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Matroids and Codes

/

BIRS Workshop

Aug 3, 2009



/ Matroids \

Definition

A matroid is an ordered pair (F,Z) consisting of
¢ a finite ground set E; and

¢ a collection 7 of independent sets, which are subsets of F

satisfying the following three independence axioms:

(I1) 0eZ
(I2) if I € Z, then forany J C I, J €1
(13) if J1, Jo € Z with |J1| < |J2|, then
there exists e € J2 \ Ji such that J; U{e} €T

- A subset of E that is not in Z is called a dependent set

k— A minimal dependent set is called a circuit /

BIRS Workshop 3 Aug 3, 2009




-~

Let

Vector Matroids

A= Vi V2 Vn

be a matrix over a field F.

Take E = {1,2,...,n}, and define Z C 2F via
I € 7 iff the columns v;, ¢ € I, are linearly independent over IF.

(FE,7) is a matroid referred to as the vector matroid of the matrix
A over the field F; denoted by M[A] or My[A].

A matroid isomorphic to some vector matroid over the field F is

Qaid to be representable or F-representable.

/
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Graphic Matroids

Let G be an undirected graph with edge set F.

Define Z C 2F via
I € 7 iff I does not contain a cycle of G.

(E,7T) is a matroid referred to as the cycle matroid of the graph
G; denoted by M (G).

o The circuits of M(G) are precisely the circuits (simple cycles)

of G.

A matroid isomorphic to the cycle matroid of some graph is called

a graphic matroid.

\_ /
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/ Linear Codes

Let F be a finite field. An [n, k| linear code over F is a

k-dimensional subspace of F™.
We will associate an index set E with a code C,

A code C is specified by a generator matrix G,

which is a matrix such that C = rowspacep(G);

or equivalently, by a parity-check matrix H,
which is a matrix such that C = kerp(H).

The columns of any generator or parity-check matrix of C

(re also indexed by the elements of E.

so that C is considered to be a subspace of F¥; here, |E| = n.

/
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/ Associating Matroids with Linear Codes \

A matrix GG over F determines two different objects:
the vector matroid M = My|G];

the code C = rowspacep(G).

Note that if G’ is any matrix obtained from G via elementary row
operations over F, then Mp[G'| = Mp|[G];
G and G’ are just different F-representations of the same matroid.

Hence, to any linear code C over [, we may uniquely assign an
F-representable matroid M (C), by setting M (C) := Myp|G]| for any
generator matrix GG of C.

Remark: We could also have set M (C) = My|[H] for a
parity-check matrix H of C;
k this results in a “dual” version of our exposition. /
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/ Aside: MDS Codes \

An [n, k] linear code is said to be maximum distance separable
(MDS) if its minimum distance equals n — k + 1.

Fact: If GG generates an MDS code of dimension k, then

any set of k columns of (G is linearly independent; and

any set of k 4+ 1 columns of (G is linearly dependent.

If C is an [n, k] MDS code, then for the matroid M (C), the
collection 7 of independent sets is

IT=AIC|n]:|I] <k}

Such a matroid is called a uniform matroid, denoted by Uy, ,,.

\_ /
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/ Bases and Rank: Definitions \

M = (F,7) a matroid.

Definition: A basis of M is any maximal (wrt inclusion)
independent set of M.

By Axiom (I3), all bases of M have the same cardinality.

Definition: The cardinality of any basis of M is called
the rank of M, denoted by rank(M) or »(M).

More generally, the rank function of M is the function r : 2% — Z
defined as follows: for X C FE,

r(X)=max{|I|: I €Z, I C X}

Qparticular, rank(M) = r(F). /
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Rank and Dimension: Codes

C a linear code over [ with index set E;

GG a generator matrix for C;
M = M(C) = M|G] the associated matroid.

o Rank function of M: for X C F,
r(X) = rankp(G|x) = dimp(C|x ).

In particular, rank(M) = rankp(G) = dimp(C).

\_ /
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/ The Dual Matroid \

M = (E,7) a matroid, with B its collection of bases.
For X C E, let X =FE — X.
Define 7% = {I* : [* C B¢ for some B € B}.

