Pseudo-Codewords: Fractional Vectors in Coding Theory

Pascal O. Vontobel Information Theory Research Group Hewlett-Packard Laboratories Palo Alto

BIRS Workshop, Banff, Alberta, Canada, August 3, 2009

© 2009 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Overview of Talk

- Communications setup
- Linear programming (LP) decoding
- Pseudo-codeword spectra
- Graph-cover interpretation of pseudo-codewords
- Influence of redundant rows in the parity-check matrix and of cycles in the Tanner graph
- Pseudo-codwords and the edge zeta function
- Canonical completion construction
- LP decoding thresholds for the binary symmetric channel (BSC)

Note: see appendices for more details.

Communication systems and Shannon's channel coding theorem

Communication System (Part 1)

Source

 Sink

Shannon (1948): it is a good idea to use channel codes!

Shannon (1948): it is a good idea to use channel codes!

• A channel is characterized by a number C called the capacity.

- A channel is characterized by a number C called the capacity.
- A code is characterized by a number R called the rate.

- A channel is characterized by a number C called the capacity.
- A code is characterized by a number R called the rate.
- If R < C: there are codes, encoders, and decoders such that arbitrarily low error probabilities can be guaranteed (as long as one allows arbitrarily long codes).

- A channel is characterized by a number C called the capacity.
- A code is characterized by a number R called the rate.
- If R < C: there are codes, encoders, and decoders such that arbitrarily low error probabilities can be guaranteed (as long as one allows arbitrarily long codes).
- Shannon's proof was though non-constructive, i.e. it was not clear at all how to obtain specific well-performing finite-length codes that possess efficient encoders and decoders.

"Traditional" vs. "Modern" Coding and Decoding

"Traditional" vs. "Modern" Coding and Decoding

"Traditional" vs. "Modern" Coding and Decoding

Information word:

Sent codeword:

Received word:

 $\mathbf{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$ $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C} \subseteq \mathcal{X}^n$ $\mathbf{y} = (y_1, \dots, y_n) \in \mathcal{Y}^n$

Information word:

Sent codeword:

Received word:

 $\mathbf{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$ $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C} \subseteq \mathcal{X}^n$ $\mathbf{y} = (y_1, \dots, y_n) \in \mathcal{Y}^n$

Decoding: Based on y we would like to estimate the transmitted codeword $\hat{\mathbf{x}}$ or the information word $\hat{\mathbf{u}}$.

Information word: $\mathbf{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$ Sent codeword: $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C} \subseteq \mathcal{X}^n$ Received word: $\mathbf{y} = (y_1, \dots, y_n) \in \mathcal{Y}^n$

Decoding: Based on y we would like to estimate the transmitted codeword $\hat{\mathbf{x}}$ or the information word $\hat{\mathbf{u}}$.

Depending on what criterion we optimize, we obtain different decoding algorithms.

• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$

• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$

• This can also be written as

$$\hat{\mathbf{x}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{x}\in\mathcal{X}^n} P_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{x}\in\mathcal{X}^n} P_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}).$$

• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$

This can also be written as

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y})$$

• If all codewords are equally likely then

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}}(\mathbf{x}) P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \underset{\mathbf{x}\in\mathcal{C}}{\operatorname{argmax}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$$

• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$

• This can also be written as

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}).$$

• If all codewords are equally likely then

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}}(\mathbf{x}) P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \underset{\mathbf{x}\in\mathcal{C}}{\operatorname{argmax}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) \triangleq \hat{\mathbf{x}}_{\text{ML}}^{\text{block}}(\mathbf{y})$$

Linear Code Representations

Image representation:

Kernel representation:

Linear Code Representations

Image representation (based on generator matrix G):

 $\mathcal{C} = \left\{ \mathbf{x} \in \mathbb{F}^n \mid \text{there exists } \mathbf{u} \in \mathbb{F}^k \text{ such that } \mathbf{x} = \mathbf{u} \cdot \mathbf{G} \right\}.$

Kernel representation:

Linear Code Representations

Image representation (based on generator matrix G):

$$\mathcal{C} = \left\{ \mathbf{x} \in \mathbb{F}^n \mid \text{there exists } \mathbf{u} \in \mathbb{F}^k \text{ such that } \mathbf{x} = \mathbf{u} \cdot \mathbf{G} \right\}.$$

Kernel representation (based on parity-check matrix H):

$$\mathcal{C} = \left\{ \mathbf{x} \in \mathbb{F}^n \mid \mathbf{x} \cdot \mathbf{H}^\mathsf{T} = \mathbf{0} \right\}.$$

Linear Code Representations (Example 1)

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \qquad \mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Linear Code Representations (Example 1)

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \qquad \mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Tanner / factor graph representation:

Linear Code Representations (Example 1)

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \qquad \mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Tanner / factor graph representation:

Linear Code Representations (Example 2) $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$

Linear Code Representations (Example 2) $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$

Tanner / factor graph representation:

Linear Code Representations (Example 2) $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$

Tanner / factor graph representation:

Linear Code Representations (Example 2) $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$ Tanner / factor graph representation: X_{1} $f_{\rm XOR(1)}$ X_{2} X_3 $f_{\rm XOR(2)}$ X_4

Note: in contrast to Example 1, this Tanner graph has cycles.

 X_5

 $f_{\rm XOR(3)}$

Expressing a decoder as the solution of a linear program

ML Decoding as an *Integer* LP

For memoryless channels, block-wise ML decoding of a binary code can be written as a linear program.

 $\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$

ML Decoding as an *Integer* LP

For memoryless channels, block-wise ML decoding of a binary code can be written as a linear program.

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \arg \min_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} x_{i} \lambda_{i},$$

ML Decoding as an *Integer* LP

For memoryless channels, block-wise ML decoding of a binary code can be written as a linear program.

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \arg \min_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} x_{i} \lambda_{i},$$

where

$$\lambda_i \triangleq \lambda_i(y_i) \triangleq \log \frac{P_{Y|X}(y_i|0)}{P_{Y|X}(y_i|1)}$$

ML Decoding as an LP

LABS^{hp}

 $\arg\min_{\mathbf{x}\in\mathrm{conv}\,(C)}\sum_{i=1}\lambda_i x_i$

 $\stackrel{*}{=} \arg \min_{\mathbf{x} \in \operatorname{conv}(C)} \sum_{i=1}^{i} \lambda_i x_i$

e.g. $\mathcal{C} = \left\{ \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(5)} \right\}$

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_i \lambda_i,$$

This is a linear program.

$$\mathbf{\hat{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_i \lambda_i,$$

This is a linear program.

However, the number of variables / equalities / inequalities needed to describe the polytope $\operatorname{conv}(\mathcal{C})$ is (usually) exponential in n.

n $\arg\min_{\mathbf{x}\in \operatorname{conv}(C)}\sum_{i=1}^{\lambda_i x_i}$

is replaced by

$$\arg\min_{\mathbf{x}\in \operatorname{relax}(\operatorname{conv}(C))}\sum_{i=1}^n \lambda_i x_i$$

is replaced by

$$\arg\min_{\mathbf{x}\in \operatorname{relax}(\operatorname{conv}(C))}\sum_{i=1}^n \lambda_i x_i$$

is replaced by

$$\arg\min_{\mathbf{x}\in \operatorname{relax}(\operatorname{conv}(C))}\sum_{i=1}^n \lambda_i x_i$$

Desirable features:

Desirable features:

old vertices are also vertices in relaxation;

Desirable features:

- old vertices are also vertices in relaxation;
- relaxation has simple description.

A Interesting Relaxation

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \mathcal{C}_{1}$$
$$\Rightarrow \mathcal{C}_{2}$$
$$\Rightarrow \mathcal{C}_{3}$$

 $\Rightarrow \mathcal{C} = \bigcap_{j=1}^{m} \mathcal{C}_j$

A Interesting Relaxation

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \xrightarrow{\Rightarrow} \mathcal{C}_1 \qquad \Rightarrow \operatorname{conv}(\mathcal{C}_1) \\ \Rightarrow \mathcal{C}_2 \qquad \Rightarrow \operatorname{conv}(\mathcal{C}_2) \\ \Rightarrow \mathcal{C}_3 \qquad \Rightarrow \operatorname{conv}(\mathcal{C}_3)$$

Block-wise ML decoding:

Block-wise ML decoding:

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_i \lambda_i.$$

Block-wise ML decoding:

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_i \lambda_i.$$

$$\hat{\boldsymbol{\omega}}_{\mathrm{LP}}(\mathbf{y}) = \arg\min_{\boldsymbol{\omega}\in\mathrm{relax}(\mathrm{conv}\,(C))} \sum_{i=1}^n \omega_i \lambda_i.$$

Block-wise ML decoding:

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}\left(\bigcap_{j=1}^{m}\mathcal{C}_{j}\right)} \sum_{i=1}^{n} x_{i}\lambda_{i}.$$

 \mathbf{n}

$$\hat{\boldsymbol{\omega}}_{\mathrm{LP}}(\mathbf{y}) = \arg\min_{\boldsymbol{\omega}\in\cap_{j=1}^m\operatorname{conv}(\mathcal{C}_j)} \sum_{i=1}^n \omega_i \lambda_i.$$

Block-wise ML decoding:

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}\left(\bigcap_{j=1}^{m}\mathcal{C}_{j}\right)} \sum_{i=1}^{n} x_{i}\lambda_{i}.$$

LP decoding:

$$\hat{\boldsymbol{\omega}}_{\mathrm{LP}}(\mathbf{y}) = \arg\min_{\boldsymbol{\omega}\in\cap_{j=1}^m\operatorname{conv}(\mathcal{C}_j)} \sum_{i=1}^n \omega_i \lambda_i.$$

The above choice of relax(conv(C)) was suggested by [Feldman/Wainwright/Karger:03/05]. (Here, C_j is the set of vectors that satisfy only the parity-check given by the *j*-th row of **H**.) Fundamental Polytope / Cone $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \operatorname{conv}(\mathcal{C}_{2})$ $\Rightarrow \operatorname{conv}(\mathcal{C}_{3})$

Fundamental Polytope / Cone $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \operatorname{conv}(\mathcal{C}_{2})$ $\Rightarrow \operatorname{conv}(\mathcal{C}_{3})$

Definitions:

Definitions:

• Vectors in the fundamental polytope are called **pseudo-codewords**.

Definitions:

 Vectors in the fundamental polytope are called pseudo-codewords. (Sometimes only the vertices of the fundamental polytope are called pseudo-codewords.)

Definitions:

- Vectors in the fundamental polytope are called pseudo-codewords. (Sometimes only the vertices of the fundamental polytope are called pseudo-codewords.)
- Vectors in the fundamental cone are also called pseudo-codewords.

Definitions:

- Vectors in the fundamental polytope are called pseudo-codewords. (Sometimes only the vertices of the fundamental polytope are called pseudo-codewords.)
- Vectors in the fundamental cone are also called pseudo-codewords.
- Edges of the fundamental polytope/cone through origin are called minimal pseudo-codewords.

Definitions:

- Vectors in the fundamental polytope are called pseudo-codewords. (Sometimes only the vertices of the fundamental polytope are called pseudo-codewords.)
- Vectors in the fundamental cone are also called pseudo-codewords.
- Edges of the fundamental polytope/cone through origin are called minimal pseudo-codewords.

Very important: the fundamental polytope is a function of the parity-check matrix representing a code — differrent parity-check matrices for the same code can yield different fundamental polytopes.

Consider the PG(2,2)-based [7,3,4] binary linear code. Here is its minimal pseudo-codeword spectrum:

Consider the EG(2,4)-based [15, 7, 5] binary linear code.

Here are some minimal pseudo-codeword spectra for different parity-check matrices of this code:

Consider the PG(2,4)-based [21, 11, 6] binary linear code.

Some remarks:

• Haley / Grant paper (ISIT 2005) presented a class of LDPC codes

Some remarks:

Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
where the minimal BEC pseudo-weight grows with growing block length,

Some remarks:

- Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
 - where the minimal BEC pseudo-weight grows with growing block length,
 - but where the minimual AWGNC pseudo-weight is bounded from above.

Some remarks:

- Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
 - where the minimal BEC pseudo-weight grows with growing block length,
 - but where the minimual AWGNC pseudo-weight is bounded from above.
 - \Rightarrow It is important which channel is used!

Some remarks:

- Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
 - where the minimal BEC pseudo-weight grows with growing block length,
 - but where the minimual AWGNC pseudo-weight is bounded from above.
 - \Rightarrow It is important which channel is used!
- Chertkov / Stepanov paper (ISIT 2007) presented an intesting heuristic for approximating the pseudo-weight spectra of minimal codewords for a given code.

Graph-cover interpretation of pseudo-codewords

Graph Covers (Part 1)

Definition: A double cover of a graph is . . . Note: the above graph has $2! \cdot 2! \cdot 2! \cdot 2! \cdot 2! = 32$ double covers.

Graph Covers (Part 2)

Besides double covers, a graph also has many triple covers, quadruple covers, quintuple covers, etc.

Graph Covers (Part 3)

An *m*-fold cover is also called a cover of degree m. Do not confuse this degree with the degree of a vertex! Note: there are many possible *m*-fold covers of a graph.

