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The Simplest Way to Share a Secret

How to share a secret value s ∈ G (a finite group)
among a set of n players

Take random elements s1, . . . , sn ∈ G with

s = s1 + · · ·+ sn

and give the value si to the i-th player.

The full set of n players can reconstruct
the secret value s from their shares

Any n − 1 players get no information about the value of s
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Secure Multiparty Computation

Secure multiparty computation: Some players want to compute an
agreed function of their private inputs

A toy example: n players compute F (x1, . . . , xn) = x1 + · · ·+ xn
They proceed in three steps: share, compute, and reconstruct

Reconstruct

P1 P2 · · · Pn

P1 s11 s12 · · · s1n x1
P2 s21 s22 · · · s2n x2
...

...
...

...
...

Pn sn1 sn2 · · · snn xn

y1 y2 · · · yn S

Of course, we want to compute any function in a more secure way
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How to Share a Secret

How to share a secret is such a way that t ≤ n players can
reconstruct it but t − 1 players get no information?

A simple and brilliant idea by Shamir, 1979

Let K be a finite field with |K| ≥ n + 1

To share a secret value k ∈ K, take a random polynomial

f (x) = k + a1x + · · ·+ at−1x t−1 ∈ K[x ]

and distribute the shares

f (x1), f (x2), . . . , f (xn)

where xi ∈ K− {0} is a public value associated to player pi

Independently, Blakley proposed in 1979
a geometric secret sharing scheme
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Properties of Shamir’s Secret Sharing Scheme

1 It is a threshold scheme
2 It is perfect
3 It is ideal
4 It is linear
5 It is multiplicative

To which extent these properties can be generalized to
secret sharing schemes with other access structures?

The access structure Γ is the family of qualified subsets
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Properties of Shamir’s Secret Sharing Scheme

1 It is a threshold scheme
2 It is perfect
3 It is ideal

Every share has the same length as the secret:
all are elements in a finite field
This is the best possible situation

4 It is linear
5 It is multiplicative

To which extent these properties can be generalized to
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Properties of Shamir’s Secret Sharing Scheme

1 It is a threshold scheme
2 It is perfect
3 It is ideal
4 It is linear

Shares are a linear function of the secret and random values.
The secret can be recovered by a linear function of the shares.
Shares for a linear combination of two secrets
can be obtained from the linear combination of the shares

λ1k1 +λ2k2 = (λ1f1 +λ2f2)(0) λ1s1i +λ2s2i = (λ1f1 +λ2f2)(xi )

5 It is multiplicative

To which extent these properties can be generalized to
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Properties of Shamir’s Secret Sharing Scheme
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If n ≥ 2t − 1, shares for the product of two secrets
can be obtained from the products of the shares
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Existential Questions & Optimization Problems

Does there exist a perfect SSS for every access structure?

YES

From now on, we deal only with perfect schemes

Does there exist a linear SSS for every access structure? YES

Does there exist an ideal SSS for every access structure? NO

Problem
What access structures admit an ideal secret sharing scheme?

Problem
Find the most efficient (linear) secret sharing scheme
for every access structure
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Brickell’s Ideal Secret Sharing Scheme

The geometric schemes by Blakley (1979) were transformed
by Brickell (1989) into a linear construction

Every linear code defines a vector space secret sharing scheme

(x1, . . . , xd )

 ↑ ↑ ↑
π0 π1 · · · πn
↓ ↓ ↓

 = (k , s1, . . . , sn)

It is perfect, ideal, and linear,
and it can have non-threshold access structure

A ∈ Γ if and only if rank(π0, (πi )i∈A) = rank((πi )i∈A)

k = π0(x) =
∑

i∈A λi,Aπi (x) =
∑

i∈A λi,Asi
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Ideal Access Structures: a Sufficient Condition

(x1, . . . , xd )

 ↑ ↑ ↑
π0 π1 · · · πn
↓ ↓ ↓

 = (k , s1, . . . , sn)

P = {p1, . . . ,pn}, Q = P ∪ {p0}

IfM = (Q, r) is the representable matroid associated to the code,

Γ = Γp0 (M) = {A ⊆ P : r(A ∪ {p0}) = r(A)}

Equivalently,

min Γ = min Γp0 (M) = {A ⊆ P : A ∪ {p0} is a circuit ofM}

That is, Γ is the port of the matroidM at the point p0

Matroid ports were introduced by Lehman 1976 to solve the
Shannon switching game

Theorem
If Γ is the port of a representable matroid, then Γ is ideal
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General Secret Sharing

A secret sharing scheme on the set P = {p1, . . . ,pn} of participants
is a mapping

