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Matroids

Definition

A matroid (X , ρ) is a finite set X and a “rank” function
ρ : 2X 7→ R+ satisfying for all A,B ⊆ X ,

Cardinality bound: ρ(A) ≤ |A|
Integrality constraint: ρ(A) is an integer
Polymatroid constraints:

ρ(∅) = 0 (R1)
A ⊆ B =⇒ ρ(A) ≤ ρ(B) (R2)

ρ(A ∪ B) + ρ(A ∩ B) ≤ ρ(A) + ρ(B). (R3)
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Linear Codes

Dimension k subspace C ⊆ Fn
q

qk codewords of length n

Row space of a k × n generator matrix G

Induces a vector matroid M[G] = (N , ρ)

ρ(A) = rank GA

where for all A ⊆ N , {1, 2, . . . ,N}, GA is the submatrix of
G obtained by deleting columns not indexed by A.
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Polynomials

Definition (Weight enumerator polynomial)

Let C be a linear code of length n. Its weight enumerator
polynomial is

WC(x, y) ,
∑

zN∈C

xn−D(zN )yD(zN )

where D(zN ) is the Hamming weight of zN .

Definition (Tutte polynomial)

Let ρ be the rank function of a matroid (N , ρ). Its Tutte
polynomial is

Tρ(x, y) ,
∑
A⊆N

(x− 1)ρ(N )−ρ(A)(y− 1)|A|−ρ(A).
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The Link: Greene’s Theorem

Theorem (Greene)

Let C be a linear code of length n over a finite field Fq and ρ be
its associated matroid. Then

WC(x, y) = yn−ρ(N )(x− y)ρ(N )Tρ

(
x + (q− 1)y

x− y
,

x
y

)
. (1)
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The fundamental question

Besides linear codes, are there any other codes that exhibit
similar properties?
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From Codes to Random Variables

Consider a linear code C = 〈G〉.
Let U = (U1,U2, . . . ,Uk) be uniformly drawn from Fk

q

Code symbol random variables

(Z1, . . . ,Zn),UTG

Induces a probability distribution

Pr(ZN = zN ) =

{
1/|C| if zN ∈ C
0 otherwise.

A code and its induced random variables are in one-to-one
correspondence.
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Another Perspective: Entropy Functions

For any subset A of N ,

Pr(ZA = zA) =

{
q−|GA| if ∃u ∈ Fk

q, zA = uTGA
0 otherwise

(2)

Random variable ZA is uniformly distributed over its
support.
H(ZA) = |GA| = ρ(A) (w.r.t. logq)
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In other words ...

Greene’s Theorem links the weight enumerator polynomial and
the Tutte polynomial induced by the entropy function of the
code symbol random variables.
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Preview ...
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Quasi-uniform codes

Definition (Quasi-Uniform Random Variables)

A set of random variables (Z1, . . . ,Zn) is quasi-uniform if for any
A ⊆ N , ZA,(Zi : i ∈ A) is uniformly distributed over its support
λ(ZA),

Pr(ZA = zA) =

{
1/|λ(ZA)| if zA ∈ λ(ZA)
0 otherwise.

A code C is called quasi-uniform if its induced code symbol
random variables are quasi-uniform.
Linear codes are quasi-uniform.
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Combinatorial interpretation

Definition (Projection & Cross-Section)

Let C ⊆∏n
i=1Zi. For any A ⊆ N and zN ∈ C, we define

CA, {zA ∈ ZA : ∃zAc , (zA, zAc) ∈ C} Projection

CA(zN ),{yAc ∈ ZAc : (zA, yAc) ∈ C} Cross-section

Z1

Z2 CA
CA(zN )
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Combinatorial interpretation

Proposition

A code C is quasi-uniform⇔ for any A ⊆ N and zN ∈ C,
|CA(zN )| is constant for all zN ∈ C

|C| = |CA||CA(zN )|
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How General are Quasi-Uniform Codes?

A code is quasi-uniform if and only if every codeword looks
essentially “the same”.
(quasi-uniform codes are not overly general)
Can be nonlinear
Can be constructed from any finite group
Polymatroids, not necessarily representable matroids.
Quasi-uniform random variables suffice to characterize Γ̄∗
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Quasi-uniform from Groups & Subgroups

Let G be a finite group with subgroups G1, . . . ,Gn. Let U be
uniformly distributed over G

Each Gi induces a random variable Ui: the left coset of Gi

in G that contains U.
Then (U1, . . . ,Un) is quasi-uniform.

