkBSS Channel
XU Y X̂ Û

Assume that the channel is a BSC with cross-over probability ε.

Additionally, assume that we put restrictions on the coding schemes

and/or on the decoding schemes.

⇒ Thresholds.

0 1/2
εcap(R)εthr(E)

ε



The Binary Symmetric Channel (Part 4)

Channel
Decoding

Channel
Encoding

SinkBSS Channel
XU Y X̂ Û

Assume that the channel is a BSC with cross-over probability ε.

Additionally, assume that we put restrictions on the coding schemes

and/or on the decoding schemes.

⇒ Thresholds.

0 1/2
εcap(R)

ε

εLB
thr(E) εUB

thr (E)
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Existence of LP Decoding Thresholds

A priori it is not clear for what families/ensembles of codes there

is an LP decoding threshold.

The tight connection between min-sum algorithm decoding and LP

decoding suggests that families/ensembles that have a threshold

under min-sum algorithm decoding also have a threshold under LP

decoding.

[Koetter:Vontobel:06]: there is an LP decoding threshold for

(wcol, wrow)-regular LDPC codes where 2 < wcol < wrow.



BSC: An Upper Bound
on the Threshold (Part 1)

Theorem:

Consider a family of (wcol, wrow)-regular codes of increasing block

length n.

Consider a BSC with cross-over probability ε.

In the limit n → ∞, if

ε >
1

wrow

then with probability 1 the LP decoder will not decode to the

transmitted codeword.
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on the Threshold (Part 3)

Theorem: Consider a family of codes where the minimal row-degree

goes to wmin
row (∞) when n → ∞ and a BSC with cross-over probability

ε. In the limit n → ∞, if

ε >
1

wmin
row (∞)

then with probability 1 the LP decoder will not decode to the

transmitted codeword.

Corollary: For any family of codes where wmin
row (n) grows unboundedly,

i.e. where

lim
n→∞

wmin
row (n) = ∞,

the above right-hand side expression goes to 0.
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Linear programming (LP) decoding:

ω̂ = arg min
ω∈P(H)

n∑

i=1

λiωi.

Assume that the zero codeword has been sent. LP

decoding does not decides for the all-zeros code-

word if there is a vector

ω ∈ K(H) \ {0}

such that

n∑

i=1

λiωi < 0.

0

FC
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on the Threshold (Proof)

Assume that we have a (wcol, wrow)-regular LDPC code.

Moreover, let ω ∈ Rn be a vector with the following entries:

ωi ,







1
wrow−1

if λi ≥ 0

1 if λi < 0
.

One can easily verify that ω ∈ K(H).

Note: this pseudo-codeword construction is inspired by the

canonical completion contruction.

In the rest of the proof, one shows for which ε this

pseudo-codeword leads to a decoding error (details omitted).
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0

[bits / channel use]

capacity Crate R

A channel is characterized by a number C called the capacity.

A code is characterized by a number R called the rate.

If R < C: there are codes, encoders, and decoders such that

arbitrarily low error probabilities can be guaranteed (as long as one

allows arbitrarily long codes).

Shannon’s proof was though non-constructive, i.e. it was not clear

at all how to obtain specific well-performing finite-length codes

that possess efficient encoders and decoders.
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“Traditional” vs. “Modern”
Coding and Decoding

”Traditional”

”Modern”

Code design Decoding

etc.

Reed-Solomon codes Berlekamp-Massey decoder

etc.

Codes on Graphs

(LDPC/Turbo codes, etc.)

Iterative decoding

LP decoding

Message-passing

In both “traditional” and “modern” coding theory, “structure” is an

important keyword. By imposing structural constraints

one usually loses somewhat in generality;

however, (mathematical) tools become available that can yield big

analytical and practical gains.
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SinkDMS Channel
XU Y X̂ Û

Information word: u = (u1, . . . , uk) ∈ Uk

Sent codeword: x = (x1, . . . , xn) ∈ C ⊆ X n

Received word: y = (y1, . . . , yn) ∈ Yn

Decoding: Based on y we would like to estimate the transmitted

codeword x̂ or the information word û.

Depending on what criterion we optimize, we obtain different decoding

algorithms.
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Channel Channel
DecodingCoding

SinkBSS Channel
XU Y X̂ Û

Min. the block error prob. results in block-wise MAP decoding

ûblock
MAP(y) = argmax

u∈Uk

PU|Y(u|y) = argmax
u∈Uk

PU,Y(u,y).

This can also be written as

x̂block
MAP(y) = argmax

x∈Xn

PX|Y(x|y) = argmax
x∈Xn

PX,Y(x,y).

If all codewords are equally likely then

x̂block
MAP(y) = argmax

x∈Xn

PX(x)PY|X(y|x) = argmax
x∈C

PY|X(y|x) , x̂block
ML (y).
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C =
{
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Binary Linear Codes (Part 2)

This means that x is a codeword if and only if x fulfills the following

two equations:

H =




1 1 1 0 0

0 1 0 1 1



 ⇒
x1 + x2 + x3 = 0 (mod 2)

x2 + x4 + x5 = 0 (mod 2)

In summary,

C =
{

(x1, x2, x3, x4, x5) ∈ F5
2

∣
∣
∣ H · xT = 0T (mod 2)

}

=






(x1, x2, x3, x4, x5) ∈ F5

2

∣
∣
∣
∣
∣
∣

x1 + x2 + x3 = 0 (mod 2)

x2 + x4 + x5 = 0 (mod 2)






.
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Binary Linear Codes (Part 3)

Defining the codes C1 and C2 where

C1=
{

(x1, x2, x3, x4, x5) ∈ F5
2

∣
∣
∣ x1 + x2 + x3 = 0 (mod 2)

}

,

C2=
{

(x1, x2, x3, x4, x5) ∈ F5
2

∣
∣
∣ x2 + x4 + x5 = 0 (mod 2)

}

,

the code C can be written as the intersection of C1 and C2:

C = C1 ∩ C2.
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For memoryless channels, block-wise ML decoding of a binary code can

be written as a linear program.

x̂block
ML (y) = arg max

x∈C
PY|X(y|x) = arg min

x∈C

n∑

i=1

xiλi,

where

λi , λi(yi) , log
PY |X(yi|0)

PY |X(yi|1)
.
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Derivation (we assume to have a memoryless channel):

arg max
x∈C

PY|X(y|x)

= arg max
x∈C

log
n∏

i=1

PYi|Xi
(yi|xi)

= arg max
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n∑

i=1

log PYi|Xi
(yi|xi)

= arg max
x∈C

n∑

i=1

(

xi log
PYi|Xi

(yi|1)

PYi|Xi
(yi|0)

+ log PYi|Xi
(yi|0)

)

= arg max
x∈C

n∑

i=1

xi(−λi) = arg min
x∈C

n∑

i=1

xiλi.



ML Decoding as an LP

arg min
x∈C

n∑

i=1

λixi

x(1)

x(5)

x
(2)

x(3)

x(4)

e.g.

C =
{

x
(1), . . . ,x(5)

}



ML Decoding as an LP

arg min
x∈C

n∑

i=1

λixi

arg min
x∈conv (C)

n∑

i=1

λixi

x(1)

x(5)

x
(2)

x(4)

x(3)

e.g.

