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Outline

1 Outline connections between the matroid theory, network coding,
and index coding.

2 Present two ways of constructing new classes of coding networks
from matroids

3 Show that these constructions are instrumental for establishing
several important properties of coding networks

I E.g., Insufficiency of linear coding

Network 
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Index  

Coding

Matroid 
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Dependency Relations in Networks

s1
e1

X1

s1

X2

e2

e5e3

t2

e7

t1

e4

e6

X2 X1

Dependent

messages

The network dictates dependency
relations among the source and edge
messages
Let Yei the message carried by edge ei

For instance, for any linear network coding
solution for the butterfly network, the sets
{Ye1, Ye2, Ye3} and {Ye4, Ye6, X2} are
dependent
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Networks vs. Matroids

Question
Do the dependency relations induced by a network always satisfy the
three matroidal conditions?

s1

e1

X1 X2

e2
e3

t2t1

e4

X2X1X2X1

Answer: No!
This network does not dictate a
priori the nature of the messages on
edges e1 and e3

{Ye1 , Ye3} can be either dependent
or independent
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Dependency Relations in Networks
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Network Model

s1

X1

X1

s2

X2

s3

X3

t1 t2

X2 X3 X1 X2 X3Demands:

Destinations:

Sources:

A communication network N is modeled by:

A graph G(V,E)

Source nodes s1, s2, . . .

Messages X = {x}
I Uniformly distributed over some finite

alphabet A
Destination nodes t1, t2, . . . with
demands
Links are noise-free and
interference-free
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General Problem

s1

X1

X1

s2

X2

s3

X3

t1 t2

X2 X3 X1 X2 X3Demands:

Destinations:

Sources:

Question
Is it possible to deliver all messages to
the corresponding destinations?
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Network Codes

X11 X12

X11

X21X22 X31X32

X21 X31 X11 X21 X31

X11+X21
X21+X31

X11-X31

X11+X21+X12+X22
X22+X32

X11-X31-X12+X32

X12 X22 X32 X12 X22 X32

Linear network code of
dimension 2

n - message dimensionality (each
message has n symbols)
k - source dimensionality
A (k, n)-code - an assignment of
encoding and decoding functions
A k

n - an achievable rate of the
network (over some alphabet A)
Goal: maximize the achievable rate
of the network
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Lemma

Lemma

If a network has a (k, n) solution over alphabet A then, the
following three conditions hold:

(N1) (source rates) H(x) = ka for any x ∈ X

(N2) (edge capacities) H(x) ≤ n for any x ∈ E

(N3) (input/output functional dependencies) for any x ∈ V

H(In(x)) = H(In(x) ∪Out(x))

a
Entropies are computed using logarithms to base |A|

These conditions are referred to as network entropy
conditions

In(x)

Out(x)

x
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Properties of the entropy

For discrete random variables A, B, and C

H(A,C) + H(B,C) ≥ H(C) + H(A,B, C)

Key idea: work with a polymatroid assignment σ instead of the
entropy function H

σ(A,C) + σ(B,C) ≥ σ(C) + σ(A,B, C)
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Lemma

Definition

Define a (k, n)-polymatroid assignment to a network N to be a map
σ : S → R, S = 2X∪E such that the following conditions hold:

(N1) (source rates) σ(x) = k for any x ∈ X

(N2) (edge capacities) σ((x) ≤ n for any x ∈ E

(N3) (input/output functional dependencies) for any x ∈ V

σ(In(x)) = σ(In(x) ∪Out(x))

(P1) σ(∅) = 0

(P2) If A ⊆ B ⊆ S, then σ(A) ≤ σ(B)

(P3) If A,B ⊆ S, then f(A ∪B) + f(A ∩B) ≤ f(A) + f(B)
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Polymatroid Assignments