(E,Z*) forms a matroid, called the dual matroid of M;
denoted by M™.

It is clear that M ™ has as its collection of bases

B* = {B°: BcB).

Thus, M* is a matroid on the same ground set as M, but whose
bases are the complements of the bases of M.

\_ /
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/ Duality: Codes \

C a linear code over F with index set F;
GG a generator matrix for C;
M = M(C) = M|G] the associated matroid.

The dual code of C is defined as

Ct ={xcF¥:(c,x); =0 forall c € C}.

o M* = M|[H] for any parity-check matrix, H, of C.
Therefore,

M*(C) 4 (M(C))* = M(C™).

In particular, the dual of an F-representable matroid is also

k F-representable. /
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Deletion and Contraction
Two fundamental operations on a matroid M = (E,7),

given an X C F.

Deletion. The matroid M \ X is the matroid on ground set
E — X, whose independent sets are precisely those I € 7 that
are contained in £ — X, 1.e.,

I(M\X)={IeZ: ICE—-X}.

Contraction. This is the dual operation to deletion:

M/X = (M*\ X)*.

\_ /
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/ Matroid Minors \

Definition

A minor of a matroid M is any matroid obtained from M via
a (possibly empty) sequence of deletion and contraction
operations.

Minors are central to matroid theory — e.g., they often turn up in

excluded-minor characterizations:

o A matroid is binary (i.e., GF'(2)-representable) iff it contains
no minor isomorphic to the uniform matroid Us 4.

o A matroid is regular (i.e., representable over any field) iff
it contains no minor isomorphic to any of Us 4, M (H7) and

M*(H~). [Here, H7 is the (binary) [7,4] Hamming code.]

o A matroid is graphic iff it contains no minor isomorphic to

k any of U274, M(H7), M*(H7), M*(K5) and M*(K373). /
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/ Puncturing and Shortening \

C a linear code on index set F, and X C F.

Puncturing. Columns indexed by X deleted from a generator

matrix for C;

thus, C \ X is the projection of C onto the coordinates in
F—-X.

Shortening. Columns indexed by X deleted from a
parity-check matrix for C;

equivalently, C/X is obtained by taking the subcode of C
that has 0’s in all the coordinates in X, and then deleting
those coordinates from the subcode.

Then,

k M(C\X)=M(C)\X and M(C/X)= M(C)/X. /
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Definition

N

A minor of a code C is any code obtained from C via a

(possibly empty) sequence of shortening and puncturing

operations.

Code Minors

/
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Application:
The MacW:illiams Identity
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The Tutte Polynomial

M a matroid on the ground set E, with rank function r.

Definition: The Tutte polynomial of M is defined as

Tr(zy) = 3 (z— )7 B4 (y _ )lal=r(a)
ACE

Fact: T+ (x,y) = T (y, x).

Remark:

The chromatic polynomial of a graph G can be obtained as a

special case of the Tutte polynomial of M(G).

\_ /
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/ The MacWilliams Identity \

C an [n, k] linear code over F = GF'(q).

Definition: The homogeneous weight enumerator polynomial of C:

mn

We(z,y) =D A" 'y,
1=0

where A; is the number of codewords of weight 7.

Theorem [Greene (1976)]
Let M = M(C). Then,

We(z,y) =y "(@ - )" T (Hafq__yl)y’ S)

Corollary (The MacWilliams Identity)

\ Wei(z,y)=q "We(x+ (¢ — 1y, = —y) /
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Code Composition/Decomposition
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/ The S,,(C,C’") Construction

Let C,C’ be linear codes of length n,n’, resp., over some field F;
and let m be an integer s.t. 0 < m < min{n,n’}.

/

Let G=[g1 g2 ... gn]and G’ =[g] g5 ... & ]
be generator matrices of C and C’, respectively,

Consider the code C with generator matrix

g1 ... Zn-m EBn-m+1 --- 8Bn 0 - 0
o ... 0 g1 ;oo Bm Byl - 8l
Definition

Sm(C,C") is the code of length n + n’ — 2m obtained by

~

k shortening C at the m “overlapping positions”. /
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Some Properties of S,,(C,C’)

Let Cp and Cs denote the codes obtained, respectively, by

puncturing and shortening C at its last m coordinates.