C =
{

x
(1), . . . ,x(5)

}



ML Decoding as an LP

arg min
x∈C

n∑

i=1

λixi

∗
= arg min

x∈conv (C)

n∑

i=1

λixi

x(1)

x(5)

x
(2)

x(4)

x(3)

e.g.

C =
{

x
(1), . . . ,x(5)

}
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Linear Programs (LPs) (Part 1)

arg max
ω∈A

n∑

i=1

ciωi

ω
(1)

ω
(5)

ω
(2)

ω
(3)

ω
(4)

Because the cost function is linear and because A is a
polytope, one of the vertices of A is always in the solution
set.
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Linear Programs (LPs) (Part 2)

arg max
ω∈A

n∑

i=1

ciωi

ω2

c1

c2

ω1

ω
(5)

ω
(2)

ω
(4)

ω
(1)

ω
(5)

ω
(2)

ω
(3)

ω
(4) K⊥

2

K⊥
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K⊥
5 ω

(1)

ω
(3)
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1

ω
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2

ω
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3

ω
(4) + K⊥

4

ω
(5) + K⊥

5

ω
(1) + K⊥
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ML Decoding as an LP

x̂block
ML (y) = arg min

x∈conv(C)

n∑

i=1

xiλi,

This is a linear program.

However, the

number of variables / equalities / inequalities

needed to describe the polytope conv(C) is (usually) exponential in n.
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Relaxed Linear Programs (Part 2)

arg max
ω∈A

n∑

i=1

ciωi

is replaced by

arg max
ω∈A′

n∑

i=1

ciωi

ω2

ω1
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LP Decoding (Part 1)

ω̂
block
ML (y) = arg min

ω∈conv(C)

n∑

i=1

ωiλi.

A standard approach in optimization theory is then to relax the set

conv(C) to a set relax(conv(C)) whose description complexity is much

lower:

ω̂LP(y) = arg min
ω∈relax(conv(C))

n∑

i=1

ωiλi.
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Linear Programming Decoding (Part 5)

In our case this means that x is a codeword if and only if x fulfills the

following three equations:

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒

x1 + x2 + x3 = 0 (mod 2)

x2 + x4 + x5 = 0 (mod 2)

x3 + x4 + x5 = 0 (mod 2)

Therefore, C can be seen as the intersection of three codes

C = C1 ∩ C2 ∩ C3,

where C1 ,
{
x ∈ F5

2

∣
∣ h1x

T = 0 (mod 2)
}
,

C2 ,
{
x ∈ F5

2

∣
∣ h2x

T = 0 (mod 2)
}
,

C3 ,
{
x ∈ F5

2

∣
∣ h3x

T = 0 (mod 2)
}
.



Linear Programming Decoding (Part 6)

Let the relaxation relax(C) , relax(conv(C)) of C be the set of all

vectors ω ∈ R5 that fulfill three conditions:

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1









Linear Programming Decoding (Part 6)

Let the relaxation relax(C) , relax(conv(C)) of C be the set of all

vectors ω ∈ R5 that fulfill three conditions:

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒



Linear Programming Decoding (Part 6)

Let the relaxation relax(C) , relax(conv(C)) of C be the set of all

vectors ω ∈ R5 that fulfill three conditions:

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒

ω ∈ conv(C1)



Linear Programming Decoding (Part 6)

Let the relaxation relax(C) , relax(conv(C)) of C be the set of all

vectors ω ∈ R5 that fulfill three conditions:

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒

ω ∈ conv(C1)

ω ∈ conv(C2)



Linear Programming Decoding (Part 6)

Let the relaxation relax(C) , relax(conv(C)) of C be the set of all

vectors ω ∈ R5 that fulfill three conditions:

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒

ω ∈ conv(C1)

ω ∈ conv(C2)

ω ∈ conv(C3)



Linear Programming Decoding (Part 6)

Let the relaxation relax(C) , relax(conv(C)) of C be the set of all

vectors ω ∈ R5 that fulfill three conditions:

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒

ω ∈ conv(C1)

ω ∈ conv(C2)

ω ∈ conv(C3)

Therefore,

relax(conv(C))

This relaxation turns out to have many desirable properties. Note that

the points in P(H) are called pseudo-codewords.



Linear Programming Decoding (Part 6)

Let the relaxation relax(C) , relax(conv(C)) of C be the set of all

vectors ω ∈ R5 that fulfill three conditions:

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒

ω ∈ conv(C1)

ω ∈ conv(C2)

ω ∈ conv(C3)

Therefore,

relax(conv(C)) , conv(C1) ∩ conv(C2) ∩ conv(C3)
︸ ︷︷ ︸

.

This relaxation turns out to have many desirable properties. Note that

the points in P(H) are called pseudo-codewords.



Linear Programming Decoding (Part 6)

Let the relaxation relax(C) , relax(conv(C)) of C be the set of all

vectors ω ∈ R5 that fulfill three conditions:

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒

ω ∈ conv(C1)

ω ∈ conv(C2)

ω ∈ conv(C3)

Therefore,

relax(conv(C)) , conv(C1) ∩ conv(C2) ∩ conv(C3)
︸ ︷︷ ︸

Fundamental polytope P(H)

.

This relaxation turns out to have many desirable properties. Note that

the points in P(H) are called pseudo-codewords.



Linear Programming Decoding (Part 6)

Let the relaxation relax(C) , relax(conv(C)) of C be the set of all

vectors ω ∈ R5 that fulfill three conditions:

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒

ω ∈ conv(C1)

ω ∈ conv(C2)

ω ∈ conv(C3)

Therefore,

conv(C) ⊆ relax(conv(C)) , conv(C1) ∩ conv(C2) ∩ conv(C3)
︸ ︷︷ ︸

Fundamental polytope P(H)

.

This relaxation turns out to have many desirable properties. Note that

the points in P(H) are called pseudo-codewords.



Linear Programming Decoding (Part 6)

Let the relaxation relax(C) , relax(conv(C)) of C be the set of all

vectors ω ∈ R5 that fulfill three conditions:

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒

ω ∈ conv(C1)

ω ∈ conv(C2)

ω ∈ conv(C3)

Therefore,

C ⊂ conv(C) ⊆ relax(conv(C)) , conv(C1) ∩ conv(C2) ∩ conv(C3)
︸ ︷︷ ︸

Fundamental polytope P(H)

.

This relaxation turns out to have many desirable properties. Note that

the points in P(H) are called pseudo-codewords.
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vs. LP Decoding

Block-wise ML decoding:

x̂block
ML (y) = arg min

x∈conv(C)

n∑

i=1

xiλi.

LP decoding:

ω̂LP(y) = arg min
ω∈P(H)

n∑

i=1

ωiλi.



Block-wise ML Decoding
vs. LP Decoding

Block-wise ML decoding:

x̂block
ML (y) = arg min

x∈conv(∩m
j=1

Cj)

n∑

i=1

xiλi.

LP decoding:

ω̂LP(y) = arg min
ω∈∩m

j=1
conv(Cj)

n∑

i=1

ωiλi.