We can also consider covers of Tanner/factor graphs. Here is e.g. a possible double cover of some Tanner/factor graph.

Base factor/Tanner graph of a length-7 code

We can also consider covers of Tanner/factor graphs. Here is e.g. a possible double cover of some Tanner/factor graph.

Base factor/Tanner graph of a length-7 code Possible double cover of the base Tanner/factor graph

We can also consider covers of Tanner/factor graphs. Here is e.g. a possible double cover of some Tanner/factor graph.

Base factor/Tanner graph of a length-7 code Possible double cover of the base Tanner/factor graph

 X_4''

Let us study the codes defined by the graph covers of the base Tanner/factor graph.

 X_5''

 X'_7

 $X'_6 \diamondsuit$

 $\oint X_6''$

Obviously, any codeword in the base Tanner/factor graph can be lifted to a codeword in the double cover of the base Tanner/factor graph.

(1, 1, 1, 0, 0, 0, 0)

Obviously, any codeword in the base Tanner/factor graph can be lifted to a codeword in the double cover of the base Tanner/factor graph.

(1, 1, 1, 0, 0, 0, 0) (1:1, 1:1, 1:1, 0:0, 0:0, 0:0, 0:0)

?

But in the double cover of the base Tanner/factor graph there are also codewords that are not liftings of codewords in the base Tanner/factor graph!

(1:0, 1:0, 1:0, 1:1, 1:0, 1:0, 0:1)

But in the double cover of the base Tanner/factor graph there are also codewords that are not liftings of codewords in the base Tanner/factor graph!

Theorem:

Theorem:

• Let $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$ be the fundamental polytope of a parity-check matrix \mathbf{H} .

Theorem:

- Let $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$ be the fundamental polytope of a parity-check matrix \mathbf{H} .
- Let *P*' be the set of all vectors obtained through codewords in finite covers.

Theorem:

- Let $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$ be the fundamental polytope of a parity-check matrix \mathbf{H} .
- Let *P*' be the set of all vectors obtained through codewords in finite covers.
- Then, \mathcal{P}' is dense in \mathcal{P} , i.e.

 $\mathcal{P}' = \mathcal{P} \cap \mathbb{Q}^n$ $\mathcal{P} = \text{closure}(\mathcal{P}').$

Theorem:

- Let $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$ be the fundamental polytope of a parity-check matrix \mathbf{H} .
- Let *P*' be the set of all vectors obtained through codewords in finite covers.
- Then, \mathcal{P}' is dense in \mathcal{P} , i.e.

 $\mathcal{P}' = \mathcal{P} \cap \mathbb{Q}^n$ $\mathcal{P} = \text{closure}(\mathcal{P}').$

Moreover, note that all vertices of \mathcal{P} are vectors with rational entries and are therefore also in \mathcal{P}' .

Influence

of redundant rows in the parity-check matrix

and of cycles in the Tanner graph

A Tanner Graph with Four-Cycles

Observation:

$$\mathbf{H} = \begin{pmatrix} \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots \\ \cdots & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix} \qquad \begin{array}{c} \cdots \\ \Rightarrow & \begin{array}{c} \omega \in \operatorname{conv}(\mathcal{C}_1) \\ \omega \in \operatorname{conv}(\mathcal{C}_2) \\ \cdots \end{array}$$

A Tanner Graph with Four-Cycles

Observation:

A Tanner Graph with Four-Cycles

Observation:

If the support of the blue and the green line coincide in at least two position then we have

 $\operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \supseteq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_{12}).$

A Tanner Graph without Four-Cycles

Observation:

$$\mathbf{H} = \begin{pmatrix} \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots \\ \cdots & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix} \qquad \begin{array}{c} \cdots \\ \Rightarrow & \begin{array}{c} \omega \in \operatorname{conv}(\mathcal{C}_1) \\ \omega \in \operatorname{conv}(\mathcal{C}_2) \\ \cdots \end{array}$$

A Tanner Graph without Four-Cycles

Observation:

A Tanner Graph without Four-Cycles

Observation:

If the support of the blue and the green line coincide in at most one position then we have

 $\operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) = \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_{12}).$

Tanner Graphs with/without Four-Cycles

Proposition: It seems to be favorable to have no four-cycles in the Tanner graph: "we get some inequalities for free!"

Tanner Graphs with/without Four-Cycles

Proposition: It seems to be favorable to have no four-cycles in the Tanner graph: "we get some inequalities for free!"

Note: this argument can be easily extended to Tanner graphs with no six-cycles, no eight-cycles, etc.

Obtaining tighter Relaxations

Let the relaxation $\operatorname{relax}(\mathcal{C})$ of \mathcal{C} be the set of all vectors $\omega \in \mathbb{R}^5$ that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \Rightarrow \qquad \mathbf{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \mathbf{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \mathbf{\omega} \in \operatorname{conv}(\mathcal{C}_3) \end{cases}$$

Therefore,

$$\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3).$$

How well can we do by adding more (redundand) lines to the parity-check matrix?

Obtaining tighter Relaxations (Part 2)

What about taking a parity-check matrix \mathbf{H}' that contains all the non-zero codewords from the dual code?

$$\mathbf{H}' = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{l} \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{1}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{12}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{13}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{23}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{23}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{123}) \end{array}$$

 $\operatorname{relax}'(\mathcal{C}) \triangleq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3) \cap \operatorname{conv}(\mathcal{C}_{12}) \cap \operatorname{conv}(\mathcal{C}_{13}) \cap \operatorname{conv}(\mathcal{C}_{23}) \cap \operatorname{conv}(\mathcal{C}_{123}).$

Obtaining tighter Relaxations (Part 3)

Translating a theorem from matroid theory we get the following result: **Theorem** (Seymour 1981) We have

 $\operatorname{relax}'(\mathcal{C}) = \operatorname{conv}(\mathcal{C})$

if and only if there is no way to shorten and puncture C such that we get the codes F_7^* , $M(K_5)$, or R_{10} .

F_{7}^{*} :	$\left[7,3,4 ight]$ code
$M(K_5)$:	[10,6,3] code
R_{10} :	$\left[10,5,4 ight]$ code

Pseudo-codwords and the edge zeta function

Tanner/Factor Graph of a Cycle Code

Cycle codes are codes which have a Tanner/factor graph where all bit nodes have degree two. (Equivalently, the parity-check matrix has two ones per column.)

Example:

Tanner/factor graph

Tanner/Factor Graph of a Cycle Code

Cycle codes are codes which have a Tanner/factor graph where all bit nodes have degree two. (Equivalently, the parity-check matrix has two ones per column.)

Example:

Tanner/factor graph

Corresponding normal factor graph (LABS^{hp})

Tanner/Factor Graph of a Cycle Code

Cycle codes are called cycle codes because codewords correspond to simple cycles (or to the symmetric difference set of simple cycles) in the Tanner/factor graph.

Example:

Tanner/factor graph

 X_1 X_3 X_4 X_6 X_2 X_7

Corresponding normal factor graph

Definition (Hashimoto, see also Stark/Terras):

Here: $\Gamma = (e_1, e_2, e_3)$

Let Γ be a path in a graph X with edge-set E; write

$$\Gamma = (e_{i_1}, \dots, e_{i_k})$$

to indicate that Γ begins with the edge e_{i_1} and ends with the edge e_{i_k} .

Definition (Hashimoto, see also Stark/Terras):

Here:
$$\Gamma = (e_1, e_2, e_3)$$

Let Γ be a path in a graph X with edge-set E; write

 $\Gamma = (e_{i_1}, \dots, e_{i_k})$

to indicate that Γ begins with the edge e_{i_1} and ends with the edge e_{i_k} .

The monomial of Γ is given by

 $g(\Gamma) \triangleq u_{i_1} \cdots u_{i_k},$

where the u_i 's are indeterminates.

Definition (Hashimoto, see also Stark/Terras): The edge zeta function of X is defined to be the power series

$$\zeta_X(u_1,\ldots,u_n)\in\mathbb{Z}[[u_1,\ldots,u_n]]$$

given by

$$\zeta_X(u_1,\ldots,u_n) = \prod_{[\Gamma]\in A(X)} \frac{1}{1-g(\Gamma)},$$

where A(X) is the collection of equivalence classes of backtrackless, tailless, primitive cycles in X.

Note: unless X contains only one cycle, the set A(X) will be countably infinite.

Theorem (Bass):

- The edge zeta function $\zeta_X(u_1, \ldots, u_n)$ is a rational function.
- More precisely, for any directed graph \vec{X} of X, we have

$$\zeta_X(u_1,\ldots,u_n) = \frac{1}{\det\left(\mathbf{I} - \mathbf{U}\mathbf{M}(\vec{X})\right)} = \frac{1}{\det\left(\mathbf{I} - \mathbf{M}(\vec{X})\mathbf{U}\right)}$$

where

- I is the identity matrix of size 2n,
- U = diag $(u_1, \ldots, u_n, u_1, \ldots, u_n)$ is a diagonal matrix of indeterminants.
- $\mathbf{M}(\vec{X})$ is a $2n \times 2n$ matrix derived from some directed graph version \vec{X} of X.

Relationship Pseudo-Codewords and Edge Zeta Function (Part 1: Theorem)

Theorem:

- Let C be a cycle code defined by a parity-check matrix **H** having normal graph $N \triangleq N(\mathbf{H})$.
- Let n = n(N) be the number of edges of N.
- Let $\zeta_N(u_1, \ldots, u_n)$ be the edge zeta function of N.
- Then

the monomial $u_1^{p_1} \dots u_n^{p_n}$ has a nonzero coefficient in the Taylor series expansion of ζ_N if and only if

the corresponding exponent vector (p_1, \ldots, p_n) is an unscaled pseudo-codeword for C.

Relationship Pseudo-Codewords and Edge Zeta Function (Part 2: Example)

This normal graph N has the following inverse edge zeta function:

$$\zeta_N(u_1,\ldots,u_7) = \frac{1}{\det(\mathbf{I}_{14} - \mathbf{UM})}$$

$$= - 1$$

 $1 - 2u_{1}u_{2}u_{3} + u_{1}^{2}u_{2}^{2}u_{3}^{2} - 2u_{5}u_{6}u_{7} + 4u_{1}u_{2}u_{3}u_{5}u_{6}u_{7} - 2u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{5}u_{6}u_{7}$ $-4u_{1}u_{2}u_{3}u_{4}^{2}u_{5}u_{6}u_{7} + 4u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{4}^{2}u_{5}u_{6}u_{7} + u_{5}^{2}u_{6}^{2}u_{7}^{2} - 2u_{1}u_{2}u_{3}u_{5}^{2}u_{6}^{2}u_{7}^{2}$ $+u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{5}^{2}u_{6}^{2}u_{7}^{2} + 4u_{1}u_{2}u_{3}u_{4}^{2}u_{5}^{2}u_{6}^{2}u_{7}^{2} - 4u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{4}^{2}u_{5}^{2}u_{6}^{2}u_{7}^{2}$ $(LABS^{hp})$

Relationship Pseudo-Codewords and Edge Zeta Function (Part 3: Example)

 $= 1 + 2u_1u_2u_3 + 3u_1^2u_2^2u_3^2 + 2u_5u_6u_7$ $+ 4u_1u_2u_3u_5u_6u_7 + 6u_1^2u_2^2u_3^2u_5u_6u_7$ $+ 4u_1u_2u_3u_4^2u_5u_6u_7 + 12u_1^2u_2^2u_3^2u_4^2u_5u_6u_7$ $+ \cdots$

We get the following exponent vectors:

(0, 0, 0, 0, 0, 0, 0)codeword (1, 1, 1, 0, 0, 0, 0)codeword (2, 2, 2, 0, 0, 0, 0)pseudo-codeword (in \mathbb{Z} -span) (0, 0, 0, 0, 1, 1, 1)codeword (1, 1, 1, 0, 1, 1, 1)codeword (2, 2, 2, 0, 1, 1, 1)pseudo-codeword (in \mathbb{Z} -span) pseudo-codeword (not in Z-span) (1, 1, 1, 2, 1, 1, 1)pseudo-codeword (in \mathbb{Z} -span) (2, 2, 2, 2, 1, 1, 1)

The Newton Polytope of a Polynomial

Here: $P(u_1, u_2)$ = $u_1^0 u_2^0 + 3u_1^1 u_2^2 + 4u_1^3 u_2^1 - 2u_1^4 u_2^5$

Definition:

The Newton polytope of a polynomial $P(u_1, \ldots, u_n)$ in n indeterminates is the convex hull of the points in n-dimensional space given by the exponent vectors of the nonzero monomials appearing in $P(u_1, \ldots, u_n)$.

Similarly, we can associate a polyhedron to a power series.

Characterizing the Fundamental Cone Through the Zeta Function

Collecting the results from the previous slides we get:

Proposition: Let C be some cycle code with parity-check matrix **H** and normal factor graph $N(\mathbf{H})$.

The Newton polyhedron of the zeta function of $N(\mathbf{H})$ equals the fundamental cone $\mathcal{K}(\mathbf{H})$.