Polymatroid upper bound on the capacity of network N

sup{k

n
: ∃(k, n) polymatroid assignment to N}

If a network has a (k, n) coding solution over alphabet A, then the
network has a (k, n) polymatroid assignment.
Since there may be many polymatroid assignments, polymatroid
bounds might be larger than a bound obtained using entropy
arguments.
The polymatroid upper bound is the best upper bound on the
network capacity obtainable using only Shannon-type
informational inequalities
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Example

1 2

3

4

5 6

x y

z

y x

2k = H(x) + H(y) =
= H(x, y) ≤ H(x, y, z)

= H(x, y) ≤ H(x) + H(y)
≤ k + n
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The Rank Function of a Matroid

Let (S, I) be a matroid with rank function r
I For each A ⊆ S, r(A) is the size of a base of S|A

The rank function satisfies the following for all A,B ⊆ S :
1 0 ≤ r(A) ≤ |A|
2 If A ⊆ B, then r(A) ≤ r(B)
3 r(A ∪B) + r(A ∩B) ≤ r(A) + r(B)
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Matroidal Networks

Let N be a network over graph G(V,E) with message set X

Let M = (S, I) be a matroid with rank function r

The network is referred to as matroidal associated with M if there
exists a function f : X ∪ E → such that

1 f is one-to-one on X;
2 f(X) ⊂ I
3 r(f(In(x))) = r(f(In(x) ∪Out(x))) for every x ∈ V
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Example

Consider the following network:

1a,b 2 a,b
x

y

Suppose we take matroid U2,2 with ground set {1, 2}
I We can use f(a) = f(x) = 1 and f(b) = f(y) = 2

Suppose we take matroid U2,3 with ground set {1, 2, 3}
I We can use f(a) = f(x) = 1 and f(b) = 2 and f(y) = 3
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Property of Matroidal Networks

Lemma
For any matroidal network, the polymatroid upper bound on the
capacity is at least 1

Lemma
If a network is scalar-linearly solvable over some finite field, then the
network is matroidal and the matroid is representable

Corollary
All solvable multicast networks are matroidal.
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Example

Lemma
The M -network below is solvable, but not matroidal
The network does not have any vector-linear solution of odd
vector dimension
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Constructing Matroidal Networks

8
9

7

3

1

2

4
5

6

51

x1 x2 x3

3

7 92

Non-Pappus 

Matroid

Add intermediate nodes to mimic the dependency relations in the
matroid
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Constructing Matroidal Networks

8
9

7

3

1

2

4
5

6

51

8

x1 x2 x3

3

7 92

4 6

x1 x3

Non-Pappus 

Matroid

x1
x2
x3

Add intermediate nodes and destinations with specific demands
chosen to reflect the dependency relations in the matroid.
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Creating networks from matroids

Start with rank-2 uniform matroid U2,3

Matroid has ground set {x̂, ŷ, ẑ}

x̂ ŷ ẑ

Step 1: Choose a matroid base B = {x̂, ŷ} and network
messages x and y and assign f(x) = x̂ and f(y) = ŷ

1 2
x y

A. Sprintson (Texas A&M University) Applications of Matroid Theory to NC Aug. 5, 2009 22 / 54



Example (cont.)

Step 2.
I Choose circuit is {x̂, ŷ, ẑ}, with x̂, ŷ already defined,
I add nodes n3 and n4

I define f(e1,3) = x̂, f(e2,3) = ŷ, f(e3,4) = ẑ

1 2
x y

3

4

z
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Example (cont.)

Step 3.
I Choose circuit is {x̂, ŷ, ẑ}, with x̂ is an image of a source node with

message x.
I Add a new receiver node n6 which demands x

1 2
x y

3

4

z

6
x
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Example (cont.)

