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Matroids and Codes
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Matroids

Definition

A matroid is an ordered pair (E, I) consisting of

⋄ a finite ground set E; and

⋄ a collection I of independent sets, which are subsets of E

satisfying the following three independence axioms:

(I1) ∅ ∈ I

(I2) if I ∈ I, then for any J ⊆ I, J ∈ I

(I3) if J1, J2 ∈ I with |J1| < |J2|, then

there exists e ∈ J2 \ J1 such that J1 ∪ {e} ∈ I

- A subset of E that is not in I is called a dependent set

- A minimal dependent set is called a circuit
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Vector Matroids

Let

A =

2
664

| | |

v1 v2 . . . vn

| | |

3
775

be a matrix over a field F.

Take E = {1, 2, . . . , n}, and define I ⊆ 2E via

I ∈ I iff the columns vi, i ∈ I, are linearly independent over F.

(E, I) is a matroid referred to as the vector matroid of the matrix

A over the field F; denoted by M [A] or MF[A].

A matroid isomorphic to some vector matroid over the field F is

said to be representable or F-representable.

BIRS Workshop 4 Aug 3, 2009



'

&

$

%

Graphic Matroids

Let G be an undirected graph with edge set E.

Define I ⊆ 2E via

I ∈ I iff I does not contain a cycle of G.

(E, I) is a matroid referred to as the cycle matroid of the graph

G; denoted by M(G).

◦ The circuits of M(G) are precisely the circuits (simple cycles)

of G.

A matroid isomorphic to the cycle matroid of some graph is called

a graphic matroid.
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Linear Codes

Let F be a finite field. An [n, k] linear code over F is a

k-dimensional subspace of F
n.

We will associate an index set E with a code C,

so that C is considered to be a subspace of F
E ; here, |E| = n.

A code C is specified by a generator matrix G,

which is a matrix such that C = rowspace
F
(G);

or equivalently, by a parity-check matrix H,

which is a matrix such that C = kerF(H).

The columns of any generator or parity-check matrix of C

are also indexed by the elements of E.

BIRS Workshop 6 Aug 3, 2009



'

&

$

%

Associating Matroids with Linear Codes

A matrix G over F determines two different objects:

the vector matroid M = MF[G];

the code C = rowspace
F
(G).

Note that if G′ is any matrix obtained from G via elementary row

operations over F, then MF[G′] = MF[G];

G and G′ are just different F-representations of the same matroid.

Hence, to any linear code C over F, we may uniquely assign an

F-representable matroid M(C), by setting M(C) := MF[G] for any

generator matrix G of C.

Remark: We could also have set M(C) = MF[H] for a

parity-check matrix H of C;

this results in a “dual” version of our exposition.
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Aside: MDS Codes

An [n, k] linear code is said to be maximum distance separable

(MDS) if its minimum distance equals n − k + 1.

Fact: If G generates an MDS code of dimension k, then

any set of k columns of G is linearly independent; and

any set of k + 1 columns of G is linearly dependent.

If C is an [n, k] MDS code, then for the matroid M(C), the

collection I of independent sets is

I = {I ⊆ [n] : |I| ≤ k}.

Such a matroid is called a uniform matroid, denoted by Uk,n.
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Bases and Rank: Definitions

M = (E, I) a matroid.

Definition: A basis of M is any maximal (wrt inclusion)

independent set of M .

By Axiom (I3), all bases of M have the same cardinality.

Definition: The cardinality of any basis of M is called

the rank of M , denoted by rank(M) or r(M).

More generally, the rank function of M is the function r : 2E → Z

defined as follows: for X ⊆ E,

r(X) = max{|I| : I ∈ I, I ⊆ X}.

In particular, rank(M) = r(E).
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Rank and Dimension: Codes

C a linear code over F with index set E;

G a generator matrix for C;

M = M(C) = M [G] the associated matroid.

◦ Rank function of M : for X ⊆ E,

r(X) = rankF(G|X) = dimF(C|X).