The canonical completion

Trying to Construct a Codeword

Example: [7, 4, 3] binary Hamming code.

Example: [7, 4, 3] binary Hamming code.

Example: [7, 4, 3] binary Hamming code.

Example: [7, 4, 3] binary Hamming code.

The canonical completion for a (j = 3, k = 4)-regular LDPC code. On check-regular graphs the (scaled) canonical completion always gives a (valid) pseudo-codeword.

An Upper Bound on the Minimum Pseudo-Weight based on Can. Compl.

An Upper Bound on the Minimum Pseudo-Weight based on Can. Compl.

Theorem: Let C be a (j, k)-regular LDPC code with $3 \le j < k$. Then the minimum pseudo-weight is upper bounded by

 $w_{\mathrm{p,min}}^{\mathrm{AWGNC}}(\mathcal{C}) \leq \beta'_{j,k} \cdot n^{\beta_{j,k}},$

where

$$\beta_{j,k}' = \left(\frac{j(j-1)}{j-2}\right)^2, \quad \beta_{j,k} = \frac{\log\left((j-1)^2\right)}{\log\left((j-1)(k-1)\right)} < 1.$$

An Upper Bound on the Minimum Pseudo-Weight based on Can. Compl.

Theorem: Let C be a (j, k)-regular LDPC code with $3 \le j < k$. Then the minimum pseudo-weight is upper bounded by

 $w_{\mathrm{p,min}}^{\mathrm{AWGNC}}(\mathcal{C}) \leq \beta'_{j,k} \cdot n^{\beta_{j,k}},$

where

$$\beta_{j,k}' = \left(\frac{j(j-1)}{j-2}\right)^2, \quad \beta_{j,k} = \frac{\log\left((j-1)^2\right)}{\log\left((j-1)(k-1)\right)} < 1.$$

Corollary: The minimum relative pseudo-weight for any sequence $\{C_i\}$ of (j, k)-regular LDPC codes of increasing length satisfies

$$\lim_{n \to \infty} \left(\frac{w_{\mathrm{p,min}}^{\mathrm{AWGNC}}(\mathcal{C}_i)}{n} \right) = 0.$$

LP decoding thresholds for the BSC

Let $\varepsilon \in [0, 1]$. The binary symmetric channel (BSC) with cross-over probability ε is a discrete memoryless channel

Let $\varepsilon \in [0, 1]$. The binary symmetric channel (BSC) with cross-over probability ε is a discrete memoryless channel

• with input alphabet $\mathcal{X} = \{0, 1\}$,

Let $\varepsilon \in [0, 1]$. The binary symmetric channel (BSC) with cross-over probability ε is a discrete memoryless channel

- with input alphabet $\mathcal{X} = \{0, 1\}$,
- with output alphabet $\mathcal{Y} = \{0, 1\}$,

Let $\varepsilon \in [0, 1]$. The binary symmetric channel (BSC) with cross-over probability ε is a discrete memoryless channel

- with input alphabet $\mathcal{X} = \{0, 1\}$,
- with output alphabet $\mathcal{Y} = \{0, 1\}$,
- and with conditional probability mass function

$$P_{Y_i|X_i}(y_i|x_i) = \begin{cases} 1 - \varepsilon & (y_i = x_i) \\ \varepsilon & (y_i \neq x_i) \end{cases}.$$

The capacity for the BSC as a function of the cross-over probability arepsilon is

 $C_{\rm BSC} = 1 - h_2(\varepsilon),$

where $h_2(\varepsilon) \triangleq -\varepsilon \log_2(\varepsilon) - (1-\varepsilon) \log_2(1-\varepsilon)$.

The capacity for the BSC as a function of the cross-over probability arepsilon is

 $C_{\rm BSC} = 1 - h_2(\varepsilon),$

where $h_2(\varepsilon) \triangleq -\varepsilon \log_2(\varepsilon) - (1-\varepsilon) \log_2(1-\varepsilon)$.

Assume that the channel is a BSC with cross-over probability ε .

Assume that the channel is a BSC with cross-over probability ε . Channel capacity:

- Channel coding theorem
- Converse to the channel coding theorem

Assume that the channel is a BSC with cross-over probability ε . Channel capacity:

- Channel coding theorem (Gallager's random coding error exponent, etc.)
- Converse to the channel coding theorem

(Fano's inequality, etc.)

Assume that the channel is a BSC with cross-over probability ε . Channel capacity:

- Channel coding theorem (Gallager's random coding error exponent, etc.)
- Converse to the channel coding theorem

(Fano's inequality, etc.)

Important: we are allowed to use the best available coding and decoding schemes for a given rate R.

Assume that the channel is a BSC with cross-over probability ε . Additionally, assume that we put restrictions on the coding schemes and/or on the decoding schemes.

Assume that the channel is a BSC with cross-over probability ε . Additionally, assume that we put restrictions on the coding schemes and/or on the decoding schemes.

 \Rightarrow Thresholds.

Assume that the channel is a BSC with cross-over probability ε . Additionally, assume that we put restrictions on the coding schemes and/or on the decoding schemes.

 \Rightarrow Thresholds.

Existence of LP Decoding Thresholds

• A priori it is not clear for what families/ensembles of codes there is an LP decoding threshold.

Existence of LP Decoding Thresholds

- A priori it is not clear for what families/ensembles of codes there is an LP decoding threshold.
- The tight connection between min-sum algorithm decoding and LP decoding suggests that families/ensembles that have a threshold under min-sum algorithm decoding also have a threshold under LP decoding.

Existence of LP Decoding Thresholds

- A priori it is not clear for what families/ensembles of codes there is an LP decoding threshold.
- The tight connection between min-sum algorithm decoding and LP decoding suggests that families/ensembles that have a threshold under min-sum algorithm decoding also have a threshold under LP decoding.
- [Koetter:Vontobel:06]: there is an LP decoding threshold for (w_{col}, w_{row}) -regular LDPC codes where $2 < w_{col} < w_{row}$.

BSC: An Upper Bound on the Threshold (Part 1)

Theorem:

- Consider a family of (w_{col}, w_{row}) -regular codes of increasing block length n.
- Consider a BSC with cross-over probability ε .
- In the limit $n \to \infty$, if

$$\varepsilon > \frac{1}{w_{\rm row}}$$

then with probability 1 the LP decoder will not decode to the transmitted codeword.

BSC: An Upper Bound on the Threshold (Part 2)

BSC: An Upper Bound on the Threshold (Part 2)

LABShp

BSC: An Upper Bound on the Threshold (Part 3)

Theorem: Consider a family of codes where the minimal row-degree goes to $w_{\text{row}}^{\min}(\infty)$ when $n \to \infty$ and a BSC with cross-over probability ε . In the limit $n \to \infty$, if

$$\varepsilon > \frac{1}{w_{\rm row}^{\rm min}(\infty)}$$

then with probability 1 the LP decoder will not decode to the transmitted codeword.

Theorem: Consider a family of codes where the minimal row-degree goes to $w_{\text{row}}^{\min}(\infty)$ when $n \to \infty$ and a BSC with cross-over probability ε . In the limit $n \to \infty$, if

$$\varepsilon > \frac{1}{w_{\rm row}^{\rm min}(\infty)}$$

then with probability 1 the LP decoder will not decode to the transmitted codeword.

Corollary: For any family of codes where $w_{row}^{min}(n)$ grows unboundedly, i.e. where

 $\lim_{n \to \infty} w_{\rm row}^{\rm min}(n) = \infty,$

the above right-hand side expression goes to 0.

Linear programming (LP) decoding:

$$\hat{\boldsymbol{\omega}} = \arg\min_{\boldsymbol{\omega}\in\mathcal{P}(\mathbf{H})}\sum_{i=1}^n \lambda_i \omega_i.$$

Linear programming (LP) decoding:

$$\hat{\boldsymbol{\omega}} = \arg\min_{\boldsymbol{\omega}\in\mathcal{P}(\mathbf{H})}\sum_{i=1}^n \lambda_i \omega_i.$$

Assume that the zero codeword has been sent. LP decoding does not decide for the all-zeros codeword if there is a vector

 $\boldsymbol{\omega} \in \mathcal{P}(\mathbf{H}) \setminus \{\mathbf{0}\}$

such that

$$\sum_{i=1}^{n} \lambda_i \omega_i < 0.$$

Linear programming (LP) decoding:

$$\hat{\boldsymbol{\omega}} = \arg\min_{\boldsymbol{\omega}\in\mathcal{P}(\mathbf{H})}\sum_{i=1}^n \lambda_i \omega_i.$$

Assume that the zero codeword has been sent. LP decoding does not decides for the all-zeros codeword if there is a vector

 $\boldsymbol{\omega} \in \mathcal{K}(\mathbf{H}) \setminus \{\mathbf{0}\}$

such that

$$\sum_{i=1}^{n} \lambda_i \omega_i < 0.$$

• Assume that we have a (w_{col}, w_{row}) -regular LDPC code.

- Assume that we have a (w_{col}, w_{row}) -regular LDPC code.
- Moreover, let $\omega \in \mathbb{R}^n$ be a vector with the following entries:

$$\omega_i \triangleq \begin{cases} \frac{1}{w_{\rm row} - 1} & \text{if } \lambda_i \ge 0\\ 1 & \text{if } \lambda_i < 0 \end{cases}$$

- Assume that we have a (w_{col}, w_{row}) -regular LDPC code.
- Moreover, let $\omega \in \mathbb{R}^n$ be a vector with the following entries:

$$\omega_i \triangleq \begin{cases} \frac{1}{w_{\text{row}} - 1} & \text{if } \lambda_i \ge 0\\ 1 & \text{if } \lambda_i < 0 \end{cases}$$

One can easily verify that $\omega \in \mathcal{K}(\mathbf{H})$.

- Assume that we have a (w_{col}, w_{row}) -regular LDPC code.
- Moreover, let $\omega \in \mathbb{R}^n$ be a vector with the following entries:

$$\omega_i \triangleq \begin{cases} \frac{1}{w_{\text{row}} - 1} & \text{if } \lambda_i \ge 0\\ 1 & \text{if } \lambda_i < 0 \end{cases}$$

One can easily verify that $\omega \in \mathcal{K}(\mathbf{H})$.

Note: this pseudo-codeword construction is inspired by the canonical completion contruction.

- Assume that we have a (w_{col}, w_{row}) -regular LDPC code.
- Moreover, let $\omega \in \mathbb{R}^n$ be a vector with the following entries:

$$\omega_i \triangleq \begin{cases} \frac{1}{w_{\text{row}} - 1} & \text{if } \lambda_i \ge 0\\ 1 & \text{if } \lambda_i < 0 \end{cases}$$

One can easily verify that $\boldsymbol{\omega} \in \mathcal{K}(\mathbf{H})$.

Note: this pseudo-codeword construction is inspired by the canonical completion contruction.

 In the rest of the proof, one shows for which ε this pseudo-codeword leads to a decoding error (details omitted).

2-Neighborhood-Based Bounds on the Threshold

The fundamental polytope in various contexts

Finite-length analysis of iterative decoding based on graph covers

Finite-length analysis of iterative decoding based on graph covers

(Koetter/Li/Vontobel/Walker, ITW2004)

References

• More details: see the appendices.

Papers listed at www.pseudocodewords.info

Thank you!

Appendices

Communication systems and Shannon's channel coding theorem

Communication System (Part 1)

Source

 Sink

Shannon (1948): it is a good idea to use channel codes!

Shannon (1948): it is a good idea to use channel codes!

• A channel is characterized by a number C called the capacity.

- A channel is characterized by a number C called the capacity.
- A code is characterized by a number R called the rate.

- A channel is characterized by a number C called the capacity.
- A code is characterized by a number R called the rate.
- If R < C: there are codes, encoders, and decoders such that arbitrarily low error probabilities can be guaranteed (as long as one allows arbitrarily long codes).

- A channel is characterized by a number C called the capacity.
- A code is characterized by a number R called the rate.
- If R < C: there are codes, encoders, and decoders such that arbitrarily low error probabilities can be guaranteed (as long as one allows arbitrarily long codes).
- Shannon's proof was though non-constructive, i.e. it was not clear at all how to obtain specific well-performing finite-length codes that possess efficient encoders and decoders.

	Code design	Decoding
"Traditional"	Reed-Solomon codes	?
"Modern"	? -	Message-passing iterative decoding LP decoding

	Code design	Decoding
"Traditional"	Reed-Solomon codes	Berlekamp-Massey decoder etc.
"Modern"	? —	Message-passing iterative decoding LP decoding

	Code design	Decoding
"Traditional"	Reed-Solomon codesetc.	Berlekamp-Massey decoder etc.
"Modern"	Codes on Graphs (LDPC/Turbo codes, etc.)	Message-passing Iterative decoding LP decoding

	Code design	Decoding
"Traditional"	Reed-Solomon codes etc.	Berlekamp-Massey decoder etc.
"Modern"	Codes on Graphs	Message-passing Iterative decoding LP decoding

In both "traditional" and "modern" coding theory, "structure" is an important keyword. By imposing structural constraints

- one usually loses somewhat in generality;
- however, (mathematical) tools become available that can yield big analytical and practical gains.

