Excluded minors for real-representable matroids

Dillon Mayhew ${ }^{1} \quad$ Mike Newman ${ }^{2}$ Geoff Whittle ${ }^{1}$
${ }^{1}$ Victoria University of Wellington
${ }^{2}$ University of Ottawa

7 August 2009

Excluded minors

Definition

Let F be a field. M is an excluded minor for F-representability if M is not F-representable, but deleting or contracting any element produces an F-representable matroid.

Excluded minors for $\mathrm{GF}(2)$

Theorem (W. T. Tutte, 1958)

The only excluded minor for the class of $\mathrm{GF}(2)$-representable matroids is $U_{2,4}$.

$U_{2,4}$

Excluded minors for GF(3)

Theorem (R. Reid, R. Bixby, P. Seymour, 1971/1979)

The excluded minors for the class of $\mathrm{GF}(3)$-representable matroids are $U_{2,5}, U_{3,5}, F_{7}$, and F_{7}^{*}.

$U_{2,5}$

$U_{3,5}$

F_{7}

F_{7}^{*}

Excluded minors for $\mathrm{GF}(4)$

Theorem (J. Geelen, B. Gerards, A. Kapoor, 1997)

The excluded minors for the class of $\mathrm{GF}(4)$-representable matroids are $U_{2,6}, U_{4,6}, F_{7}^{-},\left(F_{7}^{-}\right)^{*}, P_{6}, P_{8}$, and $P_{8}^{\prime \prime}$.

F_{7}^{-}
P_{6}

P_{8}

Rota's conjecture

Conjecture (G. C. Rota, 1971)

If \mathbb{F} is a finite field, then there are only finitely many excluded minors for F-representability.

The excluded minors for F-representability are only known in the case that F is $\mathrm{GF}(2), \mathrm{GF}(3)$, or $\mathrm{GF}(4)$.

Lazarson's Theorem

In contrast to Rota's conjecture, we have:

Theorem (T. Lazarson, 1958)

There are infinitely many excluded minors for real-representability.

Proof.

If $p>2$ is a prime, then the matroid represented over $\operatorname{GF}(p)$ by the matrix

$$
\left[\begin{array}{c|ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & 1 & \cdots & 1 \\
1 & 1 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & 0
\end{array}\right]
$$

is an excluded minor for real-representability.

Geelen's conjecture

Conjecture (J. Geelen, 2008)

If M is a real-representable matroid, then there is an excluded minor, N, for real-representability, such that M is a minor of N.

A proof of Geelen's conjecture

We have proved Geelen's conjecture.
Theorem (D. Mayhew, M. Newman, G. Whittle, 2008)
Let \mathbb{K} be any infinite field, and let M be a \mathbb{K}-representable matroid. There is an excluded minor, N, for \mathbb{K}-representability, such that M is a minor of N.

Equivalently, the excluded minors for \mathbb{K}-representability form a maximal antichain in the minor order.

Geometric representations of minors

When we delete a point, we remove it from the diagram. When we contract, we project onto a hyperplane (maximal non-spanning set).

M contract e

The proof

The proof uses a lot of geometrical reasoning.
We frequently exploit the following phenomenon:
Suppose M is a matroid with ground set E, and M is representable over \mathbb{K}, an infinite field. We can think of this representation as an embedding of E in a projective geometry P over the field \mathbb{K}.

Let X be a subspace of P. Because \mathbb{K} is infinite, there is a point $e \in X \backslash E$, such that if $Y \subseteq E$ spans e, then Y spans X.

Adding e to E is called adding e freely to X relative to E.
We can perform this operation and remain \mathbb{K}-representable.

A partition into two bases

Henceforth M is a rank- \mathbb{K}-representable matroid with ground set E. A basis is a maximal independent set. We start by showing that we can assume M is partitioned into two bases.
We embed M in the projective space $P=\mathrm{PG}(r-1, \mathbb{K})$.

A partition into two bases

Let B be a basis of M.

A partition into two bases

Let B be a basis of M.
Let A be a maximal independent set in $E-B$.

A partition into two bases

We add a set, C, of points freely to P, where $|C|=r-|A|$.

A partition into two bases

Next, we add an element in series to each element of $E-(A \cup B)$.

A partition into two bases

Next, we add an element in series to each element of $E-(A \cup B)$.

A partition into two bases

Next, we add an element in series to each element of $E-(A \cup B)$.

A partition into two bases

The resulting matroid is partitioned into two bases.

A partition into two bases

The resulting matroid is partitioned into two bases.

A partition into two bases

The resulting matroid is partitioned into two bases.

A partition into two bases

The resulting matroid is partitioned into two bases.
It certainly has M as a minor, so henceforth we assume M is partitioned into two bases.

A partition into two independent hyperplanes

Next we claim that we can assume that M is partitioned into two independent hyperplanes.

A partition into two independent hyperplanes

We embed M in $P=P G(r+1, \mathbb{K})$, so $r(E)=r(P)-2$. Let B_{0} and B_{1} be the bases that partition M.

A partition into two independent hyperplanes

Add points p and q freely to P.

A partition into two independent hyperplanes

Add points p and q freely to P.

A partition into two independent hyperplanes

Add points p and q freely to P.

A partition into two independent hyperplanes

For each point $b \in B_{0}$ add a point freely to $\langle\{b, p\}\rangle$. For each point $b^{\prime} \in B_{1}$ add a point freely to $\left\langle\left\{b^{\prime}, q\right\}\right\rangle$.