In particular, rank(M) = rankF(G) = dimF(C).
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The Dual Matroid

M = (E, I) a matroid, with B its collection of bases.

For X ⊆ E, let Xc = E − X.

Define I∗ = {I∗ : I∗ ⊆ Bc for some B ∈ B}.

(E, I∗) forms a matroid, called the dual matroid of M ;

denoted by M∗.

It is clear that M∗ has as its collection of bases

B∗ = {Bc : B ∈ B}.

Thus, M∗ is a matroid on the same ground set as M , but whose

bases are the complements of the bases of M .
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Duality: Codes

C a linear code over F with index set E;

G a generator matrix for C;

M = M(C) = M [G] the associated matroid.

The dual code of C is defined as

C⊥ = {x ∈ F
E : 〈c,x〉

F
= 0 for all c ∈ C}.

◦ M∗ = M [H] for any parity-check matrix, H, of C.

Therefore,

M∗(C) def
= (M(C))∗ = M(C⊥).

In particular, the dual of an F-representable matroid is also

F-representable.
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Deletion and Contraction

Two fundamental operations on a matroid M = (E, I),

given an X ⊆ E.

Deletion. The matroid M \X is the matroid on ground set

E − X, whose independent sets are precisely those I ∈ I that

are contained in E − X, i.e.,

I(M \X) = {I ∈ I : I ⊆ E − X}.

Contraction. This is the dual operation to deletion:

M/X = (M∗ \X)∗.
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Matroid Minors

Definition

A minor of a matroid M is any matroid obtained from M via

a (possibly empty) sequence of deletion and contraction

operations.

Minors are central to matroid theory — e.g., they often turn up in

excluded-minor characterizations:

◦ A matroid is binary (i.e., GF (2)-representable) iff it contains

no minor isomorphic to the uniform matroid U2,4.

◦ A matroid is regular (i.e., representable over any field) iff

it contains no minor isomorphic to any of U2,4, M(H7) and

M∗(H7). [Here, H7 is the (binary) [7,4] Hamming code.]

◦ A matroid is graphic iff it contains no minor isomorphic to

any of U2,4, M(H7), M∗(H7), M∗(K5) and M∗(K3,3).
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Puncturing and Shortening

C a linear code on index set E, and X ⊆ E.

Puncturing. Columns indexed by X deleted from a generator

matrix for C;

thus, C \X is the projection of C onto the coordinates in

E − X.

Shortening. Columns indexed by X deleted from a

parity-check matrix for C;

equivalently, C/X is obtained by taking the subcode of C

that has 0’s in all the coordinates in X, and then deleting

those coordinates from the subcode.

Then,

M(C \X) = M(C) \X and M(C/X) = M(C)/X.
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Code Minors

Definition

A minor of a code C is any code obtained from C via a

(possibly empty) sequence of shortening and puncturing

operations.
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Application:

The MacWilliams Identity
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The Tutte Polynomial

M a matroid on the ground set E, with rank function r.

Definition: The Tutte polynomial of M is defined as

TM (x, y) =
X

A⊆E

(x − 1)r(E)−r(A) (y − 1)|A|−r(A)

Fact: TM∗ (x, y) = TM (y, x).

Remark:

The chromatic polynomial of a graph G can be obtained as a

special case of the Tutte polynomial of M(G).

BIRS Workshop 17 Aug 3, 2009



'

&

$

%

The MacWilliams Identity

C an [n, k] linear code over F = GF (q).

Definition: The homogeneous weight enumerator polynomial of C:

WC(x, y) =
nX

i=0

Aix
n−iyi,

where Ai is the number of codewords of weight i.