Communication Model (Part 1)

Information word:

Sent codeword:

Received word:

 $\mathbf{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$ $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C} \subseteq \mathcal{X}^n$ $\mathbf{y} = (y_1, \dots, y_n) \in \mathcal{Y}^n$

Communication Model (Part 1)

Information word:

Sent codeword:

Received word:

 $\mathbf{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$ $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C} \subseteq \mathcal{X}^n$ $\mathbf{y} = (y_1, \dots, y_n) \in \mathcal{Y}^n$

Decoding: Based on y we would like to estimate the transmitted codeword $\hat{\mathbf{x}}$ or the information word $\hat{\mathbf{u}}$.

Communication Model (Part 1)

Information word: $\mathbf{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$ Sent codeword: $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C} \subseteq \mathcal{X}^n$ Received word: $\mathbf{y} = (y_1, \dots, y_n) \in \mathcal{Y}^n$

Decoding: Based on y we would like to estimate the transmitted codeword $\hat{\mathbf{x}}$ or the information word $\hat{\mathbf{u}}$.

Depending on what criterion we optimize, we obtain different decoding algorithms.

• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$

• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$

• This can also be written as

$$\hat{\mathbf{x}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{x}\in\mathcal{X}^n} P_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{x}\in\mathcal{X}^n} P_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}).$$

• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$

This can also be written as

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y})$$

• If all codewords are equally likely then

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}}(\mathbf{x}) P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \underset{\mathbf{x}\in\mathcal{C}}{\operatorname{argmax}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$$

• Min. the block error prob. results in block-wise MAP decoding

$$\hat{\mathbf{u}}_{\mathrm{MAP}}^{\mathrm{block}}(\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U}|\mathbf{Y}}(\mathbf{u}|\mathbf{y}) = \operatorname*{argmax}_{\mathbf{u}\in\mathcal{U}^{k}} P_{\mathbf{U},\mathbf{Y}}(\mathbf{u},\mathbf{y}).$$

• This can also be written as

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}).$$

• If all codewords are equally likely then

$$\hat{\mathbf{x}}_{\text{MAP}}^{\text{block}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{X}^n}{\operatorname{argmax}} P_{\mathbf{X}}(\mathbf{x}) P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \underset{\mathbf{x}\in\mathcal{C}}{\operatorname{argmax}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) \triangleq \hat{\mathbf{x}}_{\text{ML}}^{\text{block}}(\mathbf{y})$$

Binary linear codes

Let **H** be a parity-check matrix, e.g.

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

٠

Let H be a parity-check matrix, e.g.

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

The code $\boldsymbol{\mathcal{C}}$ described by \mathbf{H} is then

$$\mathcal{C} = \left\{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}_2^5 \mid \mathbf{H} \cdot \mathbf{x}^\mathsf{T} = \mathbf{0}^\mathsf{T} \pmod{2} \right\}.$$

Let **H** be a parity-check matrix, e.g.

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

The code $\boldsymbol{\mathcal{C}}$ described by \mathbf{H} is then

$$\mathcal{C} = \Big\{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}_2^5 \ \Big| \ \mathbf{H} \cdot \mathbf{x}^\mathsf{T} = \mathbf{0}^\mathsf{T} \pmod{2} \Big\}.$$

A vector $\mathbf{x} \in \mathbb{F}_2^5$ is a codeword if and only if

$$\mathbf{H} \cdot \mathbf{x}^{\mathsf{T}} = \mathbf{0}^{\mathsf{T}} \pmod{2}$$

This means that \mathbf{x} is a codeword if and only if \mathbf{x} fulfills the following two equations:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

This means that \mathbf{x} is a codeword if and only if \mathbf{x} fulfills the following two equations:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix} \quad \Rightarrow \quad \begin{array}{c} x_1 + x_2 + x_3 = 0 \pmod{2} \\ \Rightarrow \end{array}$$

This means that \mathbf{x} is a codeword if and only if \mathbf{x} fulfills the following two equations:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix} \implies \begin{array}{c} x_1 + x_2 + x_3 = 0 \pmod{2} \\ x_2 + x_4 + x_5 = 0 \pmod{2} \end{array}$$

This means that \mathbf{x} is a codeword if and only if \mathbf{x} fulfills the following two equations:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix} \Rightarrow \begin{aligned} x_1 + x_2 + x_3 &= 0 \pmod{2} \\ x_2 + x_4 + x_5 &= 0 \pmod{2} \end{aligned}$$

In summary,

$$\mathcal{C} = \left\{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}_2^5 \mid \mathbf{H} \cdot \mathbf{x}^\mathsf{T} = \mathbf{0}^\mathsf{T} \pmod{2} \right\}$$
$$= \left\{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}_2^5 \mid \begin{array}{l} x_1 + x_2 + x_3 = 0 \pmod{2} \\ x_2 + x_4 + x_5 = 0 \pmod{2} \end{array} \right\}.$$

Defining the codes \mathcal{C}_1 and \mathcal{C}_2 where

$$\mathcal{C}_1 = \left\{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}_2^5 \mid x_1 + x_2 + x_3 = 0 \pmod{2} \right\},\$$

Defining the codes C_1 and C_2 where

$$\mathcal{C}_1 = \left\{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}_2^5 \mid x_1 + x_2 + x_3 = 0 \pmod{2} \right\},\$$

$$\mathcal{C}_2 = \left\{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}_2^5 \mid x_2 + x_4 + x_5 = 0 \pmod{2} \right\},\$$

Defining the codes \mathcal{C}_1 and \mathcal{C}_2 where

$$\mathcal{C}_{1} = \left\{ (x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) \in \mathbb{F}_{2}^{5} \mid x_{1} + x_{2} + x_{3} = 0 \pmod{2} \right\},\$$
$$\mathcal{C}_{2} = \left\{ (x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) \in \mathbb{F}_{2}^{5} \mid x_{2} + x_{4} + x_{5} = 0 \pmod{2} \right\},\$$

the code C can be written as the intersection of C_1 and C_2 :

$$\mathcal{C} = \mathcal{C}_1 \cap \mathcal{C}_2.$$

 $x_4()$

 $x_{5}()$

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

()

 \bigcap

 \bigcirc

 \bigcirc

 \bigcirc

0000000		01111111111111111	x_1
0000000	0011111111	100000000111111111	x_2
0000111	1100001111	10000111100001111	x_3
0011001	110011001	10011001100110000	x_4
0101010		1010101010101010101	x_5

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

0000	0000	
0000	1111	00001111
0000	11111	11110000
0011	0011	00110011
0101	0101	01010101

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

0 0	00	1	1 1 1
0 0	11	0	01 1
0 0	11	1	10 0
0 1	01	0	10 1
0 0	10	0	10 0

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

0000	0000	
0000	1111	00001111
0000	1111	11110000
0011	0011	00110011
0101	0101	01010101

 $\mathsf{code}\ \mathcal{C}_1$

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

0	00	0 00	00 1	11	1 11	1 1
0	00	0 11	11 0	00	0 11	1 1
0	01	1 00	11 0	01	1 00	1 1
0	10	1 01	01 0	10	1 01	0 0
0	10	1 10	10 0	10	1 10	1 1

 $x_1 \bigcirc$

 $\mathsf{code}\ \mathcal{C}_2$

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

00	00	
0 0	11	0 01 1
0 0	11	1 10 0
0 1	01	0 10 1
0 0	10	0 10 0

 $\mathcal{C} = \mathcal{C}_1 \cap \mathcal{C}_2$

FG of a Data Communication System based on a parity-check code

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

FG of a Data Communication System based on a parity-check code

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

FG of a Data Communication System based on a parity-check code

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Expressing a decoder as the solution of a linear program

For memoryless channels, block-wise ML decoding of a binary code can be written as a linear program.

 $\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$

For memoryless channels, block-wise ML decoding of a binary code can be written as a linear program.

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \arg \min_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} x_{i} \lambda_{i},$$

For memoryless channels, block-wise ML decoding of a binary code can be written as a linear program.

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \arg \min_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} x_{i} \lambda_{i},$$

where

$$\lambda_i \triangleq \lambda_i(y_i) \triangleq \log \frac{P_{Y|X}(y_i|0)}{P_{Y|X}(y_i|1)}$$

Derivation (we assume to have a memoryless channel):

 $\arg\max_{\mathbf{x}\in\mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$

Derivation (we assume to have a memoryless channel):

 $\arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$ $= \arg \max_{\mathbf{x} \in \mathcal{C}} \log \prod_{i=1}^{n} P_{Y_i|X_i}(y_i|x_i)$

Derivation (we assume to have a memoryless channel):

$$\arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$$

$$= \arg \max_{\mathbf{x} \in \mathcal{C}} \log \prod_{i=1}^{n} P_{Y_i|X_i}(y_i|x_i)$$

$$= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} \log P_{Y_i|X_i}(y_i|x_i)$$

Derivation (we assume to have a memoryless channel):

 $\arg \max_{\mathbf{x} \in \mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$ $= \arg \max_{\mathbf{x} \in \mathcal{C}} \log \prod_{i=1}^{n} P_{Y_i|X_i}(y_i|x_i)$ $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} \log P_{Y_i|X_i}(y_i|x_i)$ $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} \left(x_i \log \frac{P_{Y_i|X_i}(y_i|1)}{P_{Y_i|X_i}(y_i|0)} + \log P_{Y_i|X_i}(y_i|0) \right)$

ML Decoding as an Integer LP

Derivation (we assume to have a memoryless channel):

 $\arg\max_{\mathbf{x}\in\mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$ $= \arg \max_{\mathbf{x} \in \mathcal{C}} \log \prod_{i=1}^{n} P_{Y_i|X_i}(y_i|x_i)$ $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{\mathbf{x} \in \mathcal{C}} \log P_{Y_i|X_i}(y_i|x_i)$ $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} \left(x_i \log \frac{P_{Y_i|X_i}(y_i|1)}{P_{Y_i|X_i}(y_i|0)} + \log P_{Y_i|X_i}(y_i|0) \right)$ $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{\infty} x_i(-\lambda_i)$

ML Decoding as an Integer LP

Derivation (we assume to have a memoryless channel):

 $\arg\max_{\mathbf{x}\in\mathcal{C}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x})$ $= \arg \max_{\mathbf{x} \in \mathcal{C}} \log \prod_{i \in \mathcal{C}} P_{Y_i|X_i}(y_i|x_i)$ $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{\mathbf{x} \in \mathcal{C}} \log P_{Y_i|X_i}(y_i|x_i)$ $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} \left(x_i \log \frac{P_{Y_i|X_i}(y_i|1)}{P_{Y_i|X_i}(y_i|0)} + \log P_{Y_i|X_i}(y_i|0) \right)$ $= \arg \max_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} x_i(-\lambda_i) = \arg \min_{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} x_i \lambda_i.$

n $\arg\min_{\mathbf{x}\in\operatorname{conv}(C)}\sum_{i=1}^{\lambda_i x_i}$

e.g. $\mathcal{C} = \left\{ \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(5)} \right\}$

e.g. $\mathcal{C} = \left\{ \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(5)} \right\}$

Because the cost function is linear and because \mathcal{A} is a polytope, one of the vertices of \mathcal{A} is always in the solution set.

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_i \lambda_i,$$

This is a linear program.

$$\hat{\mathbf{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_{i}\lambda_{i},$$

This is a linear program.

However, the

number of variables / equalities / inequalities needed to describe the polytope $\operatorname{conv}(\mathcal{C})$ is (usually) exponential in n.

Relaxed linear programs and LP decoding

Relaxed Linear Programs (Part 1)

Relaxed Linear Programs (Part 1)

is replaced by

Relaxed Linear Programs (Part 1)

is replaced by

Relaxed Linear Programs (Part 2)

Relaxed Linear Programs (Part 2)

is replaced by

LP Decoding (Part 1)

LP Decoding (Part 1)

$$\hat{\boldsymbol{\omega}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = rg\min_{\boldsymbol{\omega}\in\mathrm{conv}(\mathcal{C})} \; \sum_{i=1}^n \omega_i \lambda_i.$$

A standard approach in optimization theory is then to relax the set $\operatorname{conv}(\mathcal{C})$ to a set $\operatorname{relax}(\operatorname{conv}(\mathcal{C}))$ whose description complexity is much lower:

$$\hat{\boldsymbol{\omega}}_{\mathrm{LP}}(\mathbf{y}) = \arg\min_{\boldsymbol{\omega}\in\mathrm{relax}(\mathrm{conv}(\mathcal{C}))} \sum_{i=1}^{n} \omega_i \lambda_i.$$

How do we obtain a suitable relaxation?

How do we obtain a suitable relaxation? The following approach was proposed by Feldman / Karger / Wainwright and seems to work well for LDPC codes.

How do we obtain a suitable relaxation? The following approach was proposed by Feldman / Karger / Wainwright and seems to work well for LDPC codes.

Before showing how this relaxation works, let us remember how we define a code using a parity-check matrix.

Let **H** be a parity-check matrix, e.g.

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

How do we obtain a suitable relaxation? The following approach was proposed by Feldman / Karger / Wainwright and seems to work well for LDPC codes.

