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Outline

A brief introduction to CS;
Why do support weight enumerators matter?
Decoding of weighted superimposed codes: BP and OMP/SP -
sublinear complexity reconstruction.
Many open problems...
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Compressive Sensing

CS: a technique that converts high dimensional signals into signals
(measurements) with significantly smaller dimension (m� N ).

Recovery problem: decode the signal x based on the measurement y.

Ill conditioned in general.

I Φ does not have full column rank. There are many x such that
y = Φx.
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When the signal is sparse, ...

When x is sufficiently sparse (K is small), exact reconstruction is possible.
(Kashin, 1977; Bresler et. al., 1999; Donoho et. al., 2004; Candés et. al., 2005)

Exact Reconstruction: iff y1 − y2 = Φ (x1 − x2) 6= 0,
∀K−sparse x1 6= x2.

m
Any 2K-column submatrix of Φ must have full rank.

Reconstruction algorithm (l0-minimization):
min ‖x̂‖0 s.t. y = Φx̂.

# of measurements: m = 2K.

Computational complexity: NP hard⇒ not practical for large N .
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l1-minimization

l1 minimization
min ‖x̂‖1 subject to y = Φx̂

It is a convex optimization problem, solvable by linear programming.
Complexity: O

(
m2N3/2

)
(Nesterov & Nemirovski, 1994)

Performance guarantee?
Restricted Isometry Property: Φ satisfies the RIP with δK ∈ [0, 1] if for all
K-sparse signals x,

(1− δK) ‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK) ‖x‖22.

Sufficient condition: If Φ satisfies RIP with δ2K <
√

2− 1, then x̂ = x
(Candès & Tao, 2005 and Candès 2008)
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Number of Measurements

Random matrices satisfying the RIP with constant parameters
(Candès et. al., 2005; Litvak et. al., 2005; Rudelson & Vershynin 2006)

1 Random matrices with i.i.d. entries.
1 Gaussian distribution (subGaussian distribution).
2 Bernoulli distribution.

m ≥ O (K logN)
2 Random matrices from the Fourier ensemble.

1 choose m rows uniformly at random.

m ≥ O (K (logN)c)
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This Talk

The interface between coding theory and CS

Sublinear complexity CS: Iterative decoding (belief propagation
(BP)) meets greedy algorithms;

I Constructive methods via low-density parity-check (LDPC) coding;
I Reconstruction via greedy matching pursuit algorithms (OMP, SP,

and CoSaMP) and BP decoding with a “twist”.
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Low Complexity Decoding Algorithms from CS

Recent focus on greedy algorithms:
Orthogonal Matching Pursuit (OMP) (Tropp, 2004)
Regularized OMP (ROMP) (Needell & Vershynin, 2007)
Stagewise OMP (StOMP) (Donoho et. al., 2007)
Subspace Pursuit (SP) (Dai & Milenkovic, 2008)
Compressive Sampling Matching Pursuit (CoSaMP) (Needell &
Tropp, 2008)

Complexity Performance
l0 minimization O

(
NK

)
δ2K < 1

l1 minimization O
(
m2N3/2

)
δ2K <

√
2− 1

OMP O (KmN) δK < 1
2K

SP O (KmN) or less δ3K < 0.16
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Orthogonal Matching Pursuit (OMP) Algorithm

Input: Φ, y, K
Initialization:
T 0 = φ, y0

r = y.
Iteration:

Output: solution obtained after K iterations
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Subspace Pursuit (SP) algorithm
Input: Φ, y, K
Initialization:
T 0 = {K indices corresponding to the largest magnitudes of Φ∗y}.
y0

r = resid (y,ΦT 0).
Iteration:

Output:
x̂: x̂T ` = Φ†

T `y and x̂(T `)c = 0.
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LDPC Applications in CS

Complexity of greedy strategies is dominated by correlation
computation

I Complexity is O(mN).

Use LDPC codebook for sensing matrix design
I Mimics the Bernoulli matrix;
I Introduce structure for storage saving.

Correlation computation via BP
I ML decoding = finding the largest correlation.
I Decoding complexity: from O (mN) to O (m).
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Incoherence parameter µ

µ , max
i6=j
|〈ϕi, ϕj〉|,

Sufficient condition of exact reconstruction for OMP (Tropp 2003):

µ ≤ 1
2K

Equivalent to Hamming distance requirement for LDPC codes

1
2
− 1

4K
<
dH(ci, cj)

m
<

1
2

+
1

4K
, ∀i 6= j.

Proposition: A random LDPC code with row sums dc ≥ 3 and
m = O(K2 logN) satisfies

1
2
− 1

4K
<
dH(ci, cj)

m
<

1
2

+
1

4K
, ∀i 6= j

with high probability.
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RIP property

Gershgorin Circle Theorem: For all A ∈ Cn×n,

{λi} ⊂
n⋃

i=1

D

ai,i,
∑
j 6=i

|ai,j |

 .

RIP holds!
For all eigenvalues of Φ∗T ΦT ,

|λ (Φ∗T ΦT )− 1| ≤ max
j

∑
l 6=j

|〈ϕj ,ϕl〉|

≤ Kµ ≤ 1
2
,

which implies
δK ≤ 1/2.
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LDPC Code Rate for CS

A necessary condition: Unless the LDPC code family satisfies

R < 1− (1−
√

2
K

)
log2(K − 1)

log2(K)
− H(

√
2/K)
K

,

the RIP constant cannot satisfy δK <
√

2− 1.

Proof is based on connection
between the RIP and generalized
Hamming weights of a code.
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Performance of standard OMP and SP algorithms
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Extensions

List-based BP decoding algorithm.
I Motivated by the significant performance improvement of SP

compared with OMP.
I Instead of outputing the ML codeword, we output a list of K

codewords that have large likelihood.

Multiple basis belief propagation (MBBP) Algorithm
I An LDPC code can have different parity check matrices (bases).
I The performance of BP algorithm highly depends on the chosen

basis.
I We propose to run BP algorithm on multiple bases and choose the

best output codeword.
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Thank you!
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