Theorem [Greene (1976)]

Let M = M(C). Then,

WC(x, y) = yn−k(x − y)k TM

„
x + (q − 1)y

x − y
,
x

y

«

Corollary (The MacWilliams Identity)

WC⊥ (x, y) = q−k WC(x + (q − 1)y, x − y)
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Code Composition/Decomposition

BIRS Workshop Aug 3, 2009



'

&

$

%

The Sm(C, C′) Construction

Let C, C′ be linear codes of length n, n′, resp., over some field F;

and let m be an integer s.t. 0 ≤ m < min{n, n′}.

Let G = [g1 g2 . . . gn] and G′ = [g′
1 g′

2 . . . g′
n′ ]

be generator matrices of C and C′, respectively,

Consider the code bC with generator matrix
2
4 g1 . . . gn−m gn−m+1 . . . gn 0 . . . 0

0 . . . 0 g′
1 . . . g′

m g′
m+1 . . . g′

n′

3
5 .

Definition

Sm(C, C′) is the code of length n + n′ − 2m obtained by

shortening bC at the m “overlapping positions”.
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Some Properties of Sm(C, C′)

Let Cp and Cs denote the codes obtained, respectively, by

puncturing and shortening C at its last m coordinates.

Let C′
p and C′

s denote the codes obtained, respectively, by

puncturing and shortening C′ at its first m coordinates.

Proposition

(a) dim(Sm(C, C′)) =

dim(C) + dim(C′) − dim(Cs ∩ C′
s) − dim(Cp + C′

p).

(b) If C, C′ are codes over a field of characteristic 2, then

`
Sm(C, C′)

´⊥
= Sm(C⊥, C′⊥).
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Important Special Cases

C, C′ linear codes over F = GF (q);

m = (qr−1 − 1)/(q − 1), n, n′ > 2m.

r-sum, r ≥ 1. C ⊕r C′ = Sm(C, C′), when

⋄ Cs = C′
s = {0}

Cp = C′
p = [m, r − 1] simplex (i.e., Hamming dual) code

r-sum, r ≥ 1. C ⊕r C′ = Sm(C, C′), when

⋄ Cs = C′
s = [m, m − (r − 1)] Hamming code

Cp = C′
p = {0, 1}m

When r = 1, the above definitions degenerate to the direct sum:

C ⊕1 C′ = C ⊕1 C
′ = S0(C, C′) = C ⊕ C′.
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Basic Properties of r- and r-sums

For the special cases of r- and r-sums, the previous proposition

specializes to

Corollary

(a) dim(C ⊕r C′) = dim(C) + dim(C′) − (r − 1).

(b) dim(C ⊕r C′) = dim(C) + dim(C′) − (2r − r − 1).

(c) (C ⊕r C′)⊥ = C⊥ ⊕r C′⊥.

Remark: For r = 2, the definitions of r- and r-sum coincide, so

that (c) above is in fact

(C ⊕2 C′)
⊥

= C⊥ ⊕2 C′⊥.
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Application:

Linear-Programming (LP) Decoding
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LP Formulation of ML Decoding

Setup:

Binary linear code C of length n

Discrete memoryless channel: Pr[y|x] =
Qn

i=1 Pr[yi|xi]

Received word: y = (y1, y2, . . . , yn)

Maximum-Likelihood (ML) Decoding:

determine arg maxx∈C Pr[y|x]

Equiv. LP formulation [Feldman, Wainwright, Karger (2005)]:

determine arg minx∈P (C)〈γ,x〉, where

γ = (γ1, . . . , γn) with

γi = log

„
Pr[yi|xi = 0]

Pr[yi|xi = 1]

«

and P (C) def
= conv(C) is the codeword polytope
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Relaxing the LP Formulation

ML decoding is known to be NP-hard.

Relax the LP formulation by defining a “looser” set of

constraints.

In other words, find “simpler” polytopes bP (C) ⊆ [0, 1]n with

P (C) ⊆ bP (C), and solve the LP over bP (C) instead:

arg min
x∈ bP (C)

〈γ,x〉

The vertex set of such a polytope bP (C) contains C,

but also contains extra “pseudocodeword” vertices.