Let Cz’j and C. denote the codes obtained, respectively, by
puncturing and shortening C’ at its first m coordinates.

Proposition

N

(a) dim(Sm(C,C")) =
dim(C) + dim(C") — dim(Cs N Cg) — dim(Cp + C,,).

(b) If C,C’ are codes over a field of characteristic 2, then

(Sm(C,CH) " = Sm(Ct,C't).

~

/

BIRS Workshop 20

Aug 3, 2009



/ Important Special Cases \

C,C’ linear codes over F = GF'(q);
m=(¢" " —1)/(¢—1), n,n >2m.

r-sum, r > 1. C®r C' =S (C,C"), when

Cp = Cp, = [m,r — 1] simplex (i.e., Hamming dual) code

r-sum, r > 1. C®,.C' = Sn(C,C’"), when

o Cs =CL =[m,m— (r—1)] Hamming code
When r» = 1, the above definitions degenerate to the direct sum:

N /
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/ Basic Properties of - and 7-sums

For the special cases of r- and r-sums, the previous proposition
specializes to

Corollary

(a) dim(C @, C") = dim(C) + dim(C") — (r — 1).
(b) dim(C &®,-C’') = dim(C) + dim(C’) — (2" —r — 1).

(c) (C®.-CF=Cctd, '+

Remark: For » = 2, the definitions of r- and 7-sum coincide, so

that (c) above is in fact

N

C@®C) =Ct @, .

~
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Application:
Linear-Programming (LP) Decoding
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/ LP Formulation of ML Decoding \

Setup:

Binary linear code C of length n

Discrete memoryless channel: Prly|x] = [[;"_; Prly;|z;]
Received word: y = (y1,¥2,---,Yn)

Maximum-Likelihood (ML) Decoding;:
determine arg maxycc Pry|x]

Equiv. LP formulation [Feldman, Wainwright, Karger (2005)]:
determine arg min, c p(¢)(7v, %), where

v = (Y1,...,7vn) with

v; = log (Pr[yzlxz — O])
' Prly;|z; = 1]

\ and P(C) €¢f conv(C) is the codeword polytope /
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Relaxing the LP Formulation

ML decoding is known to be NP-hard.

Relax the LP formulation by defining a “looser” set of

constraints.

In other words, find “simpler” polytopes ﬁ(C) C [0, 1]™ with
P(C) C P(C), and solve the LP over P(C) instead:

arg minxeﬁ(c}) (v, X)

The vertex set of such a polytope ﬁ(C) contains C,

but also contains extra “pseudocodeword” vertices.

\_ /
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Canonical Relaxations

For H C Ct, define

Q(H)= () P(h™)

hcH

where h* = {x € {0,1}": (h,x) =0 (mod 2)}.

LP Decoding: determine arg minyc (g (7, %)

\_ /
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Canonical Relaxations

For H C Ct, define

Q(H)= () P(h™)

hcH
where h* = {x € {0,1}": (h,x) =0 (mod 2)}.

LP Decoding: determine arg minyc (g (7, %)

Question: For which codes C do there exist H C C+
such that Q(H) has no pseudocodewords?

Answer: Geometrically perfect codes,

i.e., codes C such that P(C) = Q(C+)

k (codeword polytope = full canonical relaxation).

/
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Interlude — Cycle Codes of Graphs

Given a graph G = (V, E), the cycle code of G is
the binary linear code whose parity-check matriz is
the |V| x |E| vertex-edge incidence matrix of G.

We will denote the cycle code of G by C[J].

Note: M(C[G]) = M*(G).

~
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A Characterization of Geom. Perfect Codes

An excluded-minor characterization ...

Theorem
[Barahona and Groétschel (1986), based on Seymour (1982)]

A binary linear code C is geometrically perfect iff
C does not contain as a minor

any code equivalent to one of the following:
o the [7,3] Hamming dual, H;
¢ a certain [10,5] isodual code, R1p; and
o the dual of the cycle code of K5, i.e., C[K5]*.