Theorem (Linear codes are quasi-uniform)

Let C = (Z1, . . . ,Zn) be a linear code generated by M. Let

G = Fk
q

Gi,{u ∈ Fk
q : uTMi = 0}

Then Zi is induced by the subgroup Gi.
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Almost Affine Codes

Definition (Almost Affine Code)

Let C ⊆∏n
i=1Zi be a length n code where |Zi| = q > 1 for all

i ∈ N . The code C is called almost affine if for any A ⊆ N ,
logq |CA| is a nonnegative integer.

Theorem (Almost affine codes are quasi-uniform)

A code C is almost affine if and only if it is quasi-uniform and its
induced entropy function is a matroid.

J. Simonis and A. Ashikhmin, Almost affine codes, Designs,
Codes and Cryptography, vol. 14, no. 2, pp. 179 - 197, 1998
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Distance invariance

Consider any code C and a codeword zN ∈ C.
Distance profile of C centered at zN

A(zN , r) = |{yN : dH(yN , zN ) ≤ r}|

A code is distance-invariant if A(zN , r) independent of zN .
Linear codes are distance-invariant.

Theorem

Quasi-uniform codes are distance-invariant.
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Puncturing and Shortening

Puncturing (with respect to position i)

CN\i = (Zj : j 6= i)

Shortening (with respect to position i)

Ci(0) = {yN\i : (yN\i, 0) ∈ C}

Z1

Z2 Puncture Shorten

Theorem

If C is quasi-uniform, then its punctured and shortened codes
are also quasi-uniform.
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Generalized Greene’s Theorem

Theorem

Let C = (Z1, . . . ,Zn) be quasi-uniform code with entropy
function ρ(A) , Hq(Zi : i ∈ A). Define its weight enumerator
polynomial and Tutte polynomial as follows:

WC(x, y),
∑

zN∈C

xn−D(zN )yD(zN )

Tρ(x, y),
∑
A⊆N

(x− 1)ρ(N )−ρ(A)(y− 1)|A|−ρ(A).

Then

WC(x, y) = yn−ρN (x− y)ρNTρ

(
x + (q− 1)y

x− y
,

x
y

)
.
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Sketch of Proof

Proof by induction.
Let C be a quasi-uniform code of length n

Let ρ be its induced entropy function.
Fix i ∈ N . Let C1 = CN\i and C2 = Ci(0) be obtained
respectively by puncturing and shortening w.r.t. Zi.
Induction uses two “splitting” lemmas:

WC(x, y) = yqρ(N )−ρ(N\i)WC1(x, y) + (x− y)WC2(x, y)

Tρ(x, y) = (x− 1)ρ(N )−ρ(N\i)Tρ1(x, y) + (y− 1)1−ρ(i)Tρ2(x, y)
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Robust data transmission

Transmitter and receiver connected via n parallel links
Capacity of each link is different.
An adversary aims to obstruct data transmission by
replacing messages.
Adversary can attack t links.
Errors can be corrected if the code has a minimum
Hamming distance at least 2t + 1.
Using linear or almost affine codes, all code symbols are
drawn from the same set. The rate of the code will suffer if
one links has small capacity forcing the all the code
symbols to take values in a smaller set.
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Secret sharing

Definition

A secret sharing scheme for an access structure Ω is a set of
random variables (Z0, . . . ,Zn) such that

1 Z0 is the secret uniformly distributed over Z0;
2 H(Z0|Zi, i ∈ A) = 0 if A ∈ Ω;
3 I(Z0; ZA) = 0 if A 6∈ Ω.

Quasi-uniform codes may be of interest for metric

min
i∈N

H(Z0)
ciH(Zi)

where almost affine codes may be inefficient.
Non-ideal access structures?
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L. Guillé, T. Chan and A. Grant, “The minimal set of Ingleton
inequalities,” IEEE Int. Symp. Inform. Theory, (Toronto, Canada),
July 2008.

T. Chan and A. Grant, “Dualities between entropy functions and
network codes,” IEEE Trans. Inform. Theory, vol. 54, pp. 4470 –
4487, Oct. 2008.

T. Chan and A. Grant, “Non-linear information inequalities,”
Entropy, vol. 10, pp. 765–775, Dec. 2008.

T. Chan, A. Grant and D. Kern, “Existence of new inequalities for
representable polymatroids,” arXiv:0907.5030v1.


	Outline
	Linear Codes & Matroids (yet again)
	Matroids from Codes & Greene's Theorem
	The Fundamental Question
	Another Perspective - Entropy Functions

	Quasi-uniform Codes
	Definition & Combinatorial Interpretation
	Construction from Groups

	Main results
	Distance Invariance
	Puncturing & Shortening
	Generalized Greene's Theorem

	Applications
	Robust Data Transmission
	Secret Sharing

	Summary

