Sublinear Compressive Sensing (CS) and Support Weight Enumerators of Codes: A Matroid Theory Approach

Olgica Milenkovic Joint work with Wei Dai and Hoa Vinh Pham

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

August 2009

Outline

- A brief introduction to CS;
- Why do support weight enumerators matter?
- Decoding of weighted superimposed codes: BP and OMP/SP sublinear complexity reconstruction.
- Many open problems...

4 3 5 4 3

Compressive Sensing

CS: a technique that converts high dimensional signals into signals (measurements) with significantly smaller dimension ($m \ll N$).

Recovery problem: decode the signal x based on the measurement y.

- Ill conditioned in general.
 - Φ does not have full column rank. There are many \mathbf{x} such that $\mathbf{y} = \Phi \mathbf{x}$.

When x is sufficiently sparse (K is small), exact reconstruction is possible. (Kashin, 1977; Bresler et. al., 1999; Donoho et. al., 2004; Candés et. al., 2005)

Exact Reconstruction: iff $y_1 - y_2 = \Phi(x_1 - x_2) \neq 0$, $\forall K$ -sparse $x_1 \neq x_2$. (1)Any 2*K*-column submatrix of Φ must have full rank

Reconstruction algorithm (l_0 -minimization): $\min \|\hat{\mathbf{x}}\|_0$ s.t. $\mathbf{y} = \Phi \hat{\mathbf{x}}$. # of measurements: m = 2K.

Computational complexity: NP hard \Rightarrow not practical for large N.

ヘロト ヘ戸ト ヘヨト ヘヨ

When x is sufficiently sparse (K is small), exact reconstruction is possible. (Kashin, 1977; Bresler et. al., 1999; Donoho et. al., 2004; Candés et. al., 2005)

Reconstruction algorithm (l_0 -minimization): $\min \|\hat{\mathbf{x}}\|_0$ s.t. $\mathbf{y} = \Phi \hat{\mathbf{x}}$. # of measurements: m = 2K.

Computational complexity: NP hard \Rightarrow not practical for large N.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

When x is sufficiently sparse (K is small), exact reconstruction is possible. (Kashin, 1977; Bresler et. al., 1999; Donoho et. al., 2004; Candés et. al., 2005)

Reconstruction algorithm (l_0 -minimization): $\min \|\hat{\mathbf{x}}\|_0$ s.t. $\mathbf{y} = \Phi \hat{\mathbf{x}}$. # of measurements: m = 2K.

Computational complexity: NP hard \Rightarrow not practical for large N.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

When x is sufficiently sparse (K is small), exact reconstruction is possible. (Kashin, 1977; Bresler et. al., 1999; Donoho et. al., 2004; Candés et. al., 2005)

Reconstruction algorithm (l_0 -minimization): min $\|\hat{\mathbf{x}}\|_0$ s.t. $\mathbf{y} = \Phi \hat{\mathbf{x}}$.

of measurements: m = 2K.

Computational complexity: NP hard \Rightarrow not practical for large N.

l_1 -minimization

l_1 minimization

min $\|\hat{\mathbf{x}}\|_1$ subject to $\mathbf{y} = \mathbf{\Phi}\hat{\mathbf{x}}$

- It is a convex optimization problem, solvable by linear programming.
- Complexity: $O\left(m^2N^{3/2}
 ight)$ (Nesterov & Nemirovski, 1994)
- Performance guarantee?

Restricted Isometry Property: Φ satisfies the RIP with $\delta_K \in [0, 1]$ if for all *K*-sparse signals **x**, $(1 - \delta_K) \|\mathbf{x}\|_2^2 \le \|\Phi\mathbf{x}\|_2^2 \le (1 + \delta_K) \|\mathbf{x}\|_2^2.$

Sufficient condition: If Φ satisfies RIP with $\delta_{2K} < \sqrt{2} - 1$, then $\hat{\mathbf{x}} = \mathbf{x}$ (Candès & Tao, 2005 and Candès 2008)

< 日 > < 同 > < 回 > < 回 > < □ > <

l_1 -minimization

l_1 minimization

min $\|\hat{\mathbf{x}}\|_1$ subject to $\mathbf{y} = \mathbf{\Phi}\hat{\mathbf{x}}$

- It is a convex optimization problem, solvable by linear programming.
- Complexity: $O\left(m^2N^{3/2}
 ight)$ (Nesterov & Nemirovski, 1994)
- Performance guarantee?