Step 4.
I Choose circuit is {x̂, ŷ, ẑ}, with ŷ is an image of a source node with

message y.
I Add a new receiver node n5 which demands y

1 2
x y

3

4

z

6
x

5
y
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Fano network

Obtained from Fano matroid
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Non-Fano network

Obtained from Non-Fano matroid
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Linear vs. Non-Linear

The network on the left does
not admit any scalar or vector
linear code over any field
But, it has a non-linear one
over an alphabet of size 4.
Hence, linear network codes
are not sufficient

X1

X1X3 X3X2

X2 X3

X4 X5

X2 X1 X3 X4 X5 X3
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Vamos network

Vamos network is not representable
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Property of Vamos Network

Theorem
The polymatroid upper bound on the coding capacity of the Vamos
network is 1

Best upper bound that can be obtained by using Shannon-type
inequalities

Theorem
The coding capacity of the Vamos network is at most 10/11.

Obtained by using non-Shannon inequalities
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Index Coding Problem

x1

x2 x3

x4
wanted 
packet

side 
information

x1 x4

x1
wanted 
packet

side 
information

x2 x3 x1

wanted 
packet

side 
information

x2

x3

wanted 
packet

side 
information x2

x3

x4

Find a code that will satisfy the demands of all receivers with the
minimum possible number of transmissions.
Y. Birk and T. Kol,“ Coding-on-demand by an informed source (ISCOD) for efficient broadcast of different supplemental data to

caching clients,” INFOCOM 98.
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Optimal Index Code

x1

x4
wanted 
packet

side 
information

x1
wanted 
packet

side 
information

x2 x3
x1

wanted 
packet

side 
information

x2

x3

wanted 
packet

side 
information x2

x3

x4

x1 + x4x1 + x2 + x3

l = 2
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Corresponding Min-Rank Problem

x1

x2x3

x4
wanted 
packet

side 
information

x1 x4

x1
wanted 
packet

side 
information

x2 x3

x1

wanted 
packet

side 
information

x2

x3

wanted 
packet

side 
information x2

x3

x4

x1 x2 x3 x4

x1 1 X X 0
x2 X 1 X 0
x3 0 X 1 X
x4 X 0 0 1

don't 
care
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Side-information graph G

x2x3

x4
wanted 
packet

side 
information

x1 x4

x1
wanted 
packet

side 
information

x2

x1

wanted 
packet

side 
information

x2

x3

wanted 
packet

side 
information x2

x3

x4

x1 x2

x4 x3
x3

(i, j) is an edge iff Ri knows the value of xi
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Index Code

An index code of length l for G is
I An encoding function E : {0, 1}n → {0, 1}l

I Decoding functions D1, . . . , Dn so that ∀i ∈ [n], ∀x ∈ {0, 1}n:

Di(E(x), x|N+
G(i)) = xi,

where N+
G(i) are out-neighbors of Ri in G

x1 x2

x4 x3
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Scalar linear codes

x1 x2 x3 x4

x1 1 X X 0
x2 X 1 X 0
x3 0 X 1 X
x4 X 0 0 1

OPT ≤ min
H⊂G

rank2(AH + I) =: minrk2(G)

minrk2(G) - the optimal size of scalar linear code
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Theorem (Lubetzky and Stav, 2007)

Theorem
For any ε > 0 and sufficiently large n there exists a graph G on n
vertices such that:

I Any linear index code for G requires n1−ε bits
I There exists a non-linear index code for G using nε bits

Moreover, G is undirected and can be constructed explicitly.

Proof techniques
I Use the fact that codes over high-order fields may result in fewer

transmissions
I Use Ramzey graphs for the construction

1

1Lubetzky, E. and Stav, U. 2007. Non-Linear Index Coding Outperforming the
Linear Optimum. In Proceedings of the 48th FOCS 161-168.
A. Sprintson (Texas A&M University) Applications of Matroid Theory to NC Aug. 5, 2009 37 / 54



Proof (scketch)

Need to find a graph such that minrk2(G) is “large” and l(G) is
“small”
Idea: Use higher order fields:

I Consider A(aij) representing G over F
I Encode Ax using drankF(A) log2 |F|e bits
I Decoding:

a−1
ii (Ax)i = xi + a−1

ii

∑
j∈N+

G(i)

aijxj

I l(G) ≤ dminrkF(G) log2 |F|e

x1 x2 x3 x4

x1 1 X X 0
x2 X 1 X 0
x3 0 X 1 X
x4 X 0 0 X
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Proof (scketch)