Fundamental Polytope

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒ C1

⇒ C2

⇒ C3

⇒ C =

m⋂

j=1

Cj



Fundamental Polytope

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒ C1

⇒ C2

⇒ C3

⇒ conv(C1)

⇒ conv(C2)

⇒ conv(C3)

⇒ C =

m⋂

j=1

Cj ⇒ P(H)=

m⋂

j=1

conv(Cj)
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Fundamental polytope

0

FP
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Fundamental Polytope / Cone (Part 1)

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒ conv(C1)

⇒ conv(C2)

⇒ conv(C3)

⇒ conic(C1)

⇒ conic(C2)

⇒ conic(C3)

⇒ P(H)=

m⋂

j=1

conv(Cj)

︸ ︷︷ ︸

Fundamental polytope

⇒ K(H)=

m⋂

j=1

conic(Cj)

︸ ︷︷ ︸

Fundamental cone

0

FP

0

FP
FC
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Convex Hull of Simple Codes (Part 1)

Let C be defined by the parity-check matrix

H =
(

1 1
)

.

Then

C =
{
(0, 0), (1, 1)

}

and

conv(C) =






ω ∈ [0, 1]2

∣
∣
∣
∣
∣
∣

−ω1+ω2 ≥ 0

+ω1−ω2 ≥ 0






,

where [0, 1] = {r ∈ R | 0 ≤ r ≤ 1}.



Convex Hull of Simple Codes (Part 2)

Let C be defined by the parity-check matrix

H =
(

1 1 1
)

.

Then

C =
{
(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)

}

and

conv(C) =







ω ∈ [0, 1]3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−ω1+ω2+ω3 ≥ 0

+ω1−ω2+ω3 ≥ 0

+ω1+ω2−ω3 ≥ 0

−ω1−ω2−ω3 ≥ −2







.



Conic Hull of Simple Codes (Part 1)

Let C be defined by the parity-check matrix

H =
(

1 1
)

.

Then

C =
{
(0, 0), (1, 1)

}

and

conic(C) =






ω ∈ R2

+

∣
∣
∣
∣
∣
∣

−ω1+ω2 ≥ 0

+ω1−ω2 ≥ 0






,

where R+ = {r ∈ R | r ≥ 0}.



Conic Hull of Simple Codes (Part 2)

Let C be defined by the parity-check matrix

H =
(

1 1 1
)

.

Then

C =
{
(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)

}

and

conic(C) =







ω ∈ R3
+

∣
∣
∣
∣
∣
∣
∣
∣

−ω1+ω2+ω3 ≥ 0

+ω1−ω2+ω3 ≥ 0

+ω1+ω2−ω3 ≥ 0







.



A Simple Code (Part 1)

Let us consider the length-3 code C defined by the parity-check matrix

H =







1 1 0

1 1 1

0 1 1







.

The code C can be written as C = C1 ∩ C2 ∩ C3 with

C1 =
{
(0, 0, 0), (1, 1, 0), (0, 0, 1), (1, 1, 1)

}

C2 =
{
(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)

}

C3 =
{
(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)

}



A Simple Code (Part 2)

The fundamental polytope is P(H) = conv(C1) ∩ conv(C2) ∩ conv(C3) with

conv(C1) = conv
“

˘

(0, 0, 0), (1, 1, 0), (0, 0, 1), (1, 1, 1)
¯

”

=

8

<

:

ω ∈ [0, 1]3

˛

˛

˛

˛

˛

˛

−ω1+ω2 ≥ 0

+ω1−ω2 ≥ 0

9

=

;

conv(C2) = conv
“

˘

(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)
¯

”

=

8

>

>

>

>

>

<

>

>

>

>

>

:

ω ∈ [0, 1]3

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

−ω1+ω2+ω3 ≥ 0

+ω1−ω2+ω3 ≥ 0

+ω1+ω2−ω3 ≥ 0

−ω1−ω2−ω3 ≥ −2

9

>

>

>

>

>

=

>

>

>

>

>

;

conv(C3) = conv
“

˘

(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)
¯

”

=

8

<

:

ω ∈ [0, 1]3

˛

˛

˛

˛

˛

˛

−ω2+ω3 ≥ 0

+ω2−ω3 ≥ 0

9

=

;



A Simple Code (Part 3)

ω1

ω3

(0, 0, 0)
ω1

ω3

(0, 0, 0)

(0, 0, 1)

(1, 1, 1)

(1, 1, 0) (1, 1, 0)

(1, 0, 1)

ω1

ω3

(0, 0, 0)
ω1

ω3

(0, 0, 0)

(1, 1, 1)

`

2
3
, 2

3
, 2

3

´

(1, 0, 0)

(0, 1, 1)

(0, 1, 1)

ω2 ω2

ω2 ω2

conv(C1) conv(C2)

conv(C3) P(H)



Pseudo-codewords and Tanner graphs



Tanner / Factor graphs

I2(x2, x3, x4)

I3(x4, x5, x6)

x1

x2

x3

x4

x5

x6

I1(x1, x2, x5)

Codeword indicator function:

I1(x1, x2, x5) · I2(x2, x3, x4) · I3(x4, x5, x6)

=
ˆ

(x1, x2, x5) ∈ C1

˜

·
ˆ

(x2, x3, x4) ∈ C2

˜

·
ˆ

(x4, x5, x6) ∈ C3

˜

Note: xi ∈ {0, 1}

H =

0

B

B

@

1 1 0 0 1 0

0 1 1 1 0 0

0 0 0 1 1 1

1

C

C

A



Pseudo-Codewords /
Fundamental Polytope

ω1

ω2

ω3

ω4

ω5

ω6

I3(x2, x3, x4)

I3(x4, x5, x6)

x1

x2

x3

x4

x5

x6

I3(x1, x2, x5) Î3(ω1, ω2, ω5)

Î3(ω2, ω3, ω4)

Î3(ω4, ω5, ω6)

Codeword indicator function:

I1(x1, x2, x5) · I2(x2, x3, x4) · I3(x4, x5, x6)

=
ˆ

(x1, x2, x5) ∈ C1

˜

·
ˆ

(x2, x3, x4) ∈ C2

˜

·
ˆ

(x4, x5, x6) ∈ C3

˜

Note: xi ∈ {0, 1}

Pseudo-codeword indicator function:

Î1(ω1, ω2, ω5) · Î2(ω2, ω3, ω4) · Î3(ω4, ω5, ω6)

=
ˆ

(ω1, ω2, ω5) ∈ conv(C1)
˜

·
ˆ

(ω2, ω3, ω4) ∈ conv(C2)
˜

·
ˆ

(ω4, ω5, ω6) ∈ conv(C3)
˜

Note: 0 ≤ ωi ≤ 1



Pseudo-Codewords /
Fundamental Cone

ω1

ω2

ω3

ω4

ω5

ω6

I3(x2, x3, x4)

I3(x4, x5, x6)

x1

x2

x3

x4

x5

x6

I3(x1, x2, x5) Î3(ω1, ω2, ω5)

Î3(ω2, ω3, ω4)

Î3(ω4, ω5, ω6)

Codeword indicator function:

I1(x1, x2, x5) · I2(x2, x3, x4) · I3(x4, x5, x6)

=
ˆ

(x1, x2, x5) ∈ C1

˜

·
ˆ

(x2, x3, x4) ∈ C2

˜

·
ˆ

(x4, x5, x6) ∈ C3

˜

Note: xi ∈ {0, 1}

Pseudo-codeword indicator function:

Î1(ω1, ω2, ω5) · Î2(ω2, ω3, ω4) · Î3(ω4, ω5, ω6)

=
ˆ

(ω1, ω2, ω5) ∈ conic(C1)
˜

·
ˆ

(ω2, ω3, ω4) ∈ conic(C2)
˜

·
ˆ

(ω4, ω5, ω6) ∈ conic(C3)
˜

Note: 0 ≤ ωi



Pseudo-Codewords /
Fundamental Cone
E.g.