Restricted Isometry Property: Φ satisfies the RIP with $\delta_K \in [0, 1]$ if for all *K*-sparse signals **x**,

$$(1 - \delta_K) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Phi}\mathbf{x}\|_2^2 \le (1 + \delta_K) \|\mathbf{x}\|_2^2.$$

Sufficient condition: If Φ satisfies RIP with $\delta_{2K} < \sqrt{2} - 1$, then $\hat{\mathbf{x}} = \mathbf{x}$ (Candès & Tao, 2005 and Candès 2008)

< 日 > < 同 > < 回 > < 回 > < □ > <

l_1 -minimization

l_1 minimization

min $\|\hat{\mathbf{x}}\|_1$ subject to $\mathbf{y} = \mathbf{\Phi}\hat{\mathbf{x}}$

- It is a convex optimization problem, solvable by linear programming.
- Complexity: $O\left(m^2N^{3/2}
 ight)$ (Nesterov & Nemirovski, 1994)
- Performance guarantee?

Restricted Isometry Property: Φ satisfies the RIP with $\delta_K \in [0, 1]$ if for all *K*-sparse signals **x**,

$$(1 - \delta_K) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Phi}\mathbf{x}\|_2^2 \le (1 + \delta_K) \|\mathbf{x}\|_2^2.$$

Sufficient condition: If Φ satisfies RIP with $\delta_{2K} < \sqrt{2} - 1$, then $\hat{\mathbf{x}} = \mathbf{x}$ (Candès & Tao, 2005 and Candès 2008)

Number of Measurements

Random matrices satisfying the RIP with constant parameters (Candès et. al., 2005; Litvak et. al., 2005; Rudelson & Vershynin 2006)

- Random matrices with i.i.d. entries.
 - Gaussian distribution (subGaussian distribution).
 - Bernoulli distribution.

 $m \ge O\left(K \log N\right)$

Is a Random matrices from the Fourier ensemble.

• choose m rows uniformly at random.

 $m \ge O\left(K\left(\log N\right)^c\right)$

4 **A** N A **B** N A **B** N

The interface between coding theory and CS

- Sublinear complexity CS: Iterative decoding (belief propagation (BP)) meets greedy algorithms;
 - Constructive methods via low-density parity-check (LDPC) coding;
 - Reconstruction via greedy matching pursuit algorithms (OMP, SP, and CoSaMP) and BP decoding with a "twist".

Low Complexity Decoding Algorithms from CS

Recent focus on greedy algorithms:

- Orthogonal Matching Pursuit (OMP) (Tropp, 2004)
- Regularized OMP (ROMP) (Needell & Vershynin, 2007)
- Stagewise OMP (StOMP) (Donoho et. al., 2007)
- Subspace Pursuit (SP) (Dai & Milenkovic, 2008)
- Compressive Sampling Matching Pursuit (CoSaMP) (Needell & Tropp, 2008)

 l_0 minimization l_1 minimization OMP SP

Complexity $O(N^K)$ $O(m^2 N^{3/2}) \qquad \delta_{2K} < \sqrt{2} - 1$ O(KmN) $\delta_K < \frac{1}{2K}$ O(KmN) or less $\delta_{3K} < 0.16$

Performance $\delta_{2K} < 1$

Orthogonal Matching Pursuit (OMP) Algorithm

Output: solution obtained after K iterations

M., Dai and Pham (UIUC)

Sublinear CS - A Matroid Theory Approach

Subspace Pursuit (SP) algorithm

Input: Φ , y, K Initialization:

 $T^0 = \{K \text{ indices corresponding to the largest magnitudes of } \Phi^* \mathbf{y} \}.$ $\mathbf{y}_r^0 = \operatorname{resid}(\mathbf{y}, \Phi_{T^0}).$

Iteration:

LDPC Applications in CS

- Complexity of greedy strategies is dominated by correlation computation
 - Complexity is O(mN).

Use LDPC codebook for sensing matrix design

- Mimics the Bernoulli matrix;
- Introduce structure for storage saving.

Correlation computation via BP

- ML decoding = finding the largest correlation.
- Decoding complexity: from O (mN) to O (m).

LDPC Applications in CS

- Complexity of greedy strategies is dominated by correlation computation
 - Complexity is O(mN).

- Use LDPC codebook for sensing matrix design
 - Mimics the Bernoulli matrix;
 - Introduce structure for storage saving.
- Correlation computation via BF
 - ML decoding = finding the largest correlation
 - Decoding complexity: from O (mN) to O (m).

LDPC Applications in CS

- Complexity of greedy strategies is dominated by correlation computation
 - Complexity is O(mN).

- Use LDPC codebook for sensing matrix design
 - Mimics the Bernoulli matrix;
 - Introduce structure for storage saving.
- Correlation computation via BP
 - ML decoding = finding the largest correlation.
 - Decoding complexity: from O(mN) to O(m).