\_ /
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/ An Alternative Characterization \

A characterization via code decompositions ...

Theorem
[Grotschel and Truemper (1989), based on Seymour (1982)]

A binary linear code C is geometrically perfect iff

C can be constructed by means of coordinate permutations,
direct-sums, 2-sums and 3-sums starting with codes,

each of which is a minor of C, and

each of which is one of the following:

¢ the cycle code of some graph;
¢ the [7,4] Hamming code;

o C(K3,3)";
&

C(Vg)*t.

\_ /
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/ Corollaries of the Decomposition Theorem \

Let & be the family of geometrically perfect codes.

o There is a polynomial-time algorithm for deciding

membership in &.

\_ /
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/ Corollaries of the Decomposition Theorem \

O

N

Let & be the family of geometrically perfect codes.

There is a polynomial-time algorithm for deciding
membership in &.

There is a polynomial-time algorithm that,
given a C € &, and a vector v € R™, determines

arg min ,X).
gxep@w )

Therefore, there is a polynomial-time maximum-likelihood
decoding algorithm for codes in @.

/
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/ Corollaries of the Decomposition Theorem \

Let & be the family of geometrically perfect codes.

o There is a polynomial-time algorithm for deciding
membership in &.

o There is a polynomial-time algorithm that,
given a C € &, and a vector v € R™, determines

arg min ,X).
gxep@w )

o Therefore, there is a polynomial-time maximum-likelihood
decoding algorithm for codes in @.

o & is not asymptotically good: codes from & cannot have both
min. dist. and dimension growing linearly with codelength.

o Therefore, pseudocodewords cannot be avoided when

k LP decoding is applied to good codes. /
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Tree Decompositions of Graphs and Matroids
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Tree Decompositions of Graphs

Let G be a graph with vertex set V(G).

A tree decomposition of G consists of a tree T', and an ordered
collection V = (V,, x € V(T')) of subsets of V(G), satisfying

O UmEV(T) Ve = V;

o for each v € V(G), the subgraph of T induced by
{x € V(T) :v € Vg } is connected; and

o for each pair of adjacent vertices u,v € V(G), we have
{u,v} C V, for some x € V(T).

We then define width(T, V) <" max,cy (py [Va| — 1.

N

~

/
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Treewidth of Graphs

Definition [Robertson & Seymour (1983)]

The treewidth of G is defined to be the least width
of any tree decomposition of G; denoted by Ktree(G).

/
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Some Examples

o For any tree T, Ktree(T) = 1.
o If G is a cycle on at least three vertices, then Kiree(G) = 2.

o The graph G shown below also has treewidth 2.

(50 (k)
G © (&) (k6
(50) (ciy

g An optimal tree decomposition of G

\_ /
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/ Tree Decompositions of Matroids \

M a matroid on ground set F, with rank function r.
A tree decomposition of M is a pair (T, w), where

o 1'is a tree, and

[ —]

O

\_ /
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/ Tree Decompositions \

M a matroid on ground set F, with rank function r.
A tree decomposition of M is a pair (T,w), where
o T is a tree, and

o w:FE — V(T) is a mapping.

1]
Dy

[ ==l

[ ]
L |
[ ]
L |
[ ]
L |

\_ - /
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Node-width in a tree decomposition

;ﬁiﬁ

aaas

Given a tree decomposition (7T, w) of M, and a node x € V(T

\_ /
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Node-width in a tree decomposition

components, 77, ..

PN
I 1T

Given a tree decomposition (7,w) of M, and a node x € V(T):

o the removal of x from T yields a disconnected graph whose

., Ts, are subtrees of T

~
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/ Node-width in a tree decomposition \

PN
I 1T

Given a tree decomposition (7,w) of M, and a node x € V(T):

o the removal of x from T yields a disconnected graph whose
components, 74, ..., Ty, are subtrees of T

o for j=1,...,8,set F; =w Y(V(T}))

ko node-width(z) = 23:1 r(E — F;) — (6 — 1) rank(M) /
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/ Matroid Treewidth \

H&f fa

ﬁ%ﬂH%

width(7T,w) = max node-width(x)
xeV (T)

Definition [ Hlinény and Whittle (2006);
attributed to Jim Geelen |:

The treewidth of M is defined to be

Ktree (M) = min width(7T, w).