ˆ

(ω1, ω2, ω5) ∈ conic(C1)
˜

= 1

if and only if

ω1 ≤ ω2 + ω5

ω2 ≤ ω1 + ω5

ω5 ≤ ω1 + ω2

ω1 ≥ 0

ω2 ≥ 0

ω3 ≥ 0

ω1

ω2

ω3

ω4

ω5

ω6

Î1(ω1, ω2, ω5)

Î2(ω2, ω3, ω4)

Î3(ω4, ω5, ω6)

Pseudo-codeword indicator function:

Î1(ω1, ω2, ω5) · Î2(ω2, ω3, ω4) · Î3(ω4, ω5, ω6)

=
ˆ

(ω1, ω2, ω5) ∈ conic(C1)
˜

·
ˆ

(ω2, ω3, ω4) ∈ conic(C2)
˜

·
ˆ

(ω4, ω5, ω6) ∈ conic(C3)
˜

Note: 0 ≤ ωi



Pseudo-codeword spectra



Pseudo-Codeword Spectra (Part 1)

Consider the PG(2,2)-based [7, 3, 4] binary linear code.

Here is its minimal pseudo-codeword spectrum:
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Pseudo-Codeword Spectra (Part 2)

Consider the EG(2,4)-based [15, 7, 5] binary linear code.

Here are some minimal pseudo-codeword spectra for different parity-check matrices of this code:
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Pseudo-Codeword Spectra (Part 3)

Consider the EG(2,4)-based [15, 7, 5] binary linear code. The following

plot shows upper and lower bounds on the word error rate of LP and

ML decoding.
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Pseudo-Codeword Spectra (Part 4)

Consider the EG(2,4)-based [15, 7, 5] binary linear code. The following

plot shows the word error rate for different decoding algorithms. (Note:

LP/ML WER curves for small WER can be obtained from bounds shown in the previous plot.)
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Pseudo-Codeword Spectra (Part 5)

Consider the PG(2,4)-based [21, 11, 6] binary linear code.

0 2 4 6 8 10 12 14 16 18 20
10

0

10
2

10
4

10
6

AWGNC pseudo−weight

N
um

be
r 

of
 m

in
im

al
 P

C
W

s

0 2 4 6 8 10 12 14 16 18 20
10

0

10
2

10
4

10
6

BSC pseudo−weight

N
um

be
r 

of
 m

in
im

al
 P

C
W

s

0 2 4 6 8 10 12 14 16 18 20
10

0

10
2

10
4

10
6

BEC pseudo−weight

N
um

be
r 

of
 m

in
im

al
 P

C
W

s



Pseudo-Codeword Spectra (Part 6)

Some remarks:

Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
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Some remarks:
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Pseudo-Codeword Spectra (Part 6)

Some remarks:

Haley / Grant paper (ISIT 2005) presented a class of LDPC codes

where the minimal BEC pseudo-weight grows with growing

block length,

but where the minimual AWGNC pseudo-weight is bounded

from above.

⇒ It is important which channel is used!

Chertkov / Stepanov paper (ISIT 2007) presented an intesting

heuristic for approximating the pseudo-weight spectra of minimal

codewords for a given code.



Graph-cover interpretation

of pseudo-codewords



Graph Covers (Part 1)

original graph
sample of possible
double covers of

the original graph

Definition: A double cover of a graph is . . .

Note: the above graph has 2! · 2! · 2! · 2! · 2! = 32 double covers.



Graph Covers (Part 2)

original graph double cover of triple cover of
(a possible)

the original graph the original graph

(a possible)

· · ·

Besides double covers, a graph also has many triple covers, quadruple

covers, quintuple covers, etc.



Graph Covers (Part 3)

original graph
(possible)

m-fold cover of
original graph

· · ·

· · · · · ·

· · ·

m

π2 π3

π1

π5

π4

An m-fold cover is also called a cover of degree m. Do not confuse this

degree with the degree of a vertex!

Note: there are many possible m-fold covers of a graph.



Codewords in Graph Covers (Part 1)

We can also consider covers of Tanner/factor graphs. Here is e.g. a

possible double cover of some Tanner/factor graph.

X1

X3

X7X2

X5

X6

X4

Base factor/Tanner graph

of a length-7 code



Codewords in Graph Covers (Part 1)

We can also consider covers of Tanner/factor graphs. Here is e.g. a

possible double cover of some Tanner/factor graph.

X1

X3

X7X2

X5

X6

X4
X′′

1 X′
1

X′′
2

X′
2

X′
3

X′′
3

X′′
4

X′
4

X′
5

X′′
5

X′
7

X′′
7

X′′
6X′

6

Base factor/Tanner graph

of a length-7 code

Possible double cover of

the base Tanner/factor graph



Codewords in Graph Covers (Part 1)

We can also consider covers of Tanner/factor graphs. Here is e.g. a

possible double cover of some Tanner/factor graph.

X1

X3

X7X2

X5

X6

X4
X′′

1 X′
1

X′′
2

X′
2

X′
3

X′′
3

X′′
4

X′
4

X′
5

X′′
5

X′
7

X′′
7

X′′
6X′

6

Base factor/Tanner graph

of a length-7 code

Possible double cover of

the base Tanner/factor graph

Let us study the codes defined by the graph covers of the base

Tanner/factor graph.



Codewords in Graph Covers (Part 2)

Obviously, any codeword in the base Tanner/factor graph can be lifted

to a codeword in the double cover of the base Tanner/factor graph.

X1

X3

X7X2

X5

X6

X4
⇒

(1, 1, 1, 0, 0, 0, 0)



Codewords in Graph Covers (Part 2)

Obviously, any codeword in the base Tanner/factor graph can be lifted

to a codeword in the double cover of the base Tanner/factor graph.

X1

X3

X7X2

X5

X6

X4
⇒ X′′

1 X′
1

X′′
2

X′
2

X′
3

X′′
3

X′′
4

X′
4

X′
5

X′′
5

X′
7

X′′
7

X′′
6X′

6

(1, 1, 1, 0, 0, 0, 0) (1:1, 1:1, 1:1, 0:0, 0:0, 0:0, 0:0)



Codewords in Graph Covers (Part 3)

But in the double cover of the base Tanner/factor graph there are also

codewords that are not liftings of codewords in the base Tanner/factor

graph!