Property of minrank:

minrk2(G)minrk2(Ḡ) ≥ n

where Ḡ is a complimentary graph
This implies that we need to find G such that minrk2(Ḡ) is small
and minrkF is “small”
Such G is a Ramsey graph

I Use a construction from [Alon 98]
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Theorem

Theorem
For any ε > 0 and sufficiently large n there exists a graph G on n
vertices such that:

I Any linear index code for G over some field F requires
√

n bits
I There exists a non-linear index code for G using nε bits

Moreover, G is undirected and can be constructed explicitly.
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Equivalence to Linear Network Coding

X1

X1

X2 X3

X2 X3

X1

X2

demands

side info

X2

X1 X3

demands

side 

info

X3

X1

demands

side info

Transmitter

Receiver 1

Receiver 2 Receiver 3

X1+X2

X3

Theorem
Given a network N with m edges, there exists an instance of the Index
Coding problem I(N ) such that N admits a vector linear network code of
dimension n over GF (q) iff I(N ) has an optimal linear index code with the
same properties and consisting of nm transmissions.

S. El Rouayheb, S. and C. N. Georghiades, “On the Relation Between the Index Coding and the Network Coding Problems,” ISIT,
2008
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Back to Matroids

R. Dougherty,C. Freiling, K. Zeger used this idea to construct
networks from matroids 2

However the obtained network will not necessarily reflect all the
dependency relations of the matroid.

Question
Given a matroid, can we build a network that reflects all the
dependencies AND independencies in the matroid?

If so, then a linear representation of the matroid will give a linear
network code for the network, and vice versa

2
R. Dougherty,C. Freiling, K. Zeger, “Networks, Matroids, and Non-Shannon Information Inequalities,” Trans. Inf. Th., 07
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Back to Matroids

Given a matroid, we construct a network whose dependency
relations satisfy the given matroidal constraints.
As a result, we obtain a reduction that links the existence of vector
linear codes for networks to the multilinear representation
properties of matroids.
An important intermediate step in this reduction is the connection
to Index Coding.

Network 

Coding

Index  

Coding

Matroid 

Theory
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Linear Representation of Matroids

1

2 34

5

1

6

7

X2+X3

X1+X2+X3

X1+X3

X1+X2

X3X2

X1

1

1

6

7

5

342

Linear Representation of
the Non-Fano Matroid

over GF (3).

X1, X2, X3 canonical basis of GF (3)3

Definition
A matroid M(E, I) of rank k is linearly
representable over a field F if

There exists a set S of vectors in Fk

And a bijection φ : E → S s.t. ∀A ⊆ E,
A ∈ I ⇔ φ(A) is linearly independent
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Main Theorem

Given a matroid, we build a network that reflects ALL the matroid
dependencies and independencies
Let M(Y, I) be a matroid
We construct an instance of the Network Coding problem N (M)
s.t.

Theorem
The network N (M) has a vector linear network code of dimension n
over GF (q) iff the matroid M has an n-linear representation over the
same field.
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Proof Idea

?

? ?

?demands

Side info

?

?

?

? ?

X1,X2,X3

1

2 34

5

1

6

7

X2+X3

X1+X2+X3

X1+X3

X1+X2

X3X2

X1

1

6

7

5

342

demands

demands

Side info

Side info

Y1,...,Y7
Extra 

messages:

Focus on the equivalent Index Coding formulation
Add extra messages in the Index Coding problem to gain more
degrees of freedom
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Proof Outline: Transmitter

X={X1,�,X3}

Y={Y1,�,Y7}

1

2 4

5

1

6

7

X2+X3

X1+X2+X3

X1+X3

X1+X2

X1
1

6

7

5

342

X2 X3

Let M(Y, r) be a matroid of rank k where Y = {Y1, . . . , Ym}
In the equivalent Index Coding Problem, the transmitter has two
sets of messages