Before showing how this relaxation works, let us remember how we define a code using a parity-check matrix.

Let **H** be a parity-check matrix, e.g.

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

A vector $\mathbf{x} \in \mathbb{F}_2^5$ is a codeword if and only if

```
\mathbf{H}\mathbf{x}^{\mathsf{T}} = \mathbf{0}^{\mathsf{T}}.
```


$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \quad \Rightarrow$$

$$x_1 + x_2 + x_3 = 0 \pmod{2}$$

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \implies x_1 + x_2 + x_3 = 0 \pmod{2}$$
$$\Rightarrow x_2 + x_4 + x_5 = 0 \pmod{2}$$

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \begin{aligned} x_1 + x_2 + x_3 &= 0 \pmod{2} \\ x_2 + x_4 + x_5 &= 0 \pmod{2} \\ x_3 + x_4 + x_5 &= 0 \pmod{2} \end{aligned}$$

In our case this means that \mathbf{x} is a codeword if and only if \mathbf{x} fulfills the following three equations:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \begin{aligned} x_1 + x_2 + x_3 &= 0 \pmod{2} \\ x_2 + x_4 + x_5 &= 0 \pmod{2} \\ x_3 + x_4 + x_5 &= 0 \pmod{2} \end{aligned}$$

Therefore, \mathcal{C} can be seen as the intersection of three codes

$$\mathcal{C}=\mathcal{C}_1\cap\mathcal{C}_2\cap\mathcal{C}_3,$$

In our case this means that \mathbf{x} is a codeword if and only if \mathbf{x} fulfills the following three equations:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \begin{aligned} x_1 + x_2 + x_3 &= 0 \pmod{2} \\ x_2 + x_4 + x_5 &= 0 \pmod{2} \\ x_3 + x_4 + x_5 &= 0 \pmod{2} \end{aligned}$$

Therefore, $\mathcal C$ can be seen as the intersection of three codes

$$\mathcal{C}=\mathcal{C}_1\cap\mathcal{C}_2\cap\mathcal{C}_3,$$

where

$$\mathcal{C}_{1} \triangleq \left\{ \mathbf{x} \in \mathbb{F}_{2}^{5} \mid \mathbf{h}_{1}\mathbf{x}^{\mathsf{T}} = 0 \pmod{2} \right\},\$$
$$\mathcal{C}_{2} \triangleq \left\{ \mathbf{x} \in \mathbb{F}_{2}^{5} \mid \mathbf{h}_{2}\mathbf{x}^{\mathsf{T}} = 0 \pmod{2} \right\},\$$
$$\mathcal{C}_{3} \triangleq \left\{ \mathbf{x} \in \mathbb{F}_{2}^{5} \mid \mathbf{h}_{3}\mathbf{x}^{\mathsf{T}} = 0 \pmod{2} \right\}.$$

Let the relaxation $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$ of \mathcal{C} be the set of all vectors $\omega \in \mathbb{R}^5$ that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Let the relaxation $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$ of \mathcal{C} be the set of all vectors $\omega \in \mathbb{R}^5$ that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \quad \Rightarrow$$

Let the relaxation $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$ of \mathcal{C} be the set of all vectors $\omega \in \mathbb{R}^5$ that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \quad \Rightarrow \qquad \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1)$$

Let the relaxation $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$ of \mathcal{C} be the set of all vectors $\omega \in \mathbb{R}^5$ that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \quad \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1)$$
$$\Rightarrow \quad \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_2)$$

Let the relaxation $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$ of \mathcal{C} be the set of all vectors $\omega \in \mathbb{R}^5$ that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \begin{array}{l} \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_3) \end{array}$$

Let the relaxation $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$ of \mathcal{C} be the set of all vectors $\omega \in \mathbb{R}^5$ that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \Rightarrow \qquad \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_3) \end{cases}$$

Therefore,

$\operatorname{relax}(\operatorname{conv}(\mathcal{C}))$

Let the relaxation $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$ of \mathcal{C} be the set of all vectors $\omega \in \mathbb{R}^5$ that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \Rightarrow \qquad \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_3) \end{cases}$$

Therefore,

$$\operatorname{relax}(\operatorname{conv}(\mathcal{C})) \triangleq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3)$$

Let the relaxation $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$ of \mathcal{C} be the set of all vectors $\omega \in \mathbb{R}^5$ that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \begin{array}{l} \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_3) \\ \end{array}$$

Therefore,

$$\operatorname{relax}(\operatorname{conv}(\mathcal{C})) \triangleq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3).$$

Fundamental polytope $\mathcal{P}(\mathbf{H})$

Let the relaxation $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$ of \mathcal{C} be the set of all vectors $\omega \in \mathbb{R}^5$ that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \Rightarrow \qquad \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_3) \end{cases}$$

Therefore,

$$\operatorname{conv}(\mathcal{C}) \subseteq \operatorname{relax}(\operatorname{conv}(\mathcal{C})) \triangleq \underbrace{\operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3)}_{\mathsf{Fundamental polytope } \mathcal{P}(\mathbf{H})}.$$

Let the relaxation $\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{relax}(\operatorname{conv}(\mathcal{C}))$ of \mathcal{C} be the set of all vectors $\omega \in \mathbb{R}^5$ that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \Rightarrow \qquad \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_3) \end{cases}$$

Therefore,

 $\mathcal{C} \subset \operatorname{conv}(\mathcal{C}) \subseteq \operatorname{relax}(\operatorname{conv}(\mathcal{C})) \triangleq \underbrace{\operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3)}_{\mathsf{Fundamental polytope } \mathcal{P}(\mathbf{H})}.$

Block-wise ML Decoding vs. LP Decoding

Block-wise ML decoding:

LP decoding:

LABShp

Block-wise ML Decoding vs. LP Decoding

Block-wise ML decoding:

$$\mathbf{\hat{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_i \lambda_i.$$

LP decoding:

Block-wise ML Decoding vs. LP Decoding

Block-wise ML decoding:

$$\mathbf{\hat{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\mathrm{conv}(\mathcal{C})} \sum_{i=1}^{n} x_i \lambda_i.$$

LP decoding:

$$\hat{\boldsymbol{\omega}}_{\mathrm{LP}}(\mathbf{y}) = \arg\min_{\boldsymbol{\omega}\in\mathcal{P}(\mathbf{H})} \sum_{i=1}^{n} \omega_i \lambda_i.$$

Block-wise ML Decoding vs. LP Decoding

Block-wise ML decoding:

$$\mathbf{\hat{x}}_{\mathrm{ML}}^{\mathrm{block}}(\mathbf{y}) = rg\min_{\mathbf{x}\in\mathrm{conv}\left(\cap_{j=1}^{m}\mathcal{C}_{j}
ight)} \sum_{i=1}^{n} x_{i}\lambda_{i}.$$

LP decoding:

$$\hat{\boldsymbol{\omega}}_{\mathrm{LP}}(\mathbf{y}) = rg\min_{\boldsymbol{\omega}\in\cap_{j=1}^m\operatorname{conv}(\mathcal{C}_j)} \sum_{i=1}^n \omega_i \lambda_i.$$

Fundamental Polytope

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \mathcal{C}_{2}$$
$$\Rightarrow \mathcal{C}_{3}$$

$$\Rightarrow \mathcal{C} = \bigcap_{j=1}^{m} \mathcal{C}_j$$

Fundamental Polytope

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \xrightarrow{\Rightarrow} \mathcal{C}_1 \qquad \Rightarrow \operatorname{conv}(\mathcal{C}_1) \\ \Rightarrow \mathcal{C}_2 \qquad \Rightarrow \operatorname{conv}(\mathcal{C}_2) \\ \Rightarrow \mathcal{C}_3 \qquad \Rightarrow \operatorname{conv}(\mathcal{C}_3)$$

Fundamental Polytope / Cone (Part 1) $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \operatorname{conv}(\mathcal{C}_{1})$ $\Rightarrow \operatorname{conv}(\mathcal{C}_{2})$ $\Rightarrow \operatorname{conv}(\mathcal{C}_{3})$

Fundamental Polytope / Cone (Part 1) $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \operatorname{conv}(\mathcal{C}_{1})$ $\Rightarrow \operatorname{conv}(\mathcal{C}_{2})$ $\Rightarrow \operatorname{conv}(\mathcal{C}_{3})$

Fundamental Polytope / Cone (Part 1) $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \xrightarrow{\Rightarrow} \operatorname{conv}(\mathcal{C}_1) \qquad \Rightarrow \operatorname{conic}(\mathcal{C}_1) \\ \Rightarrow \operatorname{conv}(\mathcal{C}_2) \qquad \Rightarrow \operatorname{conic}(\mathcal{C}_2) \\ \Rightarrow \operatorname{conv}(\mathcal{C}_3) \qquad \Rightarrow \operatorname{conic}(\mathcal{C}_3)$

Convex hull of simple codes

Convex Hull of Simple Codes (Part 1)

Let $\ensuremath{\mathcal{C}}$ be defined by the parity-check matrix

$$\mathbf{H} = \begin{pmatrix} 1 & 1 \end{pmatrix}$$

Then

$$C = \{(0,0), (1,1)\}$$

 and

$$\operatorname{conv}(\mathcal{C}) = \left\{ \boldsymbol{\omega} \in [0,1]^2 \middle| \begin{array}{c} -\omega_1 + \omega_2 \ge 0 \\ +\omega_1 - \omega_2 \ge 0 \end{array} \right\},$$

where $[0,1] = \{r \in \mathbb{R} \mid 0 \le r \le 1\}.$

Convex Hull of Simple Codes (Part 2)

Let $\ensuremath{\mathcal{C}}$ be defined by the parity-check matrix

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

Then

$$\mathcal{C} = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\}$$

and

$$\operatorname{conv}(\mathcal{C}) = \left\{ \boldsymbol{\omega} \in [0,1]^3 \middle| \begin{array}{c} -\omega_1 + \omega_2 + \omega_3 \ge 0 \\ +\omega_1 - \omega_2 + \omega_3 \ge 0 \\ +\omega_1 + \omega_2 - \omega_3 \ge 0 \\ -\omega_1 - \omega_2 - \omega_3 \ge -2 \end{array} \right\}$$

Conic Hull of Simple Codes (Part 1)

Let $\ensuremath{\mathcal{C}}$ be defined by the parity-check matrix

$$\mathbf{H} = \begin{pmatrix} 1 & 1 \end{pmatrix}$$

Then

$$C = \{(0,0), (1,1)\}$$

 and

$$\operatorname{conic}(\mathcal{C}) = \left\{ \boldsymbol{\omega} \in \mathbb{R}^2_+ \middle| \begin{array}{c} -\omega_1 + \omega_2 \ge 0 \\ +\omega_1 - \omega_2 \ge 0 \end{array} \right\},$$

where $\mathbb{R}_+ = \{r \in \mathbb{R} \mid r \ge 0\}.$

Conic Hull of Simple Codes (Part 2)

Let $\ensuremath{\mathcal{C}}$ be defined by the parity-check matrix

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

Then

$$C = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\}$$

and

$$\operatorname{conic}(\mathcal{C}) = \left\{ \boldsymbol{\omega} \in \mathbb{R}^3_+ \middle| \begin{array}{c} -\omega_1 + \omega_2 + \omega_3 \ge 0 \\ +\omega_1 - \omega_2 + \omega_3 \ge 0 \\ +\omega_1 + \omega_2 - \omega_3 \ge 0 \end{array} \right\}.$$

A Simple Code (Part 1)

Let us consider the length-3 code $\mathcal C$ defined by the parity-check matrix

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

The code \mathcal{C} can be written as $\mathcal{C} = \mathcal{C}_1 \cap \mathcal{C}_2 \cap \mathcal{C}_3$ with

$$\mathcal{C}_1 = \{(0,0,0), (1,1,0), (0,0,1), (1,1,1)\}$$
$$\mathcal{C}_2 = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\}$$
$$\mathcal{C}_3 = \{(0,0,0), (0,1,1), (1,0,0), (1,1,1)\}$$

A Simple Code (Part 2)

The fundamental polytope is $\mathcal{P}(\mathbf{H}) = \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3)$ with

$$\operatorname{conv}(\mathcal{C}_{1}) = \operatorname{conv}\left(\left\{(0,0,0), (1,1,0), (0,0,1), (1,1,1)\right\}\right)$$
$$= \left\{\omega \in [0,1]^{3} \middle| \begin{array}{c} -\omega_{1} + \omega_{2} \ge 0\\ +\omega_{1} - \omega_{2} \ge 0 \end{array}\right\}$$
$$\operatorname{conv}(\mathcal{C}_{2}) = \operatorname{conv}\left(\left\{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\right\}\right)$$
$$= \left\{\omega \in [0,1]^{3} \middle| \begin{array}{c} -\omega_{1} + \omega_{2} + \omega_{3} \ge 0\\ +\omega_{1} - \omega_{2} + \omega_{3} \ge 0\\ +\omega_{1} - \omega_{2} - \omega_{3} \ge 0\\ -\omega_{1} - \omega_{2} - \omega_{3} \ge -2 \end{array}\right\}$$
$$\operatorname{conv}(\mathcal{C}_{3}) = \operatorname{conv}\left(\left\{(0,0,0), (0,1,1), (1,0,0), (1,1,1)\right\}\right)$$
$$= \left\{\omega \in [0,1]^{3} \middle| \begin{array}{c} -\omega_{2} + \omega_{3} \ge 0\\ +\omega_{2} - \omega_{3} \ge 0\\ +\omega_{2} - \omega_{3} \ge 0 \end{array}\right\}$$