X1

X3

X7X2

X5

X6

X4
?
⇐ X′′

1 X′
1

X′′
2

X′
2

X′
3

X′′
3

X′′
4

X′
4

X′
5

X′′
5

X′
7

X′′
7

X′′
6X′

6

? (1:0, 1:0, 1:0, 1:1, 1:0, 1:0, 0:1)



Codewords in Graph Covers (Part 3)

But in the double cover of the base Tanner/factor graph there are also

codewords that are not liftings of codewords in the base Tanner/factor

graph!

X1

X3

X7X2

X5

X6

X4
?
⇐ X′′

1 X′
1

X′′
2

X′
2

X′
3

X′′
3

X′′
4

X′
4

X′
5

X′′
5

X′
7

X′′
7

X′′
6X′

6

What about
(

1

2
,
1

2
,
1

2
,
2

2
,
1

2
,
1

2
,
1

2

)

? (1:0, 1:0, 1:0, 1:1, 1:0, 1:0, 0:1)
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Codewords in Graph Covers (Part 4)

Theorem:

Let P , P(H) be the fundamental polytope of a parity-check

matrix H.

Let P ′ be the set of all vectors obtained through codewords in

finite covers.

Then, P ′ is dense in P , i.e.

P ′ = P ∩ Qn

P = closure(P ′).

Moreover, note that all vertices of P are vectors with rational entries

and are therefore also in P ′.



The canonical completion



Trying to Construct a Codeword

0 1 2 3 4Tier:

2(
ℓ
−

1)

2ℓ
−

1

2ℓ



Pseudo-Codewords:
the Canonical Completion

Example: [7, 4, 3] binary Hamming code.

Note that all checks have degree k = 4. ⇒ completion factor 1
k−1

= 1
3
.
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Pseudo-Codewords:
the Canonical Completion

Example: [7, 4, 3] binary Hamming code.
1

1/31/3

1/3

Note that all checks have degree k = 4. ⇒ completion factor 1
k−1

= 1
3
.



Pseudo-Codewords:
the Canonical Completion

Example: [7, 4, 3] binary Hamming code.
1

1/3

1/9

1/3

1/3

1/9
1/9

Note that all checks have degree k = 4. ⇒ completion factor 1
k−1

= 1
3
.



Pseudo-Codewords:
the Canonical Completion

1

1

1
k−1

1
(k−1)2

1
9

1
3

1
(k−1)ℓ

1
(k−1)ℓ−1
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2(
ℓ
−

1)

2ℓ
−

1

2ℓ



Pseudo-Codewords:
the Canonical Completion

1

1

1
k−1

1
(k−1)2

1
9

1
3

1
(k−1)ℓ

1
(k−1)ℓ−1

0 1 2 3 4Tier:

2(
ℓ
−

1)

2ℓ
−

1

2ℓ

The canonical completion for a (j = 3, k = 4)-regular LDPC code. On

check-regular graphs the (scaled) canonical completion always gives a

(valid) pseudo-codeword.



An Upper Bound on the Minimum
Pseudo-Weight based on Can. Compl.



An Upper Bound on the Minimum
Pseudo-Weight based on Can. Compl.

Theorem: Let C be a (j, k)-regular LDPC code with 3 ≤ j < k. Then

the minimum pseudo-weight is upper bounded by

wAWGNC
p,min (C) ≤ β′

j,k · n
βj,k ,

where

β′
j,k =

(
j(j − 1)

j − 2

)2

, βj,k =
log ((j − 1)2)

log
(
(j − 1)(k − 1)

)< 1.



An Upper Bound on the Minimum
Pseudo-Weight based on Can. Compl.

Theorem: Let C be a (j, k)-regular LDPC code with 3 ≤ j < k. Then

the minimum pseudo-weight is upper bounded by

wAWGNC
p,min (C) ≤ β′

j,k · n
βj,k ,

where

β′
j,k =

(
j(j − 1)

j − 2

)2

, βj,k =
log ((j − 1)2)

log
(
(j − 1)(k − 1)

)< 1.

Corollary: The minimum relative pseudo-weight for any sequence {Ci}

of (j, k)-regular LDPC codes of increasing length satisfies

lim
n→∞

(

wAWGNC
p,min (Ci)

n

)

= 0.



Influence

of redundant rows in the parity-check matrix

and of cycles in the Tanner graph



A Tanner Graph with Four-Cycles
Observation:

H =

0

B

B

B

B

B

@

· · · · · · · · · · · · · · · · · · · · ·

· · · 1 1 1 0 0 · · ·

· · · 0 1 1 1 1 · · ·

· · · · · · · · · · · · · · · · · · · · ·

1

C

C

C

C

C

A

⇒

· · ·

ω ∈ conv(C1)

ω ∈ conv(C2)

· · ·



A Tanner Graph with Four-Cycles
Observation:

H =

0

B

B

B

B

B

@

· · · · · · · · · · · · · · · · · · · · ·

· · · 1 1 1 0 0 · · ·

· · · 0 1 1 1 1 · · ·

· · · · · · · · · · · · · · · · · · · · ·

1

C

C

C

C

C

A

⇒

· · ·

ω ∈ conv(C1)
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· · ·
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A Tanner Graph with Four-Cycles
Observation:

H =

0

B

B

B

B

B

@

· · · · · · · · · · · · · · · · · · · · ·

· · · 1 1 1 0 0 · · ·

· · · 0 1 1 1 1 · · ·

· · · · · · · · · · · · · · · · · · · · ·

1

C

C

C

C

C

A

⇒

· · ·

ω ∈ conv(C1)

ω ∈ conv(C2)

· · ·

H̃ =

0

B

B

B

B

B

B

B

@

· · · · · · · · · · · · · · · · · · · · ·

· · · 1 1 1 0 0 · · ·

· · · 0 1 1 1 1 · · ·

· · · 1 0 0 1 1 · · ·

· · · · · · · · · · · · · · · · · · · · ·

1

C

C

C

C

C

C

C

A

⇒

· · ·

ω ∈ conv(C1)

ω ∈ conv(C2)

ω ∈ conv(C12)

· · ·

If the support of the blue and the green line coincide in at least two position then we have

conv(C1) ∩ conv(C2) ⊇ conv(C1) ∩ conv(C2) ∩ conv(C12).