Π: E → E0 × E1 × · · · × En
x 7→ (π0(x)|π1(x), . . . , πn(x))

together with a probability distribution on E

A secret sharing scheme is a collection of random variables

π0(x) ∈ E0 is the secret value
πi (x) ∈ Ei is the share for the player pi

such that
If A ⊆ P is qualified, H(E0|EA) = H(E0|(Ei )pi∈A) = 0
Otherwise, H(E0|EA) = H(E0)

The qualified subsets form the access structure Γ of the scheme

If pi is a non-redundant player, then H(Ei ) ≥ H(E0)

There exists a secret sharing scheme for every access structure,
but in general the shares are much larger than the secret
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Secret Sharing and Polymatroids

Consider as before P = {p1, . . . ,pn} and Q = P ∪ {p0}

For an arbitrary secret sharing scheme consider,
for every A ⊆ Q

h(A) =
H(EA)

H(E0)

Then
1 h(∅) = 0
2 X ⊆ Y ⊆ Q ⇒ h(X ) ≤ h(Y )

3 h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X ) + h(Y )

4 h(A ∪ {p0}) ∈ {h(A),h(A) + 1}

S = (Q,h) is a polymatroid
p0 is an atomic point of S
Γ = Γp0 (S) = {A ⊆ P : h(A ∪ {p0}) = h(A)}

Fujishige 1978, Csirmaz 1997
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Ideal Secret Sharing and Matroids

For every ideal secret sharing scheme

h(A ∪ {x}) ∈ {h(A),h(A) + 1} for all x ∈ Q

That is, the polymatroidM = (Q,h) is a matroid
Brickell and Davenport 1991

In this situation we say thatM is ss-representable

Equivalently, a matroid is ss-representable if its rank function
can be defined from the entropy of a family of random variables

The access structure of an ideal scheme is of the form
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Ideal Secret Sharing and Matroid Ports

At this point, we have a necessary condition

Theorem (Brickell and Davenport 1991)

Every ideal access structure is a matroid port

and a sufficient condition

Theorem (Brickell 1989)

Every port of a representable matroid is an ideal access structure
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Problem Solved?

Theorem (Brickell and Davenport 1991)

Every ideal access structure is a matroid port

Theorem (Brickell 1989)

Every port of a representable matroid is an ideal access structure

The necessary condition is not sufficient

Theorem (Seymour 1992)

The Vamos matroid is not ss-representable
There exist non-ideal matroid ports

The sufficient condition is not necessary

Theorem (Simonis and Ashikhmin 1998)

The non-Pappus matroid is not representable
but it is ss-representable
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Characterizing Ideal Access Structures

The ideal access structures coincide with the
ports of ss-representable matroids

Problem
Characterize the matroid ports

More later. . .

Problem
Characterize the ss-representable matroids

Interesting techniques to attack this problem have been proposed by
Matúš 1999 and Simonis and Ashikhmin 1998

These problems have been studied (and solved)
for several particular families of access structures
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Duality and Minors
Dual access structure: Γ∗ = {A ⊆ P : P − A /∈ Γ}

The minors of access structures are defined by the operations

Γ \ Z = {A ⊆ P − Z : A ∈ Γ} Γ/Z = {A ⊆ P − Z : A ∪ Z ∈ Γ}

Properties

Γp0 (M∗) = (Γp0 (M))∗,
Γp0 (M\ Z ) = Γp0 (M) \ Z ,
Γp0 (M/Z ) = Γp0 (M)/Z

Theorem
The following classes of access structures are minor-closed

1 Ports of representable matroids
2 Ideal access structures
3 Matroid ports

But only the first and the third are known to be closed by duality
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Ideal Access Structures. Summary

The access structures are ports of the matroids

Vector space a.s. ←→ Representable matroids⋂ ⋂
Ideal access structures ←→ ss-Representable matroids⋂ ⋂

Matroid ports ←→ Matroids
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Complexity of Secret Sharing Schemes

We move now to non-ideal secret sharing schemes

Problem
Find the most efficient secret sharing scheme
for every access structure

max H(Ei ),
∑

H(Ei ), and H(E), compared to H(E0),
are used to measure the complexity of a secret sharing scheme

Definition (complexity of a secret sharing scheme)

The complexity σ(Σ) of a secret sharing scheme Σ is defined as

σ(Σ) = max
pi∈P

H(Ei )

H(E0)
≥ 1
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The Big Problem

Problem
Find the most efficient secret sharing scheme
for every access structure

Definition (optimal complexity of an access structure)

The optimal complexity σ(Γ) of an access structure Γ is the infimum of
the complexities of all secret sharing schemes for Γ

Problem

Determine σ(Γ) for every Γ
At least, determine the asymptotic behavior of this parameter

Very little is known about this problem

It has been studied as well for several
particular families of access structures
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Upper Bounds from Constructions

Of course, every construction of a secret sharing scheme Σ for Γ
provides an upper bound: σ(Γ) ≤ σ(Σ)

Most of the good construction methods used until now provide
linear secret sharing schemes

That is, the mapping

Π: E → E0 × E1 × · · · × En
x 7→ (π0(x)|π1(x), . . . , πn(x))

is linear and the the uniform probability distribution is taken on E

Definition

For an access structure Γ, we define λ(Γ) as the infimum of the
complexities of all linear secret sharing schemes for Γ

Obviously, σ(Γ) ≤ λ(Γ)
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How Good Are Linear Secret Sharing Schemes?