1 X = {X1, . . . , Xk} corresponding to the matroid representation
2 Y = {Y1, . . . , Ym} extra messages corresponding to the matroid

ground set
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Proof Outline: Diagonal Form

X={X1,X2,X3}

Y={Y1,
,Y7}

Y

X

demands

Side info

Optimal Index Code:

g1(X, Y ) = a11X1 + a12X2 + a13X3 + b11Y1 + · · · + b17Y7

g2(X, Y ) = a21X1 + a22X2 + a23X3 + b21Y1 + · · · + b27Y7

.

.

.

g7(X, Y ) = a71X1 + a72X2 + a73X3 + b71Y1 + · · · + b77Y7

We add a receiver having the set X as side info and demanding
the messages in Y

A lower bound on the number of transmissions is then |Y | = 7

This receiver is able to decode Y iff Matrix [aij ] is invertible
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Proof Outline: Diagonal Form

X={X1,X2,X3}

Y={Y1,
,Y7}

Y

X

demands

Side info

Optimal Index Code:

g′1(X, Y ) = Y1 + c11X1 + c12X2 + c13X3︸ ︷︷ ︸
f1(X)

g′2(X, Y ) = Y2 + c21X1 + c22X2 + c23X3︸ ︷︷ ︸
f2(X)

...
g′7(X, Y ) = Y7 + c71X1 + c72X2 + c73X3︸ ︷︷ ︸

f7(X)

We want to show that the functions fi(X) give a linear
representation of the matroid
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Proof Outline: Independent Sets

X={X1,X2,X3}

Y={Y1,
,Y7}

Y

X

demands

Side info

Index Code:

Y1 + f1(X)

Y2 + f2(X)

Y3 + f3(X)
.

.

.

Y7 + f7(X)X

Y2

demands

Side info

Y3Y1

Let B = {Y1, Y2, Y3} ⊆ Y be a base
The corresponding receiver can get f1(X), f2(X), f3(X) from the
transmitted signals
He can decode the X ’s iff f1(X), f2(X), f3(X) are linearly
independent
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Proof Outline: Dependent Sets

X={X1,X2,X3}

Y={Y1,
,Y7}

Y

X

demands

Side info

Index Code:

X

B

demands

Side info

Y1

Y2 Y3

Index Code:

Y1 + f1(X)

Y2 + f2(X)

Y3 + f3(X)
.

.

.

Y7 + f7(X)

C ⊆ Y is a dependent set.
For example, let C = {Y1, Y2, Y3}
The corresponding receiver can decode f2(X) and f3(X)

He can decode Y1 only iff f1(X) is a linear combination of f2(X)
and f3(X)
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Example

1

2 34

5

1

6

7

X2+X3

X1+X2+X3

X1+X3

X1+X2

X3X2

X1

1

1

6

7

5

342

Optimal Index Code:

Y1 + X1

Y2 + X2

Y3 + X3

Y4 + X2 + X3

Y5 + X1 + X3

Y6 + X1 + X2

Y7 + X1 + X2 + X3
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Example: The Non-Pappus Matroid

The Non-Pappus matroid is not linearly representable but has a
2-linear representation over GF (3)

F. Matus, “Matroid representations by partitions”, Discrete Mathematics, 1999
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Example: The Non-Pappus Network

X1 X2 Y1 Y2 Y9X3 Y3 Y4
...

...

Y1 Y2 Y3X1

X2

X3

Y1

...

Y9

The Non-Pappus network does not have a scalar linear network code
but a vector linear one of block length 2 over GF (3).
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Conclusion

There exist connections Matroid theory, Index Coding, and
Network Coding
Open problems:

I What is the exact capacity of the Vamos netork?
I Is the coding capacity of the Vamos network strictly greater than its

linear coding capacity.
I Are there other structures that would be more suitable to capture

the dependency/independency relations in the netoworks
F Such as FD-relations
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