A Tanner Graph without Four-Cycles
Observation:
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C

C
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C
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· · ·

ω ∈ conv(C1)

ω ∈ conv(C2)

· · ·



A Tanner Graph without Four-Cycles
Observation:

H =

0

B

B

B

B

B

@

· · · · · · · · · · · · · · · · · · · · ·

· · · 1 1 1 0 0 · · ·

· · · 0 1 0 1 1 · · ·

· · · · · · · · · · · · · · · · · · · · ·

1

C

C

C

C

C

A

⇒

· · ·

ω ∈ conv(C1)

ω ∈ conv(C2)

· · ·

H̃ =

0

B

B

B

B

B

B

B

@

· · · · · · · · · · · · · · · · · · · · ·

· · · 1 1 1 0 0 · · ·

· · · 0 1 0 1 1 · · ·

· · · 1 0 1 1 1 · · ·

· · · · · · · · · · · · · · · · · · · · ·

1

C

C

C

C

C

C

C

A

⇒

· · ·

ω ∈ conv(C1)

ω ∈ conv(C2)

ω ∈ conv(C12)

· · ·



A Tanner Graph without Four-Cycles
Observation:

H =

0

B

B

B

B

B

@

· · · · · · · · · · · · · · · · · · · · ·

· · · 1 1 1 0 0 · · ·

· · · 0 1 0 1 1 · · ·

· · · · · · · · · · · · · · · · · · · · ·

1

C

C

C

C

C

A

⇒

· · ·

ω ∈ conv(C1)

ω ∈ conv(C2)

· · ·

H̃ =

0

B

B

B
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B

B

B
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· · · · · · · · · · · · · · · · · · · · ·

· · · 1 1 1 0 0 · · ·

· · · 0 1 0 1 1 · · ·

· · · 1 0 1 1 1 · · ·

· · · · · · · · · · · · · · · · · · · · ·

1

C

C

C

C

C

C

C

A

⇒

· · ·

ω ∈ conv(C1)

ω ∈ conv(C2)

ω ∈ conv(C12)

· · ·

If the support of the blue and the green line coincide in at most one position then we have

conv(C1) ∩ conv(C2) = conv(C1) ∩ conv(C2) ∩ conv(C12).



Tanner Graphs
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Proposition: It seems to be favorable to have no four-cycles in the

Tanner graph: “we get some inequalities for free!”



Tanner Graphs
with/without Four-Cycles

Proposition: It seems to be favorable to have no four-cycles in the

Tanner graph: “we get some inequalities for free!”

Note: this argument can be easily extended to Tanner graphs with no

six-cycles, no eight-cycles, etc.



Obtaining tighter Relaxations

Let the relaxation relax(C) of C be the set of all vectors ω ∈ R5 that

fulfill three conditions:

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







⇒

ω ∈ conv(C1)

ω ∈ conv(C2)

ω ∈ conv(C3)

Therefore,

relax(C) , conv(C1) ∩ conv(C2) ∩ conv(C3).

How well can we do by adding more (redundand) lines to the

parity-check matrix?



Obtaining tighter Relaxations (Part 2)

What about taking a parity-check matrix H′ that contains all the

non-zero codewords from the dual code?

H
′ =



















1 1 1 0 0

0 1 0 1 1

0 0 1 1 1

1 0 1 1 1

1 1 0 1 1

0 1 1 0 0

1 0 0 0 0



















⇒

ω ∈ conv(C1)

ω ∈ conv(C2)

ω ∈ conv(C3)

ω ∈ conv(C12)

ω ∈ conv(C13)

ω ∈ conv(C23)

ω ∈ conv(C123)

relax′(C) , conv(C1) ∩ conv(C2) ∩ conv(C3) ∩ conv(C12)∩

conv(C13) ∩ conv(C23) ∩ conv(C123).



Obtaining tighter Relaxations (Part 3)

Translating a theorem from matroid theory we get the following result:

Theorem (Seymour 1981) We have

relax′(C) = conv(C)

if and only if there is no way to shorten and puncture C such that we

get the codes F ∗
7 , M(K5), or R10.

F ∗
7 : [7, 3, 4] code

M(K5): [10, 6, 3] code

R10: [10, 5, 4] code



Pseudo-codwords and the edge zeta function



Tanner/Factor Graph of a Cycle Code

Cycle codes are codes which have a Tanner/factor graph where all bit

nodes have degree two. (Equivalently, the parity-check matrix has two

ones per column.)

Example:

X2

X1

X3

X4

X5

X6

X7

Tanner/factor graph
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Cycle codes are codes which have a Tanner/factor graph where all bit
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ones per column.)

Example:
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X5

X6

X7
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Tanner/Factor Graph of a Cycle Code

Cycle codes are called cycle codes because codewords correspond to

simple cycles (or to the symmetric difference set of simple cycles) in the

Tanner/factor graph.

Example:

X2

X1

X3

X4

X5

X6

X7

X1

X2

X3

X4

X7

X5

X6

Tanner/factor graph
Corresponding

normal factor graph



The Edge Zeta Function of a Graph

Definition (Hashimoto, see also Stark/Terras):

e1

e2

e3

e4

e7

e5

e6

Here: Γ = (e1, e2, e3)

Let Γ be a path in a graph X with

edge-set E; write

Γ = (ei1 , . . . , eik)

to indicate that Γ begins with the edge

ei1 and ends with the edge eik .



The Edge Zeta Function of a Graph

Definition (Hashimoto, see also Stark/Terras):

e1

e2

e3

e4

e7

e5

e6

Here: Γ = (e1, e2, e3)

Let Γ be a path in a graph X with

edge-set E; write

Γ = (ei1 , . . . , eik)

to indicate that Γ begins with the edge

ei1 and ends with the edge eik .

u1

u2

u3

u4

u7

u5

u6

Here: g(Γ) = u1u2u3

The monomial of Γ is given by

g(Γ) , ui1 · · · uik ,

where the ui’s are indeterminates.



The Edge Zeta Function of a Graph

Definition (Hashimoto, see also Stark/Terras):

The edge zeta function of X is defined to be the power series

ζX(u1, . . . , un) ∈ Z[[u1, . . . , un]]

given by

ζX(u1, . . . , un) =
∏

[Γ]∈A(X)

1

1 − g(Γ)
,

where A(X) is the collection of equivalence classes of backtrackless,

tailless, primitive cycles in X.

Note: unless X contains only one cycle, the set A(X) will be countably

infinite.



The Edge Zeta Function of a Graph

Theorem (Bass):

The edge zeta function ζX(u1, . . . , un) is a rational function.

More precisely, for any directed graph ~X of X, we have

ζX(u1, . . . , un) =
1

det
(

I − UM( ~X)
) =

1

det
(

I − M( ~X)U
)

where

I is the identity matrix of size 2n,

U = diag(u1, . . . , un, u1, . . . , un) is a diagonal matrix of

indeterminants.

M( ~X) is a 2n × 2n matrix derived from some directed graph

version ~X of X.



Relationship Pseudo-Codewords
and Edge Zeta Function (Part 1: Theorem)

Theorem:

Let C be a cycle code defined by a parity-check matrix H having

normal graph N , N(H).

Let n = n(N) be the number of edges of N .

Let ζN (u1, . . . , un) be the edge zeta function of N .

Then

the monomial up1

1 . . . upn
n has a nonzero coefficient

in the Taylor series expansion of ζN

if and only if

the corresponding exponent vector (p1, . . . , pn)

is an unscaled pseudo-codeword for C.