A Simple Code (Part 3)

(1, 1, 0)

 $\blacktriangleright \omega_1$

 $\blacktriangleright \omega_1$

Pseudo-codewords and Tanner graphs

Tanner / Factor graphs

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Codeword indicator function:

$$egin{aligned} &I_1(x_1,x_2,x_5)\cdot I_2(x_2,x_3,x_4)\cdot I_3(x_4,x_5,x_6)\ &=\left[(x_1,x_2,x_5)\in\mathcal{C}_1
ight]\,\cdot\ &\left[(x_2,x_3,x_4)\in\mathcal{C}_2
ight]\,\cdot\ &\left[(x_4,x_5,x_6)\in\mathcal{C}_3
ight] \end{aligned}$$

Note: $x_i \in \{0, 1\}$

Pseudo-Codewords / Fundamental Polytope

Codeword indicator function:

$$egin{aligned} &I_1(x_1,x_2,x_5)\cdot I_2(x_2,x_3,x_4)\cdot I_3(x_4,x_5,x_6)\ &=\left[(x_1,x_2,x_5)\in\mathcal{C}_1
ight]\,\cdot\ &\left[(x_2,x_3,x_4)\in\mathcal{C}_2
ight]\,\cdot\ &\left[(x_4,x_5,x_6)\in\mathcal{C}_3
ight]\,\end{aligned}$$

Note: $x_i \in \{0, 1\}$

Pseudo-codeword indicator function:

$$\hat{I}_{1}(\omega_{1}, \omega_{2}, \omega_{5}) \cdot \hat{I}_{2}(\omega_{2}, \omega_{3}, \omega_{4}) \cdot \hat{I}_{3}(\omega_{4}, \omega_{5}, \omega_{6})$$

$$= \left[(\omega_{1}, \omega_{2}, \omega_{5}) \in \operatorname{conv}(\mathcal{C}_{1}) \right] \cdot \left[(\omega_{2}, \omega_{3}, \omega_{4}) \in \operatorname{conv}(\mathcal{C}_{2}) \right] \cdot \left[(\omega_{4}, \omega_{5}, \omega_{6}) \in \operatorname{conv}(\mathcal{C}_{3}) \right]$$

Note: $0 \leq \omega_i \leq 1$

Pseudo-Codewords / Fundamental Cone

Codeword indicator function:

$$egin{aligned} &I_1(x_1,x_2,x_5)\cdot I_2(x_2,x_3,x_4)\cdot I_3(x_4,x_5,x_6)\ &=\left[(x_1,x_2,x_5)\in\mathcal{C}_1
ight]\,\cdot\ &\left[(x_2,x_3,x_4)\in\mathcal{C}_2
ight]\,\cdot\ &\left[(x_4,x_5,x_6)\in\mathcal{C}_3
ight]\,\end{aligned}$$

Note: $x_i \in \{0, 1\}$

Pseudo-codeword indicator function:

$$\hat{I}_{1}(\omega_{1}, \omega_{2}, \omega_{5}) \cdot \hat{I}_{2}(\omega_{2}, \omega_{3}, \omega_{4}) \cdot \hat{I}_{3}(\omega_{4}, \omega_{5}, \omega_{6})$$

$$= \left[(\omega_{1}, \omega_{2}, \omega_{5}) \in \operatorname{conic}(\mathcal{C}_{1}) \right] \cdot \left[(\omega_{2}, \omega_{3}, \omega_{4}) \in \operatorname{conic}(\mathcal{C}_{2}) \right] \cdot \left[(\omega_{4}, \omega_{5}, \omega_{6}) \in \operatorname{conic}(\mathcal{C}_{3}) \right]$$

Note: $0 \leq \omega_i$

Pseudo-Codewords / Fundamental Cone

E.g.

$$[(\omega_1, \omega_2, \omega_5) \in \operatorname{conic}(\mathcal{C}_1)] = 1$$

if and only if

$$\omega_1 \le \omega_2 + \omega_5$$
$$\omega_2 \le \omega_1 + \omega_5$$
$$\omega_5 \le \omega_1 + \omega_2$$

Pseudo-codeword indicator function:

$$\begin{split} \omega_{1} \geq 0 \\ \omega_{2} \geq 0 \\ \omega_{3} \geq 0 \end{split} \\ \hat{I}_{1}(\omega_{1}, \omega_{2}, \omega_{5}) \cdot \hat{I}_{2}(\omega_{2}, \omega_{3}, \omega_{4}) \cdot \hat{I}_{3}(\omega_{4}, \omega_{5}, \omega_{6}) \\ &= \left[(\omega_{1}, \omega_{2}, \omega_{5}) \in \operatorname{conic}(\mathcal{C}_{1}) \right] \cdot \\ &\left[(\omega_{2}, \omega_{3}, \omega_{4}) \in \operatorname{conic}(\mathcal{C}_{2}) \right] \cdot \end{split}$$

 $\left[(\omega_4,\omega_5,\omega_6)\in\operatorname{conic}(\mathcal{C}_3)\right]$

Note: $0 \leq \omega_i$

Pseudo-codeword spectra

Pseudo-Codeword Spectra (Part 1)

Consider the PG(2,2)-based [7,3,4] binary linear code. Here is its minimal pseudo-codeword spectrum:

Pseudo-Codeword Spectra (Part 2)

Consider the EG(2,4)-based [15, 7, 5] binary linear code.

Here are some minimal pseudo-codeword spectra for different parity-check matrices of this code:

LABShp

Pseudo-Codeword Spectra (Part 3)

Consider the EG(2,4)-based [15, 7, 5] binary linear code. The following plot shows upper and lower bounds on the word error rate of LP and ML decoding.

Pseudo-Codeword Spectra (Part 4)

Consider the EG(2,4)-based [15,7,5] binary linear code. The following plot shows the word error rate for different decoding algorithms. (Note:

LP/ML WER curves for small WER can be obtained from bounds shown in the previous plot.)

Pseudo-Codeword Spectra (Part 5)

Consider the PG(2,4)-based [21, 11, 6] binary linear code.

Pseudo-Codeword Spectra (Part 6)

Some remarks:

• Haley / Grant paper (ISIT 2005) presented a class of LDPC codes

Some remarks:

Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
where the minimal BEC pseudo-weight grows with growing block length,

Some remarks:

- Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
 - where the minimal BEC pseudo-weight grows with growing block length,
 - but where the minimual AWGNC pseudo-weight is bounded from above.

Some remarks:

- Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
 - where the minimal BEC pseudo-weight grows with growing block length,
 - but where the minimual AWGNC pseudo-weight is bounded from above.
 - \Rightarrow It is important which channel is used!

Some remarks:

- Haley / Grant paper (ISIT 2005) presented a class of LDPC codes
 - where the minimal BEC pseudo-weight grows with growing block length,
 - but where the minimual AWGNC pseudo-weight is bounded from above.
 - \Rightarrow It is important which channel is used!
- Chertkov / Stepanov paper (ISIT 2007) presented an intesting heuristic for approximating the pseudo-weight spectra of minimal codewords for a given code.

Graph-cover interpretation of pseudo-codewords

Graph Covers (Part 1)

Definition: A double cover of a graph is . . . Note: the above graph has $2! \cdot 2! \cdot 2! \cdot 2! \cdot 2! = 32$ double covers.

Graph Covers (Part 2)

Besides double covers, a graph also has many triple covers, quadruple covers, quintuple covers, etc.

Graph Covers (Part 3)

An *m*-fold cover is also called a cover of degree m. Do not confuse this degree with the degree of a vertex! Note: there are many possible *m*-fold covers of a graph.

We can also consider covers of Tanner/factor graphs. Here is e.g. a possible double cover of some Tanner/factor graph.

Base factor/Tanner graph of a length-7 code

We can also consider covers of Tanner/factor graphs. Here is e.g. a possible double cover of some Tanner/factor graph.

Base factor/Tanner graph of a length-7 code Possible double cover of the base Tanner/factor graph

We can also consider covers of Tanner/factor graphs. Here is e.g. a possible double cover of some Tanner/factor graph.

Base factor/Tanner graph of a length-7 code Possible double cover of the base Tanner/factor graph

Let us study the codes defined by the graph covers of the base Tanner/factor graph.

Obviously, any codeword in the base Tanner/factor graph can be lifted to a codeword in the double cover of the base Tanner/factor graph.

(1, 1, 1, 0, 0, 0, 0)

Obviously, any codeword in the base Tanner/factor graph can be lifted to a codeword in the double cover of the base Tanner/factor graph.

(1, 1, 1, 0, 0, 0, 0) (1:1, 1:1, 1:1, 0:0, 0:0, 0:0, 0:0)

?

But in the double cover of the base Tanner/factor graph there are also codewords that are not liftings of codewords in the base Tanner/factor graph!

(1:0, 1:0, 1:0, 1:1, 1:0, 1:0, 0:1)

But in the double cover of the base Tanner/factor graph there are also codewords that are not liftings of codewords in the base Tanner/factor graph!

Theorem:

Theorem:

• Let $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$ be the fundamental polytope of a parity-check matrix \mathbf{H} .

Theorem:

- Let $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$ be the fundamental polytope of a parity-check matrix \mathbf{H} .
- Let *P*' be the set of all vectors obtained through codewords in finite covers.

Theorem:

- Let $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$ be the fundamental polytope of a parity-check matrix \mathbf{H} .
- Let *P*' be the set of all vectors obtained through codewords in finite covers.
- Then, \mathcal{P}' is dense in \mathcal{P} , i.e.

 $\mathcal{P}' = \mathcal{P} \cap \mathbb{Q}^n$ $\mathcal{P} = \text{closure}(\mathcal{P}').$

Theorem:

- Let $\mathcal{P} \triangleq \mathcal{P}(\mathbf{H})$ be the fundamental polytope of a parity-check matrix \mathbf{H} .
- Let *P*' be the set of all vectors obtained through codewords in finite covers.
- Then, \mathcal{P}' is dense in \mathcal{P} , i.e.

 $\mathcal{P}' = \mathcal{P} \cap \mathbb{Q}^n$ $\mathcal{P} = \text{closure}(\mathcal{P}').$

Moreover, note that all vertices of \mathcal{P} are vectors with rational entries and are therefore also in \mathcal{P}' .

The canonical completion

Trying to Construct a Codeword

Example: [7, 4, 3] binary Hamming code.

Example: [7, 4, 3] binary Hamming code.

Example: [7, 4, 3] binary Hamming code.

Example: [7, 4, 3] binary Hamming code.

The canonical completion for a (j = 3, k = 4)-regular LDPC code. On check-regular graphs the (scaled) canonical completion always gives a (valid) pseudo-codeword.

An Upper Bound on the Minimum Pseudo-Weight based on Can. Compl.

An Upper Bound on the Minimum Pseudo-Weight based on Can. Compl.

Theorem: Let C be a (j, k)-regular LDPC code with $3 \le j < k$. Then the minimum pseudo-weight is upper bounded by

 $w_{\mathrm{p,min}}^{\mathrm{AWGNC}}(\mathcal{C}) \leq \beta'_{j,k} \cdot n^{\beta_{j,k}},$

where

$$\beta_{j,k}' = \left(\frac{j(j-1)}{j-2}\right)^2, \quad \beta_{j,k} = \frac{\log\left((j-1)^2\right)}{\log\left((j-1)(k-1)\right)} < 1.$$

An Upper Bound on the Minimum Pseudo-Weight based on Can. Compl.

Theorem: Let C be a (j, k)-regular LDPC code with $3 \le j < k$. Then the minimum pseudo-weight is upper bounded by

 $w_{\mathrm{p,min}}^{\mathrm{AWGNC}}(\mathcal{C}) \leq \beta'_{j,k} \cdot n^{\beta_{j,k}},$

where

$$\beta_{j,k}' = \left(\frac{j(j-1)}{j-2}\right)^2, \quad \beta_{j,k} = \frac{\log\left((j-1)^2\right)}{\log\left((j-1)(k-1)\right)} < 1.$$

Corollary: The minimum relative pseudo-weight for any sequence $\{C_i\}$ of (j, k)-regular LDPC codes of increasing length satisfies

$$\lim_{n \to \infty} \left(\frac{w_{\mathrm{p,min}}^{\mathrm{AWGNC}}(\mathcal{C}_i)}{n} \right) = 0.$$

Influence

of redundant rows in the parity-check matrix

and of cycles in the Tanner graph

A Tanner Graph with Four-Cycles

Observation:

$$\mathbf{H} = \begin{pmatrix} \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots \\ \cdots & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix} \qquad \begin{array}{c} \cdots \\ \Rightarrow & \begin{array}{c} \omega \in \operatorname{conv}(\mathcal{C}_1) \\ \omega \in \operatorname{conv}(\mathcal{C}_2) \\ \cdots \end{array}$$

A Tanner Graph with Four-Cycles

Observation:

A Tanner Graph with Four-Cycles

Observation:

If the support of the blue and the green line coincide in at least two position then we have

 $\operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \supseteq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_{12}).$

A Tanner Graph without Four-Cycles

Observation:

$$\mathbf{H} = \begin{pmatrix} \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots \\ \cdots & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix} \qquad \begin{array}{c} \cdots \\ \Rightarrow & \begin{array}{c} \omega \in \operatorname{conv}(\mathcal{C}_1) \\ \omega \in \operatorname{conv}(\mathcal{C}_2) \\ \cdots \end{array}$$

A Tanner Graph without Four-Cycles

Observation:

A Tanner Graph without Four-Cycles

Observation:

If the support of the blue and the green line coincide in at most one position then we have

 $\operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) = \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_{12}).$

Tanner Graphs with/without Four-Cycles

Proposition: It seems to be favorable to have no four-cycles in the Tanner graph: "we get some inequalities for free!"