N /
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Relating Graph and Matroid Treewidth

Theorem [Hlinény and Whittle (2006)] For any graph G,

Htree(M(g» — Kftree(g)-

It is known that the problem of computing the treewidth of a
graph is NP-hard, and therefore, so is the corresponding problem

for matroids.

\_ /
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Application:
Graphical Models of Codes
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/ Graphical Models of Codes \

Graphical models of codes and the associated message-passing
decoding algorithms are a major focus area of modern coding
theory.

Graphical models come in many flavours:

Trellises (the Viterbi decoding algorithm)

Tanner graphs

Factor graphs

Normal graphical models/realizations [Forney (2001)]

The decoding algorithms commonly associated with these models

are variants of the abstract Generalized Distributive Law,

as expounded by Aji & McEliece (2000).

\_ /
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Let C be a linear code defined on an index set I.

Graph Decompositions

A graph decomposition of (the index set of) C is a pair (G, w),

where

o (G is a connected graph, and

0 O

0— [

1]

+—{ [
0 O

N

~
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/ Graph Decompositions

Let C be a linear code defined on an index set I.

A graph decomposition of (the index set of) C is a pair (G, w),

where

o § is a connected graph, and
o w: I — V(G) is a mapping.

~
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/ Graph Decompositions

Let C be a linear code defined on an index set I.

A graph decomposition of (the index set of) C is a pair (G, w),

where

o § is a connected graph, and
o w: I — V(G) is a mapping.

Qhen G is a tree, (G,w) is called a tree decomposition.

~
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/ Normal Graphical Models \

For a graph G = (V, E), given v € V, let E(v) denote the set of
edges of G incident with v.

A graph decomposition (G,w) of a code C can be extended to a
normal graphical model (G,w, (Se, e € F),(Cy, v € V)), where

o for each e € E, S¢ is a vector space over F,
called a state space;

o for each v € V, (), is a subspace of
Fot (v) g (@eeE(v) Se), called a local constraint (code).

\_ - %
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(Normal) Graphical Realizations

A valid global configuration of a normal graphical model I' is a
vector of the form b = ((z;, i € ), (se, e € F)), where

o for each ¢ € I, x; is a symbol from [;

o for each e € F, s, is a state from Sg¢;

o foreachv €V, ((z;, i € w 1 (v)),(se, e € E(v))) € Cy.

The set of all valid global configurations forms a vector space over
[F, called the full behaviour of the model; we denote this by ‘B.

\_ /
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(Normal) Graphical Realizations
A valid global configuration of a normal graphical model I' is a
vector of the form b = ((z;, i € ), (se, e € F)), where
o for each ¢ € I, x; is a symbol from [;

o for each e € F, s. is a state from Sg¢;

o foreachv €V, ((z;, i € w 1 (v)),(se, e € E(v))) € Cy.

The set of all valid global configurations forms a vector space over
[F, called the full behaviour of the model; we denote this by ‘B.

If B|, = C, then I' is called a (normal) graphical realization of C.

\_ /

BIRS Workshop 40 Aug 3, 2009




4 N

An Example

Consider an arbitrary graph Go:

\_ /
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An Example

Subdivide the edges of Gg to form G:

\_ /
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An Example

Construct a graphical model (over Fo) on G as depicted below:

T
+ = +
il
— 1
+ — = = =
T
+ = +
1

This is a graphical realization of the cycle code C|Gp].

\_ /
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The Dual Example

Replace all +’s by =’s, and vice versa:

T
= + =
T
al T
= F— + + +
+
1
= + =
1

This is a graphical realization of the dual of C[Gp]|. [Forney (2001)]

\_ /
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Constraint Complexity of a Realization

Any graphical realization of code has a natural associated

decoding algorithm, namely, the sum-product algorithm
[Forney (2001)].