Relationship Pseudo-Codewords
and Edge Zeta Function (Part 2: Example)

u1

u2

u3

u4

u7

u5

u6

This normal graph N has the following inverse edge zeta function:

ζN (u1, . . . , u7) =
1

det(I14 − UM)

=
1

1 − 2u1u2u3 + u2
1u

2
2u

2
3 − 2u5u6u7 + 4u1u2u3u5u6u7 − 2u2

1u
2
2u

2
3u5u6u7

−4u1u2u3u
2
4u5u6u7 + 4u2

1u
2
2u

2
3u

2
4u5u6u7 + u2

5u
2
6u

2
7 − 2u1u2u3u

2
5u

2
6u

2
7

+u2
1u

2
2u

2
3u

2
5u

2
6u

2
7 + 4u1u2u3u

2
4u

2
5u

2
6u

2
7 − 4u2

1u
2
2u

2
3u

2
4u

2
5u

2
6u

2
7



Relationship Pseudo-Codewords
and Edge Zeta Function (Part 3: Example)

u1

u2

u3

u4

u7

u5

u6

The Taylor series exansion is

ζN (u1, . . . , u7)

= 1 + 2u1u2u3 + 3u2
1u

2
2u

2
3 + 2u5u6u7

+ 4u1u2u3u5u6u7 + 6u2
1u

2
2u

2
3u5u6u7

+ 4u1u2u3u
2
4u5u6u7 + 12u2

1u
2
2u

2
3u

2
4u5u6u7

+ · · ·

We get the following exponent vectors:
(0, 0, 0, 0, 0, 0, 0) codeword

(1, 1, 1, 0, 0, 0, 0) codeword

(2, 2, 2, 0, 0, 0, 0) pseudo-codeword (in Z-span)

(0, 0, 0, 0, 1, 1, 1) codeword

(1, 1, 1, 0, 1, 1, 1) codeword

(2, 2, 2, 0, 1, 1, 1) pseudo-codeword (in Z-span)

(1, 1, 1, 2, 1, 1, 1) pseudo-codeword (not in Z-span)

(2, 2, 2, 2, 1, 1, 1) pseudo-codeword (in Z-span)



The Newton Polytope of a Polynomial

p2

p1

Here: P (u1, u2)

= u0
1u

0
2 +3u1

1u
2
2 +4u3

1u
1
2−2u4

1u
5
2

Definition:

The Newton polytope of a

polynomial P (u1, . . . , un) in n

indeterminates is the convex hull

of the points in n-dimensional

space given by the exponent

vectors of the nonzero monomi-

als appearing in P (u1, . . . , un).

Similarly, we can associate a

polyhedron to a power series.



Characterizing the Fundamental Cone
Through the Zeta Function

Collecting the results from the previous slides we get:

Proposition: Let C be some cycle code with parity-check matrix H

and normal factor graph N(H).

The Newton polyhedron of the zeta function of N(H)

equals

the fundamental cone K(H).



Characterizing the Fundamental Cone
Through the Zeta Function

The inverse of the zeta function seems to give some valuable

information about the dual cone of the fundamental cone.

−15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

20

c1

c2

0

5

10

15

20



LP decoding thresholds for the BSC



The Binary Symmetric Channel (Part 1)
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Let ε ∈ [0, 1]. A simple model is e.g. the binary symmetric channel

(BSC) with cross-over probability ε. It is a DMC
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The Binary Symmetric Channel (Part 1)

ε

ε

1 − ε

1 − ε

0

1

0

1

Let ε ∈ [0, 1]. A simple model is e.g. the binary symmetric channel

(BSC) with cross-over probability ε. It is a DMC

with input alphabet X = {0, 1},

with output alphabet Y = {0, 1},

and with conditional probability mass function

PYi|Xi
(yi|xi) =







1 − ε (yi = xi)

ε (yi 6= xi)
.



The Binary Symmetric Channel (Part 2)
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The capacity for the BSC as a function of the cross-over probability ε is

CBSC = 1 − h2(ε),

where h2(ε) , −ε log2(ε) − (1 − ε) log2(1 − ε).



The Binary Symmetric Channel (Part 2)
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)

The capacity for the BSC as a function of the cross-over probability ε is

CBSC = 1 − h2(ε),

where h2(ε) , −ε log2(ε) − (1 − ε) log2(1 − ε).



The Binary Symmetric Channel (Part 3)

Channel
Decoding

Channel
Encoding

SinkBSS Channel
XU Y X̂ Û

Assume that the channel is a BSC with cross-over probability ε.
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Converse to the channel coding theorem



The Binary Symmetric Channel (Part 3)

Channel
Decoding

Channel
Encoding

SinkBSS Channel
XU Y X̂ Û

Assume that the channel is a BSC with cross-over probability ε.

Channel capacity:

Channel coding theorem

(Gallager’s random coding error exponent, etc.)

Converse to the channel coding theorem

(Fano’s inequality, etc.)

0 1/2
εcap(R)

ε



The Binary Symmetric Channel (Part 3)

Channel
Decoding

Channel
Encoding

SinkBSS Channel
XU Y X̂ Û

Assume that the channel is a BSC with cross-over probability ε.

Channel capacity:

Channel coding theorem

(Gallager’s random coding error exponent, etc.)

Converse to the channel coding theorem

(Fano’s inequality, etc.)

0 1/2
εcap(R)

ε

Important: we are allowed to use the best available coding and decoding

schemes for a given rate R.



The Binary Symmetric Channel (Part 4)

Channel
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Channel
Encoding

SinkBSS Channel
XU Y X̂ Û

Assume that the channel is a BSC with cross-over probability ε.

Additionally, assume that we put restrictions on the coding schemes

and/or on the decoding schemes.



The Binary Symmetric Channel (Part 4)

Channel
Decoding

Channel
Encoding

SinkBSS Channel
XU Y X̂ Û

Assume that the channel is a BSC with cross-over probability ε.

Additionally, assume that we put restrictions on the coding schemes

and/or on the decoding schemes.

⇒ Thresholds.

0 1/2
εcap(R)εthr(E)

ε



The Binary Symmetric Channel (Part 4)

Channel
Decoding

Channel
Encoding

SinkBSS Channel
XU Y X̂ Û

Assume that the channel is a BSC with cross-over probability ε.

Additionally, assume that we put restrictions on the coding schemes

and/or on the decoding schemes.

⇒ Thresholds.

0 1/2
εcap(R)

ε

εLB
thr(E) εUB

thr (E)
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is an LP decoding threshold.
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Existence of LP Decoding Thresholds

A priori it is not clear for what families/ensembles of codes there

is an LP decoding threshold.

The tight connection between min-sum algorithm decoding and LP

decoding suggests that families/ensembles that have a threshold

under min-sum algorithm decoding also have a threshold under LP

decoding.

[Koetter:Vontobel:06]: there is an LP decoding threshold for

(wcol, wrow)-regular LDPC codes where 2 < wcol < wrow.



BSC: An Upper Bound
on the Threshold (Part 1)

Theorem:

Consider a family of (wcol, wrow)-regular codes of increasing block

length n.

Consider a BSC with cross-over probability ε.

In the limit n → ∞, if

ε >
1

wrow

then with probability 1 the LP decoder will not decode to the

transmitted codeword.



BSC: An Upper Bound
on the Threshold (Part 2)
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BSC: An Upper Bound
on the Threshold (Part 2)
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BSC: An Upper Bound
on the Threshold (Part 3)

Theorem: Consider a family of codes where the minimal row-degree

goes to wmin
row (∞) when n → ∞ and a BSC with cross-over probability

ε. In the limit n → ∞, if

ε >
1

wmin
row (∞)

then with probability 1 the LP decoder will not decode to the

transmitted codeword.