Tanner Graphs with/without Four-Cycles

Proposition: It seems to be favorable to have no four-cycles in the Tanner graph: "we get some inequalities for free!"

Note: this argument can be easily extended to Tanner graphs with no six-cycles, no eight-cycles, etc.

Obtaining tighter Relaxations

Let the relaxation $\operatorname{relax}(\mathcal{C})$ of \mathcal{C} be the set of all vectors $\omega \in \mathbb{R}^5$ that fulfill three conditions:

$$\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \qquad \Rightarrow \qquad \mathbf{\omega} \in \operatorname{conv}(\mathcal{C}_1) \\ \mathbf{\omega} \in \operatorname{conv}(\mathcal{C}_2) \\ \mathbf{\omega} \in \operatorname{conv}(\mathcal{C}_3) \end{cases}$$

Therefore,

$$\operatorname{relax}(\mathcal{C}) \triangleq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3).$$

How well can we do by adding more (redundand) lines to the parity-check matrix?

Obtaining tighter Relaxations (Part 2)

What about taking a parity-check matrix \mathbf{H}' that contains all the non-zero codewords from the dual code?

$$\mathbf{H}' = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{l} \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{1}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{12}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{13}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{23}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{23}) \\ \boldsymbol{\omega} \in \operatorname{conv}(\mathcal{C}_{123}) \end{array}$$

 $\operatorname{relax}'(\mathcal{C}) \triangleq \operatorname{conv}(\mathcal{C}_1) \cap \operatorname{conv}(\mathcal{C}_2) \cap \operatorname{conv}(\mathcal{C}_3) \cap \operatorname{conv}(\mathcal{C}_{12}) \cap \operatorname{conv}(\mathcal{C}_{13}) \cap \operatorname{conv}(\mathcal{C}_{23}) \cap \operatorname{conv}(\mathcal{C}_{123}).$

Obtaining tighter Relaxations (Part 3)

Translating a theorem from matroid theory we get the following result: **Theorem** (Seymour 1981) We have

 $\operatorname{relax}'(\mathcal{C}) = \operatorname{conv}(\mathcal{C})$

if and only if there is no way to shorten and puncture C such that we get the codes F_7^* , $M(K_5)$, or R_{10} .

F_{7}^{*} :	$\left[7,3,4 ight]$ code
$M(K_5)$:	[10,6,3] code
R_{10} :	$\left[10,5,4 ight]$ code

Pseudo-codwords and the edge zeta function

Tanner/Factor Graph of a Cycle Code

Cycle codes are codes which have a Tanner/factor graph where all bit nodes have degree two. (Equivalently, the parity-check matrix has two ones per column.)

Example:

Tanner/factor graph

Tanner/Factor Graph of a Cycle Code

Cycle codes are codes which have a Tanner/factor graph where all bit nodes have degree two. (Equivalently, the parity-check matrix has two ones per column.)

Example:

Tanner/factor graph

Corresponding normal factor graph (LABS^{hp})

Tanner/Factor Graph of a Cycle Code

Cycle codes are called cycle codes because codewords correspond to simple cycles (or to the symmetric difference set of simple cycles) in the Tanner/factor graph.

Example:

Tanner/factor graph

 X_1 X_3 X_4 X_6 X_2 X_7

Corresponding normal factor graph

Definition (Hashimoto, see also Stark/Terras):

Here: $\Gamma = (e_1, e_2, e_3)$

Let Γ be a path in a graph X with edge-set E; write

$$\Gamma = (e_{i_1}, \dots, e_{i_k})$$

to indicate that Γ begins with the edge e_{i_1} and ends with the edge e_{i_k} .

Definition (Hashimoto, see also Stark/Terras):

Here:
$$\Gamma = (e_1, e_2, e_3)$$

Let Γ be a path in a graph X with edge-set E; write

 $\Gamma = (e_{i_1}, \dots, e_{i_k})$

to indicate that Γ begins with the edge e_{i_1} and ends with the edge e_{i_k} .

The monomial of Γ is given by

 $g(\Gamma) \triangleq u_{i_1} \cdots u_{i_k},$

where the u_i 's are indeterminates.

Definition (Hashimoto, see also Stark/Terras): The edge zeta function of X is defined to be the power series

$$\zeta_X(u_1,\ldots,u_n)\in\mathbb{Z}[[u_1,\ldots,u_n]]$$

given by

$$\zeta_X(u_1,\ldots,u_n) = \prod_{[\Gamma]\in A(X)} \frac{1}{1-g(\Gamma)},$$

where A(X) is the collection of equivalence classes of backtrackless, tailless, primitive cycles in X.

Note: unless X contains only one cycle, the set A(X) will be countably infinite.

Theorem (Bass):

- The edge zeta function $\zeta_X(u_1, \ldots, u_n)$ is a rational function.
- More precisely, for any directed graph \vec{X} of X, we have

$$\zeta_X(u_1,\ldots,u_n) = \frac{1}{\det\left(\mathbf{I} - \mathbf{U}\mathbf{M}(\vec{X})\right)} = \frac{1}{\det\left(\mathbf{I} - \mathbf{M}(\vec{X})\mathbf{U}\right)}$$

where

- I is the identity matrix of size 2n,
- U = diag $(u_1, \ldots, u_n, u_1, \ldots, u_n)$ is a diagonal matrix of indeterminants.
- $\mathbf{M}(\vec{X})$ is a $2n \times 2n$ matrix derived from some directed graph version \vec{X} of X.

Relationship Pseudo-Codewords and Edge Zeta Function (Part 1: Theorem)

Theorem:

- Let C be a cycle code defined by a parity-check matrix **H** having normal graph $N \triangleq N(\mathbf{H})$.
- Let n = n(N) be the number of edges of N.
- Let $\zeta_N(u_1, \ldots, u_n)$ be the edge zeta function of N.
- Then

the monomial $u_1^{p_1} \dots u_n^{p_n}$ has a nonzero coefficient in the Taylor series expansion of ζ_N if and only if

the corresponding exponent vector (p_1, \ldots, p_n) is an unscaled pseudo-codeword for C.

Relationship Pseudo-Codewords and Edge Zeta Function (Part 2: Example)

This normal graph N has the following inverse edge zeta function:

$$\zeta_N(u_1,\ldots,u_7) = \frac{1}{\det(\mathbf{I}_{14} - \mathbf{UM})}$$

$$= - 1$$

 $1 - 2u_{1}u_{2}u_{3} + u_{1}^{2}u_{2}^{2}u_{3}^{2} - 2u_{5}u_{6}u_{7} + 4u_{1}u_{2}u_{3}u_{5}u_{6}u_{7} - 2u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{5}u_{6}u_{7}$ $-4u_{1}u_{2}u_{3}u_{4}^{2}u_{5}u_{6}u_{7} + 4u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{4}^{2}u_{5}u_{6}u_{7} + u_{5}^{2}u_{6}^{2}u_{7}^{2} - 2u_{1}u_{2}u_{3}u_{5}^{2}u_{6}^{2}u_{7}^{2}$ $+u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{5}^{2}u_{6}^{2}u_{7}^{2} + 4u_{1}u_{2}u_{3}u_{4}^{2}u_{5}^{2}u_{6}^{2}u_{7}^{2} - 4u_{1}^{2}u_{2}^{2}u_{3}^{2}u_{4}^{2}u_{5}^{2}u_{6}^{2}u_{7}^{2}$ $(LABS^{hp})$

Relationship Pseudo-Codewords and Edge Zeta Function (Part 3: Example)

 $= 1 + 2u_1u_2u_3 + 3u_1^2u_2^2u_3^2 + 2u_5u_6u_7$ $+ 4u_1u_2u_3u_5u_6u_7 + 6u_1^2u_2^2u_3^2u_5u_6u_7$ $+ 4u_1u_2u_3u_4^2u_5u_6u_7 + 12u_1^2u_2^2u_3^2u_4^2u_5u_6u_7$ $+ \cdots$

We get the following exponent vectors:

(0, 0, 0, 0, 0, 0, 0)codeword (1, 1, 1, 0, 0, 0, 0)codeword (2, 2, 2, 0, 0, 0, 0)pseudo-codeword (in \mathbb{Z} -span) (0, 0, 0, 0, 1, 1, 1)codeword (1, 1, 1, 0, 1, 1, 1)codeword (2, 2, 2, 0, 1, 1, 1)pseudo-codeword (in \mathbb{Z} -span) pseudo-codeword (not in Z-span) (1, 1, 1, 2, 1, 1, 1)pseudo-codeword (in \mathbb{Z} -span) (2, 2, 2, 2, 1, 1, 1)

The Newton Polytope of a Polynomial

Here: $P(u_1, u_2)$ = $u_1^0 u_2^0 + 3u_1^1 u_2^2 + 4u_1^3 u_2^1 - 2u_1^4 u_2^5$

Definition:

The Newton polytope of a polynomial $P(u_1, \ldots, u_n)$ in n indeterminates is the convex hull of the points in n-dimensional space given by the exponent vectors of the nonzero monomials appearing in $P(u_1, \ldots, u_n)$.

Similarly, we can associate a polyhedron to a power series.

Characterizing the Fundamental Cone Through the Zeta Function

Collecting the results from the previous slides we get:

Proposition: Let C be some cycle code with parity-check matrix **H** and normal factor graph $N(\mathbf{H})$.

The Newton polyhedron of the zeta function of $N(\mathbf{H})$ equals the fundamental cone $\mathcal{K}(\mathbf{H})$.

Characterizing the Fundamental Cone Through the Zeta Function

The inverse of the zeta function seems to give some valuable information about the dual cone of the fundamental cone.

LP decoding thresholds for the BSC

Let $\varepsilon \in [0, 1]$. A simple model is e.g. the binary symmetric channel (BSC) with cross-over probability ε . It is a DMC

Let $\varepsilon \in [0, 1]$. A simple model is e.g. the binary symmetric channel (BSC) with cross-over probability ε . It is a DMC

• with input alphabet $\mathcal{X} = \{0, 1\}$,

Let $\varepsilon \in [0, 1]$. A simple model is e.g. the binary symmetric channel (BSC) with cross-over probability ε . It is a DMC

- with input alphabet $\mathcal{X} = \{0, 1\}$,
- with output alphabet $\mathcal{Y} = \{0, 1\}$,

Let $\varepsilon \in [0, 1]$. A simple model is e.g. the binary symmetric channel (BSC) with cross-over probability ε . It is a DMC

- with input alphabet $\mathcal{X} = \{0, 1\}$,
- with output alphabet $\mathcal{Y} = \{0, 1\}$,
- and with conditional probability mass function

$$P_{Y_i|X_i}(y_i|x_i) = \begin{cases} 1 - \varepsilon & (y_i = x_i) \\ \varepsilon & (y_i \neq x_i) \end{cases}.$$

The capacity for the BSC as a function of the cross-over probability arepsilon is

 $C_{\rm BSC} = 1 - h_2(\varepsilon),$

where $h_2(\varepsilon) \triangleq -\varepsilon \log_2(\varepsilon) - (1-\varepsilon) \log_2(1-\varepsilon)$.

The capacity for the BSC as a function of the cross-over probability arepsilon is

 $C_{\rm BSC} = 1 - h_2(\varepsilon),$

where $h_2(\varepsilon) \triangleq -\varepsilon \log_2(\varepsilon) - (1-\varepsilon) \log_2(1-\varepsilon)$.

Assume that the channel is a BSC with cross-over probability ε .

Assume that the channel is a BSC with cross-over probability ε . Channel capacity:

- Channel coding theorem
- Converse to the channel coding theorem

Assume that the channel is a BSC with cross-over probability ε . Channel capacity:

- Channel coding theorem (Gallager's random coding error exponent, etc.)
- Converse to the channel coding theorem

(Fano's inequality, etc.)

Assume that the channel is a BSC with cross-over probability ε . Channel capacity:

- Channel coding theorem (Gallager's random coding error exponent, etc.)
- Converse to the channel coding theorem

(Fano's inequality, etc.)

Important: we are allowed to use the best available coding and decoding schemes for a given rate R.