The computational complexity of the sum-product algorithm is
determined in large part by the dimensions of the local constraint

codes in the realization.

Definition: Let I' = (G,w, (Cy,v € V), (Se,e € E)) be a
graphical realization of a code C. The constraint complexity
of I' is defined to be

k() = max dim(Cy).

\_ /
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How Low Can You Go?

Given: a code C and a connected graph ¢

Fact: Any graph decomposition (G,w) of (the index set of) C
can be extended to a graphical realization of C.

Question: How small can the constraint complexity

of a realization of C on G be?

= /
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4 N

How Low Can You Go?

Given: a code C and a connected graph ¢

Fact: Any graph decomposition (G,w) of (the index set of) C
can be extended to a graphical realization of C.

Question: How small can the constraint complexity
of a realization of C on G be?

Let R(C; G, w) denote the set of all realizations of C that extend a

given graph decomposition (G, w).

CER IR T
k(C;G) = mjnm(c;g,w)

\_ /
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Tree Realizations

A tree realization of a code C is a graphical realization of C in
which the underlying graph is a tree.

Since the realization is cycle-free, the associated sum-product

algorithm gives an exact implementation of maximume-likelihood
(ML) decoding [Forney (2001)], [Aji & McEliece (2001)].

\_ /

BIRS Workshop 45 Aug 3, 2009




/ Minimal Tree Realizations \

For a given tree decomposition (T, w) of a code C, Forney (2001)

gave a canonical method of constructing a tree realization in

R(C; T, w).

Forney’s construction can be shown to minimize, among all

realizations in R(C; T,w), the dimension of the local constraint at
each vertex of T [K. (2007)].

Let M(C;T,w) denote this minimal tree realization; thus

k(C;T,w) = k(M(C;T,w))

\_ /

BIRS Workshop 46 Aug 3, 2009




/ Minimal Tree Realizations \

For a given tree decomposition (T, w) of a code C, Forney (2001)

gave a canonical method of constructing a tree realization in

R(C; T, w).

Forney’s construction can be shown to minimize, among all

realizations in R(C; T,w), the dimension of the local constraint at
each vertex of T [K. (2007)].

Let M(C;T,w) denote this minimal tree realization; thus

k(C;T,w) = k(M(C;T,w))

Forney (2003) gave an explicit expression for the dimensions of

Kthe local constraints in M(C; T, w). /
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Definition

Treewidth of Codes

Treewidth: ktree(C) = min(p ) &(C; T, w)

Fact:

Forney’s expression for the dimensions of the local

constraints in a minimal tree realization shows that

Ktree (C) — /ftree(M(C))

Thus, Ktree(M(C)) may be viewed as a measure of the
ML-decoding complexity of C.

N

(minimum over all tree decompositions of C)

~

/
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/ Realizations on Graphs with Cycles \

There is little known about the problem of finding low-complexity
realizations of a code C on a given connected graph G, when G is

not a tree.

When G is a simple cycle, the problem is one of finding optimal
tailbiting trellis realizations of codes, which has been studied by
Koetter and Vardy (2003).

Halford and Chugg (2008) gave a lower bound on «(C;G) in terms
of “forest-inducing edge cuts” of G.

Their lower bound is subsumed by (a slight modification of) the
following bound [K. (2009)]:

K}(C; g) > /ftree(c)

Kiree(G) + 1
- /
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Other Complexity Measures

One can define the pathwidth of graphs, matroids, and codes,
by considering only those tree decompositions in which the

underlying tree is a simple path.

These notions are related to each other much like treewidth.

The pathwidth of a linear code is essentially the same as its

minimal trellis complexity.

\_ /
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Some Interesting Results

The connections between pathwidth and treewidth of graphs,
matroids, and codes can be exploited to show that

o computing the minimal trellis complexity (among all
coordinate permutations) of a code is NP-hard [K. (2008)]

o the ratio between the pathwidth and the treewidth of a code
grows at most logarithmically with codelength, and a

logarithmic rate of growth is in fact achievable [K. (2009)]

o “Good” families of codes cannot have realizations of bounded
complexity on graphs of bounded treewidth [K. (2009)]

\_ /
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