BIRS Workshop 24 Aug 3, 2009



'

&

$

%

Canonical Relaxations

For H ⊆ C⊥, define

Q(H) =
\

h∈H

P (h⊥)

where h⊥ = {x ∈ {0, 1}n : 〈h,x〉 ≡ 0 (mod 2)}.

LP Decoding: determine arg minx∈Q(H)〈γ,x〉

Question: For which codes C do there exist H ⊆ C⊥

such that Q(H) has no pseudocodewords?

Answer: Geometrically perfect codes,

i.e., codes C such that P (C) = Q(C⊥)

(codeword polytope = full canonical relaxation).
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Interlude — Cycle Codes of Graphs

Given a graph G = (V, E), the cycle code of G is

the binary linear code whose parity-check matrix is

the |V | × |E| vertex-edge incidence matrix of G.

We will denote the cycle code of G by C[G].

Note: M(C[G]) = M∗(G).
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A Characterization of Geom. Perfect Codes

An excluded-minor characterization . . .

Theorem

[Barahona and Grötschel (1986), based on Seymour (1982)]

A binary linear code C is geometrically perfect iff

C does not contain as a minor

any code equivalent to one of the following:

⋄ the [7,3] Hamming dual, H⊥
7 ;

⋄ a certain [10,5] isodual code, R10; and

⋄ the dual of the cycle code of K5, i.e., C[K5]⊥.
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An Alternative Characterization

A characterization via code decompositions . . .

Theorem

[Grötschel and Truemper (1989), based on Seymour (1982)]

A binary linear code C is geometrically perfect iff

C can be constructed by means of coordinate permutations,

direct-sums, 2-sums and 3-sums starting with codes,

each of which is a minor of C, and

each of which is one of the following:

⋄ the cycle code of some graph;

⋄ the [7, 4] Hamming code;

⋄ C(K3,3)⊥;

⋄ C(V8)⊥.

BIRS Workshop 28 Aug 3, 2009



'

&

$

%

Corollaries of the Decomposition Theorem

Let G be the family of geometrically perfect codes.

◦ There is a polynomial-time algorithm for deciding

membership in G.

◦ There is a polynomial-time algorithm that,

given a C ∈ G, and a vector γ ∈ R
n, determines

arg min
x∈P (C)

〈γ,x〉.

◦ Therefore, there is a polynomial-time maximum-likelihood

decoding algorithm for codes in G.

◦ G is not asymptotically good: codes from G cannot have both

min. dist. and dimension growing linearly with codelength.

◦ Therefore, pseudocodewords cannot be avoided when

LP decoding is applied to good codes.
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Tree Decompositions of Graphs and Matroids
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Tree Decompositions of Graphs

Let G be a graph with vertex set V (G).

A tree decomposition of G consists of a tree T , and an ordered

collection V = (Vx, x ∈ V (T )) of subsets of V (G), satisfying

◦
S

x∈V (T ) Vx = V ;

◦ for each v ∈ V (G), the subgraph of T induced by

{x ∈ V (T ) : v ∈ Vx} is connected; and

◦ for each pair of adjacent vertices u, v ∈ V (G), we have

{u, v} ⊆ Vx for some x ∈ V (T ).

We then define width(T,V) def
= maxx∈V (T ) |Vx| − 1.
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Treewidth of Graphs

Definition [Robertson & Seymour (1983)]

The treewidth of G is defined to be the least width

of any tree decomposition of G; denoted by κtree(G).
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Some Examples

◦ For any tree T , κtree(T ) = 1.

◦ If G is a cycle on at least three vertices, then κtree(G) = 2.

◦ The graph G shown below also has treewidth 2.

CAB
DEC EBC BEG GFB
GEH

G

A BC E
FGHD An optimal tree deomposition of G
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Tree Decompositions of Matroids

M a matroid on ground set E, with rank function r.