BSC: An Upper Bound
on the Threshold (Part 3)

Theorem: Consider a family of codes where the minimal row-degree

goes to wmin
row (∞) when n → ∞ and a BSC with cross-over probability

ε. In the limit n → ∞, if

ε >
1

wmin
row (∞)

then with probability 1 the LP decoder will not decode to the

transmitted codeword.

Corollary: For any family of codes where wmin
row (n) grows unboundedly,

i.e. where

lim
n→∞

wmin
row (n) = ∞,

the above right-hand side expression goes to 0.



Not Deciding for
the All-Zeros Codeword (Part 1)

Linear programming (LP) decoding:

ω̂ = arg min
ω∈P(H)

n∑

i=1

λiωi.



Not Deciding for
the All-Zeros Codeword (Part 1)

Linear programming (LP) decoding:

ω̂ = arg min
ω∈P(H)

n∑

i=1

λiωi.

Assume that the zero codeword has been sent. LP

decoding does not decide for the all-zeros codeword

if there is a vector

ω ∈ P(H) \ {0}

such that

n∑

i=1

λiωi < 0.

0

FP



Not Deciding for
the All-Zeros Codeword (Part 2)

Linear programming (LP) decoding:

ω̂ = arg min
ω∈P(H)

n∑

i=1

λiωi.

Assume that the zero codeword has been sent. LP

decoding does not decides for the all-zeros code-

word if there is a vector

ω ∈ K(H) \ {0}

such that

n∑

i=1

λiωi < 0.

0

FC



Not Deciding for
the All-Zeros Codeword (Part 3)

Assume that we have a (wcol, wrow)-regular LDPC code.
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Moreover, let ω ∈ Rn be a vector with the following entries:

ωi ,







1
wrow−1

if λi ≥ 0

1 if λi < 0
.
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Not Deciding for
the All-Zeros Codeword (Part 3)

Assume that we have a (wcol, wrow)-regular LDPC code.

Moreover, let ω ∈ Rn be a vector with the following entries:

ωi ,







1
wrow−1

if λi ≥ 0

1 if λi < 0
.

One can easily verify that ω ∈ K(H).

So, if

0 >

n∑

i=1

λiωi =






n∑

i=1
λi≥0

λi




 ·

1

wrow − 1
+






n∑

i=1
λi<0

λi




 · 1

then LP decoding does not decide for the all-zeros codeword.



Not Deciding for
the All-Zeros Codeword: BSC (Part1)

For simplicity, assume that we are transmitting over a BSC with

crossover probability 0 ≤ ε < 1/2.

⇒ λi ∈ {±L} where L , log

(
1 − ε

ε

)

> 0.
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Not Deciding for
the All-Zeros Codeword: BSC (Part 2)

So, if

0 >

n∑

i=1

λiωi = L ·

(

(#not flipped)
1

wrow − 1
− (#flipped)

)

.

then LP decoding does not decide for the all-zeros codeword.

Upon normalization, the above condition reads

0 >
1

n

n∑

i=1

λiωi = L ·

(
(#not flipped)

n

1

wrow − 1
−

(#flipped)

n

)

.



Not Deciding for
the All-Zeros Codeword: BSC (Part 2)

So, if

0 >

n∑

i=1

λiωi = L ·

(

(#not flipped)
1

wrow − 1
− (#flipped)

)

.

then LP decoding does not decide for the all-zeros codeword.

Upon normalization, the above condition reads

0 >
1

n

n∑

i=1

λiωi = L ·

(
(#not flipped)

n

1

wrow − 1
−

(#flipped)

n

)

.

In the limit n → ∞, the above condition is with probability one equal

to the condition

0 > lim
n→∞

1

n

n∑

i=1

λiωi = L ·

(

(1 − ε)
1

wrow − 1
− ε

)

.



BSC: An Upper Bound
on the Threshold (Part 1)

Theorem:

Consider a family of (wcol, wrow)-regular codes of increasing block

length n.

Consider a BSC with cross-over probability ε.

In the limit n → ∞, if

ε >
1

wrow

then with probability 1 the LP decoder will not decode to the

transmitted codeword.
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i

ω-vector that we constructed before: note that the the assignment of a

value to ωi was based only on the value of λi:

ωi = f(λi) = f
(

{λi′}i′∈N
(0)
i

)
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0-Neighborhood-Based Bounds (Part 3)

ω-vector that we constructed before: note that the the assignment of a

value to ωi was based only on the value of λi:

ωi = f(λi) = f
(

{λi′}i′∈N
(0)
i

)

.

ωi ,







1
wrow−1

if λi ≥ 0

1 if λi < 0
.

One can easily check that ω ∈ K(H).



2-Neighborhood-Based Bounds
on the Threshold

i

Generalization:

ωi = f
(

{λi′}i′∈N
(2)
i

)

.
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a vector in K(H).



2-Neighborhood-Based Bounds
on the Threshold

i1

i2 i4

i3

We must take care of constrains: the map f
(

{λi′}i′∈N
(2)
i

)

has to yield

a vector in K(H).

⇒ We can set up a linear program that yields the best possible

threshold for a 2-neighborhood. (Graph automorphisms help in

simplifying that LP.)



2-Neighborhood-Based Bounds
on the Threshold
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Stopping sets, near-codewords, . . .
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Stopping Sets (Part 1)

x1 x2 x3 x4 x5 x6

0 0 ? ? ?

stuck!

0

0 ? 0 ? ? ?received values:

after first iteration:

Stopping set: S = {x4, x5, x6}.

The log-likelihood ratio vector for the above example is

λ = (+∞, 0,+∞, 0, 0, 0). Note that under LP decoding the vector

(0, 0, 0, 0, 0, 0) (which is a codeword) and the vector
(
0, 0, 0, 2

3
, 2

3
, 2

3

)

(which is a pseudo-codeword) have equal cost, i.e. cost zero.
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Theorem:

The support of any pseudo-codeword is a stopping set.

For any stopping set there exists at least one pseudo-codeword

such that its support equals that stopping set.
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Example: a [155, 64, 20] binary linear code by Tanner.
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Example: a [155, 64, 20] binary linear code by Tanner.

The blue vertices form a so-called (5, 3) near-codeword.
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Example: a [155, 64, 20] binary linear code by Tanner.

Heuristic why near-codewords are bad for MPI decoding: the canonical

completion w.r.t. the set of blue vertices gives a pseudo-codeword which

is “bad” itself or is a good starting point for searching “bad”

pseudo-codewords in the fundamental cone.



Near-Codewords (Part 2)

Example: a [155, 64, 20] binary linear code by Tanner.

Heuristic why near-codewords are bad for MPI decoding: the canonical

completion w.r.t. the set of blue vertices gives a pseudo-codeword which

is “bad” itself or is a good starting point for searching “bad”

pseudo-codewords in the fundamental cone.

Closely related notions: trapping sets, absorption sets.
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