For some access structures, the optimal schemes must be non-linear

Beimel and Weinreb (2005) Proved a strong separation result:
There exist a family of access structures such that
σ(Γn) grows linearly while
λ(Γn) grows superpolynomially
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Lower Bounds from Polymatroids
For a polymatroid S = (Q,h), we define σ(S) = maxp∈Q h({p})

Every polymatroid S = (Q,h) with an atomic point p0 ∈ Q
defines an access structure on P = Q − p0

Γ = Γp0 (S) = {A ⊆ P : h(A ∪ {p0}) = h(A)}

In this situation, we say that S is a Γ-polymatroid

κ(Γ) = inf{σ(S) : Γ = Γp0 (S)}

A secret sharing scheme Σ for Γ defines a polymatroid S = S(Σ)
such that Γ = Γp0 (S) and σ(Σ) = σ(S)

Therefore κ(Γ) ≤ σ(S) = σ(Σ)

Theorem
For every access structure Γ

κ(Γ) ≤ σ(Γ) ≤ λ(Γ)
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Minors

The minors of access structures are defined by the operations

Γ \ Z = {A ⊆ P − Z : A ∈ Γ} Γ/Z = {A ⊆ P − Z : A ∪ Z ∈ Γ}

Minors of a polymatroid S = (Q,h)

S \ Z = (Q − Z ,h\Z ), where h\Z (A) = h(A)

S/Z = (Q − Z ,h/Z ), where h/Z (A) = h(A ∪ Z )− h(Z )

Theorem

If Γ′ is a minor of Γ, then

κ(Γ′) ≤ κ(Γ) σ(Γ′) ≤ σ(Γ) λ(Γ′) ≤ λ(Γ)
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Duality

Dual access structure: Γ∗ = {A ⊆ P : P − A /∈ Γ}

Since linear secret sharing schemes can be identified to linear codes,

Theorem (Jackson and Martin 1994)

For every access structure Γ,

λ(Γ∗) = λ(Γ)

By considering a suitable definition of dual polymatroid,

Theorem (Martí-Farré and P. 2007)

For every access structure Γ,

κ(Γ∗) = κ(Γ)

The relationship between σ(Γ∗) and σ(Γ) is unknown
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How Good Are Combinatorial Lower Bounds?

Theorem (Csirmaz 1997)

There exist a family of access structures with

σ(Γn) ≥ κ(Γn) ≥ n
log n

This is the best known general lower bound on σ

But, on the other hand

Theorem (Csirmaz 1997)

For every access structure Γ on n participants, κ(Γ) ≤ n

This seems to imply that κ(Γ)
must be in general much smaller than σ(Γ)

Nevertheless no strong separation result
between these parameters is known

Non-Shannon information inequalities (next talk)
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An Old Result on Matroid Ports

Theorem (Seymour 1976)

An access structure is a matroid port if and only if
it has no minor isomorphic to Φ, Φ̂, Φ̂∗ or Ψs with s ≥ 3.

Since all these forbidden minors satisfy σ(Γ) ≥ κ(Γ) ≥ 3/2

Corollary (Martí-Farré and P. 2007)

If σ(Γ) < 3/2, then Γ is a matroid port

In addition, there is no access structure with 1 < κ(Γ) < 3/2
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Self-Dual Codes and Identically Self-Dual Matroids

Every linear code defines a vector space secret sharing scheme

(x1, . . . , xd )

 ↑ ↑ ↑
π0 π1 · · · πn
↓ ↓ ↓

 = (k , s1, . . . , sn)

If the code is self-dual, then the secret sharing scheme is
multiplicative because

kk ′ + s1s′1 + · · ·+ sns′n = 0

The access structure is self-dual, Γ∗ = Γ
It is the port of a representable identically self-dual matroid
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Self-Dual Codes and Identically Self-Dual Matroids

Problem
Can every representable identically self-dual matroid
be represented by a self-dual code?

The answer is yes for
Binary matroids
Uniform matroids
Bipartite matroids (Cramer et al. 2005)
Matroids with up to 8 points (Gracia and P. 2006)
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