A tree decomposition of M is a pair (T, ω), where

◦ T is a tree, and

◦ ω : E → V (T ) is a mapping.
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Node-width in a tree decomposition

x

Given a tree decomposition (T, ω) of M , and a node x ∈ V (T )

◦ the removal of x from T yields a disconnected graph whose

components, T1, . . . , Tδ, are subtrees of T

◦ for j = 1, . . . , δ, set Fi = ω−1(V (Ti))

◦ node-width(x) =
Pδ

i=1 r(E − Fi) − (δ − 1) rank(M)
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Matroid Treewidth

width(T, ω) = max
x∈V (T )

node-width(x)

Definition [ Hliněný and Whittle (2006);

attributed to Jim Geelen ]:

The treewidth of M is defined to be

κtree(M) = min
(T,ω)

width(T, ω).
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Relating Graph and Matroid Treewidth

Theorem [Hliněný and Whittle (2006)] For any graph G,

κtree(M(G)) = κtree(G).

It is known that the problem of computing the treewidth of a

graph is NP-hard, and therefore, so is the corresponding problem

for matroids.
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Application:

Graphical Models of Codes
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Graphical Models of Codes

Graphical models of codes and the associated message-passing

decoding algorithms are a major focus area of modern coding

theory.

Graphical models come in many flavours:

- Trellises (the Viterbi decoding algorithm)

- Tanner graphs

- Factor graphs

- Normal graphical models/realizations [Forney (2001)]

The decoding algorithms commonly associated with these models

are variants of the abstract Generalized Distributive Law,

as expounded by Aji & McEliece (2000).
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Graph Decompositions

Let C be a linear code defined on an index set I.

A graph decomposition of (the index set of) C is a pair (G, ω),

where

◦ G is a connected graph, and

◦ ω : I → V (G) is a mapping.

When G is a tree, (G, ω) is called a tree decomposition.
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Normal Graphical Models

For a graph G = (V, E), given v ∈ V , let E(v) denote the set of

edges of G incident with v.

A graph decomposition (G, ω) of a code C can be extended to a

normal graphical model (G, ω, (Se, e ∈ E), (Cv , v ∈ V )), where

◦ for each e ∈ E, Se is a vector space over F,

called a state space;

◦ for each v ∈ V , Cv is a subspace of

F
ω−1(v) ⊕

“L
e∈E(v) Se

”
, called a local constraint (code).

ω−1(v)

Cv

E(v)
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(Normal) Graphical Realizations

A valid global configuration of a normal graphical model Γ is a

vector of the form b = ((xi, i ∈ I), (se, e ∈ E)), where

◦ for each i ∈ I, xi is a symbol from F;

◦ for each e ∈ E, se is a state from Se;

◦ for each v ∈ V , ((xi, i ∈ ω−1(v)), (se, e ∈ E(v))) ∈ Cv .

The set of all valid global configurations forms a vector space over

F, called the full behaviour of the model; we denote this by B.

If B|I = C, then Γ is called a (normal) graphical realization of C.

BIRS Workshop 40 Aug 3, 2009



'

&

$

%

(Normal) Graphical Realizations

A valid global configuration of a normal graphical model Γ is a

vector of the form b = ((xi, i ∈ I), (se, e ∈ E)), where

◦ for each i ∈ I, xi is a symbol from F;

◦ for each e ∈ E, se is a state from Se;

◦ for each v ∈ V , ((xi, i ∈ ω−1(v)), (se, e ∈ E(v))) ∈ Cv .

The set of all valid global configurations forms a vector space over

F, called the full behaviour of the model; we denote this by B.

If B|I = C, then Γ is called a (normal) graphical realization of C.

BIRS Workshop 40 Aug 3, 2009



'

&

$

%

An Example

Consider an arbitrary graph G0:

This is a graphical realization of the cycle code C[G0].