Incoherence parameter μ

$$\mu \triangleq \max_{i \neq j} |\langle \boldsymbol{\varphi}_i, \; \boldsymbol{\varphi}_j \rangle|,$$

• Sufficient condition of exact reconstruction for OMP (Tropp 2003):

$$\mu \leq \frac{1}{2K}$$

Equivalent to Hamming distance requirement for LDPC codes

$$\frac{1}{2} - \frac{1}{4K} < \frac{d_H(\mathbf{c}_i, \mathbf{c}_j)}{m} < \frac{1}{2} + \frac{1}{4K}, \quad \forall i \neq j.$$

Proposition: A random LDPC code with row sums $d_c \ge 3$ and $m = O(K^2 \log N)$ satisfies

$$\frac{1}{2} - \frac{1}{4K} < \frac{d_H(\mathbf{c}_i, \mathbf{c}_j)}{m} < \frac{1}{2} + \frac{1}{4K}, \quad \forall i \neq j$$

with high probability.

M., Dai and Pham (UIUC)

Incoherence parameter μ

$$\mu \triangleq \max_{i \neq j} |\langle \boldsymbol{\varphi}_i, \; \boldsymbol{\varphi}_j \rangle|,$$

Sufficient condition of exact reconstruction for OMP (Tropp 2003):

$$\mu \leq \frac{1}{2K}$$

Equivalent to Hamming distance requirement for LDPC codes

$$\frac{1}{2} - \frac{1}{4K} < \frac{d_H(\mathbf{c}_i, \mathbf{c}_j)}{m} < \frac{1}{2} + \frac{1}{4K}, \quad \forall i \neq j.$$

Proposition: A random LDPC code with row sums $d_c \ge 3$ and $m = O(K^2 \log N)$ satisfies

$$\frac{1}{2} - \frac{1}{4K} < \frac{d_H(\mathbf{c}_i, \mathbf{c}_j)}{m} < \frac{1}{2} + \frac{1}{4K}, \quad \forall i \neq j$$

with high probability.

M., Dai and Pham (UIUC)

Incoherence parameter μ

$$\mu \triangleq \max_{i \neq j} |\langle \boldsymbol{\varphi}_i, \; \boldsymbol{\varphi}_j \rangle|,$$

• Sufficient condition of exact reconstruction for OMP (Tropp 2003):

$$\mu \leq \frac{1}{2K}$$

Equivalent to Hamming distance requirement for LDPC codes

$$\frac{1}{2} - \frac{1}{4K} < \frac{d_H(\mathbf{c}_i, \mathbf{c}_j)}{m} < \frac{1}{2} + \frac{1}{4K}, \quad \forall i \neq j.$$

Proposition: A random LDPC code with row sums $d_c \ge 3$ and $m = O(K^2 \log N)$ satisfies

$$\frac{1}{2} - \frac{1}{4K} < \frac{d_H(\mathbf{c}_i, \mathbf{c}_j)}{m} < \frac{1}{2} + \frac{1}{4K}, \quad \forall i \neq j$$

with high probability.

12/17

RIP property

• Gershgorin Circle Theorem: For all $\mathbf{A} \in \mathbb{C}^{n \times n}$,

$$\{\lambda_i\} \subset \bigcup_{i=1}^n D\left(a_{i,i}, \sum_{j\neq i} |a_{i,j}|\right).$$

• RIP holds!

For all eigenvalues of $\Phi_T^* \Phi_T$,

$$egin{aligned} &|\lambda\left(\mathbf{\Phi}_{T}^{*}\mathbf{\Phi}_{T}
ight)-1|\leq\max_{j}\sum_{l
eq j}|\langlem{arphi}_{j},m{arphi}_{l}
ight
angle\ &\leq K\mu\leqrac{1}{2}, \end{aligned}$$

which implies

 $\delta_K \le 1/2.$

LDPC Code Rate for CS

A necessary condition: Unless the LDPC code family satisfies

$$R < 1 - (1 - \frac{\sqrt{2}}{K}) \frac{\log_2(K - 1)}{\log_2(K)} - \frac{H(\sqrt{2}/K)}{K},$$

the RIP constant cannot satisfy $\delta_K < \sqrt{2} - 1$.

Proof is based on connection between the RIP and generalized Hamming weights of a code.

Performance of standard OMP and SP algorithms

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Extensions

• List-based BP decoding algorithm.

- Motivated by the significant performance improvement of SP compared with OMP.
- Instead of outputing the ML codeword, we output a list of K codewords that have large likelihood.

• Multiple basis belief propagation (MBBP) Algorithm

- An LDPC code can have different parity check matrices (bases).
- The performance of BP algorithm highly depends on the chosen basis.
- We propose to run BP algorithm on multiple bases and choose the best output codeword.

Thank you!

æ

イロト イヨト イヨト イヨト