Assume that the channel is a BSC with cross-over probability ε . Additionally, assume that we put restrictions on the coding schemes and/or on the decoding schemes.

Assume that the channel is a BSC with cross-over probability ε . Additionally, assume that we put restrictions on the coding schemes and/or on the decoding schemes.

 \Rightarrow Thresholds.

Assume that the channel is a BSC with cross-over probability ε . Additionally, assume that we put restrictions on the coding schemes and/or on the decoding schemes.

 \Rightarrow Thresholds.

Existence of LP Decoding Thresholds

• A priori it is not clear for what families/ensembles of codes there is an LP decoding threshold.

Existence of LP Decoding Thresholds

- A priori it is not clear for what families/ensembles of codes there is an LP decoding threshold.
- The tight connection between min-sum algorithm decoding and LP decoding suggests that families/ensembles that have a threshold under min-sum algorithm decoding also have a threshold under LP decoding.

Existence of LP Decoding Thresholds

- A priori it is not clear for what families/ensembles of codes there is an LP decoding threshold.
- The tight connection between min-sum algorithm decoding and LP decoding suggests that families/ensembles that have a threshold under min-sum algorithm decoding also have a threshold under LP decoding.
- [Koetter:Vontobel:06]: there is an LP decoding threshold for (w_{col}, w_{row}) -regular LDPC codes where $2 < w_{col} < w_{row}$.

BSC: An Upper Bound on the Threshold (Part 1)

Theorem:

- Consider a family of (w_{col}, w_{row}) -regular codes of increasing block length n.
- Consider a BSC with cross-over probability ε .
- In the limit $n \to \infty$, if

$$\varepsilon > \frac{1}{w_{\rm row}}$$

then with probability 1 the LP decoder will not decode to the transmitted codeword.

BSC: An Upper Bound on the Threshold (Part 2)

BSC: An Upper Bound on the Threshold (Part 2)

LABShp

BSC: An Upper Bound on the Threshold (Part 3)

Theorem: Consider a family of codes where the minimal row-degree goes to $w_{\text{row}}^{\min}(\infty)$ when $n \to \infty$ and a BSC with cross-over probability ε . In the limit $n \to \infty$, if

$$\varepsilon > \frac{1}{w_{\rm row}^{\rm min}(\infty)}$$

then with probability 1 the LP decoder will not decode to the transmitted codeword.

BSC: An Upper Bound on the Threshold (Part 3)

Theorem: Consider a family of codes where the minimal row-degree goes to $w_{\text{row}}^{\min}(\infty)$ when $n \to \infty$ and a BSC with cross-over probability ε . In the limit $n \to \infty$, if

$$\varepsilon > \frac{1}{w_{\rm row}^{\rm min}(\infty)}$$

then with probability 1 the LP decoder will not decode to the transmitted codeword.

Corollary: For any family of codes where $w_{row}^{min}(n)$ grows unboundedly, i.e. where

 $\lim_{n \to \infty} w_{\rm row}^{\rm min}(n) = \infty,$

the above right-hand side expression goes to 0.

Linear programming (LP) decoding:

$$\hat{\boldsymbol{\omega}} = \arg\min_{\boldsymbol{\omega}\in\mathcal{P}(\mathbf{H})}\sum_{i=1}^n \lambda_i \omega_i.$$

Linear programming (LP) decoding:

$$\hat{\boldsymbol{\omega}} = \arg\min_{\boldsymbol{\omega}\in\mathcal{P}(\mathbf{H})}\sum_{i=1}^n \lambda_i \omega_i.$$

Assume that the zero codeword has been sent. LP decoding does not decide for the all-zeros codeword if there is a vector

 $\boldsymbol{\omega} \in \mathcal{P}(\mathbf{H}) \setminus \{\mathbf{0}\}$

such that

$$\sum_{i=1}^{n} \lambda_i \omega_i < 0.$$

m

Linear programming (LP) decoding:

$$\hat{\boldsymbol{\omega}} = \arg\min_{\boldsymbol{\omega}\in\mathcal{P}(\mathbf{H})}\sum_{i=1}^n \lambda_i \omega_i.$$

Assume that the zero codeword has been sent. LP decoding does not decides for the all-zeros codeword if there is a vector

 $\boldsymbol{\omega} \in \mathcal{K}(\mathbf{H}) \setminus \{\mathbf{0}\}$

such that

$$\sum_{i=1}^n \lambda_i \omega_i < 0.$$

• Assume that we have a (w_{col}, w_{row}) -regular LDPC code.

- Assume that we have a (w_{col}, w_{row}) -regular LDPC code.
- Moreover, let $\omega \in \mathbb{R}^n$ be a vector with the following entries:

$$\omega_i \triangleq \begin{cases} \frac{1}{w_{\rm row} - 1} & \text{if } \lambda_i \ge 0\\ 1 & \text{if } \lambda_i < 0 \end{cases}$$

- Assume that we have a (w_{col}, w_{row}) -regular LDPC code.
- Moreover, let $\omega \in \mathbb{R}^n$ be a vector with the following entries:

$$\omega_{i} \triangleq \begin{cases} \frac{1}{w_{\text{row}} - 1} & \text{if } \lambda_{i} \ge 0\\ 1 & \text{if } \lambda_{i} < 0 \end{cases}$$

One can easily verify that $\omega \in \mathcal{K}(\mathbf{H})$.

- Assume that we have a (w_{col}, w_{row}) -regular LDPC code.
- Moreover, let $\omega \in \mathbb{R}^n$ be a vector with the following entries:

$$\omega_{i} \triangleq \begin{cases} \frac{1}{w_{\text{row}}-1} & \text{if } \lambda_{i} \ge 0\\ 1 & \text{if } \lambda_{i} < 0 \end{cases}$$

One can easily verify that $\omega \in \mathcal{K}(\mathbf{H})$.

• So, if

$$0 > \sum_{i=1}^{n} \lambda_{i} \omega_{i} = \left(\sum_{\substack{i=1\\\lambda_{i} \ge 0}}^{n} \lambda_{i}\right) \cdot \frac{1}{w_{\text{row}} - 1} + \left(\sum_{\substack{i=1\\\lambda_{i} < 0}}^{n} \lambda_{i}\right) \cdot 1$$

then LP decoding does not decide for the all-zeros codewordBS^{hp}

 For simplicity, assume that we are transmitting over a BSC with crossover probability 0 ≤ ε < 1/2.

$$\Rightarrow \lambda_i \in \{\pm L\} \quad \text{where} \quad L \triangleq \log\left(\frac{1-\varepsilon}{\varepsilon}\right) > 0.$$

 For simplicity, assume that we are transmitting over a BSC with crossover probability 0 ≤ ε < 1/2.

$$\Rightarrow \lambda_i \in \{\pm L\}$$
 where $L \triangleq \log\left(\frac{1-\varepsilon}{\varepsilon}\right) > 0.$

$$0 > \sum_{i=1}^{n} \lambda_{i} \omega_{i} = L \cdot \left((\# \text{not flipped}) \frac{1}{w_{\text{row}} - 1} - (\# \text{flipped}) \right).$$

then LP decoding does not decide for the all-zeros codeword.

So, if

$$0 > \sum_{i=1}^{n} \lambda_{i} \omega_{i} = L \cdot \left((\# \text{not flipped}) \frac{1}{w_{\text{row}} - 1} - (\# \text{flipped}) \right).$$

then LP decoding does not decide for the all-zeros codeword.

So, if

$$0 > \sum_{i=1}^{n} \lambda_{i} \omega_{i} = L \cdot \left((\# \text{not flipped}) \frac{1}{w_{\text{row}} - 1} - (\# \text{flipped}) \right).$$

then LP decoding does not decide for the all-zeros codeword.

Upon normalization, the above condition reads

$$0 > \frac{1}{n} \sum_{i=1}^{n} \lambda_i \omega_i = L \cdot \left(\frac{(\# \text{not flipped})}{n} \frac{1}{w_{\text{row}} - 1} - \frac{(\# \text{flipped})}{n} \right).$$

So, if

$$0 > \sum_{i=1}^{n} \lambda_{i} \omega_{i} = L \cdot \left((\# \text{not flipped}) \frac{1}{w_{\text{row}} - 1} - (\# \text{flipped}) \right).$$

then LP decoding does not decide for the all-zeros codeword.

Upon normalization, the above condition reads

$$0 > \frac{1}{n} \sum_{i=1}^{n} \lambda_i \omega_i = L \cdot \left(\frac{(\# \text{not flipped})}{n} \frac{1}{w_{\text{row}} - 1} - \frac{(\# \text{flipped})}{n} \right).$$

 In the limit n → ∞, the above condition is with probability one equal to the condition

$$0 > \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \lambda_i \omega_i = L \cdot \left((1 - \varepsilon) \frac{1}{w_{\text{row}} - 1} - \varepsilon \right) \text{(LABS^{hp})}$$

BSC: An Upper Bound on the Threshold (Part 1)

Theorem:

- Consider a family of (w_{col}, w_{row}) -regular codes of increasing block length n.
- Consider a BSC with cross-over probability ε .
- In the limit $n \to \infty$, if

$$\varepsilon > \frac{1}{w_{\rm row}}$$

then with probability 1 the LP decoder will not decode to the transmitted codeword.

0-Neighborhood-Based Bounds (Part 1)

 ω -vector that we constructed before: note that the the assignment of a value to ω_i was based only on the value of λ_i .

0-Neighborhood-Based Bounds (Part 2)

 ω -vector that we constructed before: note that the the assignment of a value to ω_i was based only on the value of λ_i :

$$\omega_{i} = f(\lambda_{i}) = f\left(\left\{\lambda_{i'}\right\}_{i' \in \mathcal{N}_{i}^{(0)}}\right).$$

0-Neighborhood-Based Bounds (Part 3)

 ω -vector that we constructed before: note that the the assignment of a value to ω_i was based only on the value of λ_i :

$$\omega_{i} = f(\lambda_{i}) = f\left(\left\{\lambda_{i'}\right\}_{i' \in \mathcal{N}_{i}^{(0)}}\right).$$

$$\omega_{i} \triangleq \begin{cases} \frac{1}{w_{\text{row}} - 1} & \text{if } \lambda_{i} \ge 0\\ 1 & \text{if } \lambda_{i} < 0 \end{cases}$$

One can easily check that $\omega \in \mathcal{K}(\mathbf{H})$.

2-Neighborhood-Based Bounds on the Threshold

Generalization:

$$\omega_{i} = f\left(\left\{\lambda_{i'}\right\}_{i' \in \mathcal{N}_{i}^{(2)}}\right).$$

2-Neighborhood-Based Bounds on the Threshold

We must take care of constrains: the map $f\left(\{\lambda_{i'}\}_{i'\in\mathcal{N}_i^{(2)}}\right)$ has to yield a vector in $\mathcal{K}(\mathbf{H})$.

2-Neighborhood-Based Bounds on the Threshold

We must take care of constrains: the map $f\left(\{\lambda_{i'}\}_{i'\in\mathcal{N}_i^{(2)}}\right)$ has to yield a vector in $\mathcal{K}(\mathbf{H})$.

 \Rightarrow We can set up a linear program that yields the best possible threshold for a 2-neighborhood. (Graph automorphisms help in simplifying that LP.)

2-Neighborhood-Based Bounds on the Threshold

Stopping sets, near-codewords, ...

Stopping Sets (Part 1)

received values:

after first iteration:

after first iteration:

The log-likelihood ratio vector for the above example is $\lambda = (+\infty, 0, +\infty, 0, 0, 0)$. Note that under LP decoding the vector (0, 0, 0, 0, 0, 0) (which is a codeword) and the vector $(0, 0, 0, \frac{2}{3}, \frac{2}{3}, \frac{2}{3})$ (which is a pseudo-codeword) have equal cost, i.e. cost zero.

Theorem:

Theorem:

• The support of any pseudo-codeword is a stopping set.

Stopping Sets (Part 2)

Theorem:

- The support of any pseudo-codeword is a stopping set.
- For any stopping set there exists at least one pseudo-codeword such that its support equals that stopping set.

Near-Codewords (Part 1)

Example: a [155, 64, 20] binary linear code by Tanner.

Near-Codewords (Part 1)

Example: a [155, 64, 20] binary linear code by Tanner.

The blue vertices form a so-called (5,3) near-codeword.

Near-Codewords (Part 2)

Example: a [155, 64, 20] binary linear code by Tanner.

Heuristic why near-codewords are bad for MPI decoding: the canonical completion w.r.t. the set of blue vertices gives a pseudo-codeword which is "bad" itself or is a good starting point for searching "bad" pseudo-codewords in the fundamental cone.

Near-Codewords (Part 2)

Example: a [155, 64, 20] binary linear code by Tanner.

Heuristic why near-codewords are bad for MPI decoding: the canonical completion w.r.t. the set of blue vertices gives a pseudo-codeword which is "bad" itself or is a good starting point for searching "bad" pseudo-codewords in the fundamental cone. Closely related notions: trapping sets, absorption sets.

The fundamental polytope in various contexts

Finite-length analysis of iterative decoding based on graph covers

Finite-length analysis of iterative decoding based on graph covers

(Koetter/Li/Vontobel/Walker, ITW2004)