BIRS Workshop 41 Aug 3, 2009



'

&

$

%

An Example

Subdivide the edges of G0 to form G:

This is a graphical realization of the cycle code C[G0].
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An Example

Construct a graphical model (over F2) on G as depicted below:

=

=

=

==
=

=

+ +

++

+

This is a graphical realization of the cycle code C[G0].
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The Dual Example

Replace all +’s by =’s, and vice versa:

=
+

+

+

++ +

+= =

==

This is a graphical realization of the dual of C[G0]. [Forney (2001)]
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Constraint Complexity of a Realization

Any graphical realization of code has a natural associated

decoding algorithm, namely, the sum-product algorithm

[Forney (2001)].

The computational complexity of the sum-product algorithm is

determined in large part by the dimensions of the local constraint

codes in the realization.

Definition: Let Γ = (G, ω, (Cv , v ∈ V ), (Se, e ∈ E)) be a

graphical realization of a code C. The constraint complexity

of Γ is defined to be

κ(Γ) = max
v∈V

dim(Cv).
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How Low Can You Go?

Given: a code C and a connected graph G

Fact: Any graph decomposition (G, ω) of (the index set of) C

can be extended to a graphical realization of C.

Question: How small can the constraint complexity

of a realization of C on G be?

Let R(C;G, ω) denote the set of all realizations of C that extend a

given graph decomposition (G, ω).

κ(C;G, ω) = min
Γ∈R(C;G,ω)

κ(Γ)

κ(C;G) = min
ω

κ(C;G, ω)
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Tree Realizations

A tree realization of a code C is a graphical realization of C in

which the underlying graph is a tree.

Since the realization is cycle-free, the associated sum-product

algorithm gives an exact implementation of maximum-likelihood

(ML) decoding [Forney (2001)], [Aji & McEliece (2001)].
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Minimal Tree Realizations

For a given tree decomposition (T, ω) of a code C, Forney (2001)

gave a canonical method of constructing a tree realization in

R(C; T, ω).

Forney’s construction can be shown to minimize, among all

realizations in R(C; T, ω), the dimension of the local constraint at

each vertex of T [K. (2007)].

Let M(C; T, ω) denote this minimal tree realization; thus

κ(C; T, ω) = κ(M(C; T, ω))

Forney (2003) gave an explicit expression for the dimensions of

the local constraints in M(C; T, ω).
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Treewidth of Codes

Definition

Treewidth: κtree(C) = min(T,ω) κ(C; T, ω)

(minimum over all tree decompositions of C)

Fact:

Forney’s expression for the dimensions of the local

constraints in a minimal tree realization shows that

κtree(C) = κtree(M(C))

Thus, κtree(M(C)) may be viewed as a measure of the

ML-decoding complexity of C.
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Realizations on Graphs with Cycles

There is little known about the problem of finding low-complexity

realizations of a code C on a given connected graph G, when G is

not a tree.

When G is a simple cycle, the problem is one of finding optimal

tailbiting trellis realizations of codes, which has been studied by

Koetter and Vardy (2003).

Halford and Chugg (2008) gave a lower bound on κ(C;G) in terms

of “forest-inducing edge cuts” of G.

Their lower bound is subsumed by (a slight modification of) the

following bound [K. (2009)]:

κ(C;G) ≥
κtree(C)

κtree(G) + 1
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Other Complexity Measures

One can define the pathwidth of graphs, matroids, and codes,

by considering only those tree decompositions in which the

underlying tree is a simple path.

These notions are related to each other much like treewidth.

The pathwidth of a linear code is essentially the same as its

minimal trellis complexity.
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Some Interesting Results

The connections between pathwidth and treewidth of graphs,

matroids, and codes can be exploited to show that

◦ computing the minimal trellis complexity (among all

coordinate permutations) of a code is NP-hard [K. (2008)]

◦ the ratio between the pathwidth and the treewidth of a code

grows at most logarithmically with codelength, and a

logarithmic rate of growth is in fact achievable [K. (2009)]

◦ “Good” families of codes cannot have realizations of bounded

complexity on graphs of bounded treewidth [K. (2009)]
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