A partition into two independent hyperplanes

For each point $b \in B_{0}$ add a point freely to $\langle\{b, p\}\rangle$. For each point $b^{\prime} \in B_{1}$ add a point freely to $\left\langle\left\{b^{\prime}, q\right\}\right\rangle$.

A partition into two independent hyperplanes

For each point $b \in B_{0}$ add a point freely to $\langle\{b, p\}\rangle$. For each point $b^{\prime} \in B_{1}$ add a point freely to $\left\langle\left\{b^{\prime}, q\right\}\right\rangle$.

A partition into two independent hyperplanes

For each point $b \in B_{0}$ add a point freely to $\langle\{b, p\}\rangle$. For each point $b^{\prime} \in B_{1}$ add a point freely to $\left\langle\left\{b^{\prime}, q\right\}\right\rangle$.

A partition into two independent hyperplanes

For each point $b \in B_{0}$ add a point freely to $\langle\{b, p\}\rangle$. For each point $b^{\prime} \in B_{1}$ add a point freely to $\left\langle\left\{b^{\prime}, q\right\}\right\rangle$.

A partition into two independent hyperplanes

For each point $b \in B_{0}$ add a point freely to $\langle\{b, p\}\rangle$. For each point $b^{\prime} \in B_{1}$ add a point freely to $\left\langle\left\{b^{\prime}, q\right\}\right\rangle$.

A partition into two independent hyperplanes

For each point $b \in B_{0}$ add a point freely to $\langle\{b, p\}\rangle$. For each point $b^{\prime} \in B_{1}$ add a point freely to $\left\langle\left\{b^{\prime}, q\right\}\right\rangle$.

A partition into two independent hyperplanes

We delete the original points of M. The resulting matroid has a partition into two independent hyperplanes. It has M as a minor, so henceforth we assume M to be partitioned into two independent hyperplanes.

Invoking Ingleton's condition

We embed M in $P=\operatorname{PG}(r, \mathbb{K})$, so that $r(E)=r(P)-1$.
Let A and B be the two independent hyperplanes that partition M.

Invoking Ingleton's condition

Let V be the intersection of the spans of A and B.

Invoking Ingleton's condition

We add two points, p and q, freely to P.

Invoking Ingleton's condition

We add two points, p and q, freely to P.

Invoking Ingleton's condition

We add two points, p and q, freely to P.

Invoking Ingleton's condition

Add a set, C, of points freely to $\langle V \cup\{p\}\rangle$, and a set, D, freely to $\langle V \cup\{q\}\rangle$, where $|C|+|D|=r+1$.

Invoking Ingleton's condition

Add a set, C, of points freely to $\langle V \cup\{p\}\rangle$, and a set, D, freely to $\langle V \cup\{q\}\rangle$, where $|C|+|D|=r+1$.

Invoking Ingleton's condition

Add a set, C, of points freely to $\langle V \cup\{p\}\rangle$, and a set, D, freely to $\langle V \cup\{q\}\rangle$, where $|C|+|D|=r+1$.

Invoking Ingleton's condition

Add a set, C, of points freely to $\langle V \cup\{p\}\rangle$, and a set, D, freely to $\langle V \cup\{q\}\rangle$, where $|C|+|D|=r+1$.

Invoking Ingleton's condition

Add a set, C, of points freely to $\langle V \cup\{p\}\rangle$, and a set, D, freely to $\langle V \cup\{q\}\rangle$, where $|C|+|D|=r+1$.

Invoking Ingleton's condition

Add a set, C, of points freely to $\langle V \cup\{p\}\rangle$, and a set, D, freely to $\langle V \cup\{q\}\rangle$, where $|C|+|D|=r+1$.

Invoking Ingleton's condition

Let N^{\prime} be the matroid represented over \mathbb{K} by the set of points $A \cup B \cup C \cup D$.

Invoking Ingleton's condition

A circuit is a minimal non-independent set. $C \cup D$ is a circuit-hyperplane of N^{\prime}. Therefore, we can declare $C \cup D$ to be a basis. The resulting matroid is N.

Invoking Ingleton's condition

Ingleton (1969) proved that if a matroid is representable over a field, then

$$
\begin{aligned}
& r(A)+r(B)+r(A \cup B \cup C)+r(A \cup B \cup D)+r(C \cup D) \leq \\
& \quad r(A \cup B)+r(A \cup C)+r(A \cup D)+r(B \cup C)+r(B \cup D)
\end{aligned}
$$

for any subsets, A, B, C, and D.

Invoking Ingleton's condition

However $r(X \cup Y)=r$ in N, for any distinct $X, Y \in\{A, B, C, D\}$, as long as $\{X, Y\} \neq\{C, D\}$.

Invoking Ingleton's condition

Moreover,
$r(A)=r(B)=r-1$, and $r(A \cup B \cup C)=r(A \cup B \cup D)=r(C \cup D)=r+1$.

Invoking Ingleton's condition

Therefore

$$
\begin{gathered}
r(A)+r(B)+r(A \cup B \cup C)+r(A \cup B \cup D)+r(C \cup D)=5 r+1> \\
5 r=r(A \cup B)+r(A \cup C)+r(A \cup D)+r(B \cup C)+r(B \cup D)
\end{gathered}
$$

Invoking Ingleton's condition

We conclude that N is not representable over any field.
It is fairly easy to see that deleting or contracting any element from N produces a \mathbb{K}-representable matroid. Hence N is an excluded minor for \mathbb{K}-representability.
N has an M-minor, so the proof is complete.

