On Mahler's method.

Federico Pellarin, University of Saint-Etienne, France

Banff, 2009-9-30

イロト イヨト イヨト イヨト

æ

Federico Pellarin, University of Saint-Etienne, France On Mahler's method

- 4 回 ト 4 ヨ ト 4 ヨ ト

After a paper of Mahler (1921)

Mahler's method is a technique to show the transcendency of values at algebraic complex numbers of transcendental solutions $f(x) \in L[[x]]$ of

$$f(x^d) = R(x, f(x)), \quad d > 1, \quad R \in \mathbb{Q}(X, Y)$$

The interest of the method is that it can be modified to produce algebraic independence

An example Transcendence at algebraic numbers

イロン イヨン イヨン イヨン

æ

Example

Let us consider the formal series:

$$f(x) = \prod_{n=0}^{\infty} (1 - x^{2^n}) = \sum_{n=0}^{\infty} c_n x^n \in \mathbb{Z}[[x]],$$

converging in the open unit ball $B(0,1) \subset \mathbb{C}$ to an analytic function.

$$f(x^2) = \frac{f(x)}{1-x}$$

・ロト ・日本 ・モート ・モート

f is transcendental over $\mathbb{C}(x)$.

Pólya-Carlson (1921): $f \in \mathbb{Z}[[x]]$ converging in B(0,1) is either rational or transcendental

• *f* is irrational because of the functional equation

$$f = \sum_{n=0}^{\infty} (-1)^{a_n} x^n$$

with $(a_n)_{n\geq 0}$ the Thue-Morse sequence, is irrational because Thue-Morse sequence is known to be not ultimately periodic Riemann-Hurwitz: if f is algebraic then f must be rational

An example Transcendence at algebraic numbers

Following Mahler's paper of 1929,

 $f(\alpha)$ is transcendental for α algebraic, with $0 < |\alpha| < 1$.

Let $L \subset \mathbb{C}$ be a number field. Absolute logarithmic height of $(\alpha_0 : \cdots : \alpha_n) \in \mathbb{P}_n(L)$:

$$h(\alpha_0:\cdots:\alpha_n)=\frac{1}{[L:\mathbb{Q}]}\sum_{\nu\in M_L}d_\nu\log\max\{|\alpha_0|_\nu,\ldots,|\alpha_n|_\nu\}.$$

 $|\cdot|_v$ chosen so that *product formula* holds:

$$\prod_{\boldsymbol{\nu}\in\mathcal{M}_L}|\alpha|_{\boldsymbol{\nu}}^{\boldsymbol{d}_{\boldsymbol{\nu}}}=1,\quad\alpha\in L^{\times}.$$

If n = 1 we also write $h(\alpha) := h(1 : \alpha)$.

Introduction

Variant in positive characteristic Algebraic independence of numbers From alg. dep. of functions to linear dependence An example Transcendence at algebraic numbers

For all $N \ge 0$, choose $P_N \in \mathbb{Z}[X, Y]$ non-zero of partial degrees $\le N$, such that

 $F_N(x) := P_N(x, f(x)) = cx^{\nu(N)} + \cdots$ (auxiliary function)

with $\nu(N) \ge N^2$. For all *n* big enough depending on *N* and α, f ,

$$-\infty < \log |\mathcal{F}_{\mathcal{N}}(lpha^{2^{n+1}})| \leq c_1 \nu(\mathcal{N}) 2^{n+1} \log |lpha|.$$

Let us suppose by contradiction that $L = \mathbb{Q}(\alpha, f(\alpha)) \subset \mathbb{Q}^{alg.}$

$$F_N(\alpha^{2^{n+1}}) = P_N\left(\alpha^{2^{n+1}}, \frac{f(\alpha)}{(1-\alpha)\cdots(1-\alpha^{2^n})}\right) \in L$$

Introduction

Variant in positive characteristic Algebraic independence of numbers From alg. dep. of functions to linear dependence

An example Transcendence at algebraic numbers

・ロン ・聞と ・ほと ・ほと

æ

 $d = [L:\mathbb{Q}]$

$$\begin{split} \log |F_N(\alpha^{2^{n+1}})| &\geq \\ &\geq -d(L(P_N) + Nh(\alpha^{2^{n+1}}) + Nh(f(\alpha)/(1-\alpha)\cdots(1-\alpha^{2^n}))) \\ &\geq -d(L(P_N) + N2^{n+1}h(\alpha) + Nh(f(\alpha)) + \sum_{i=0}^n h(1-\alpha^{2^n})) \\ &\geq -d(L(P_N) + 2N2^{n+1}h(\alpha) + Nh(f(\alpha)) + (n+1)\log 2). \end{split}$$

Therefore, dividing by $2^{n+1}N$,

$$c_2 N \log |\alpha| \geq -2dh(\alpha).$$

A good choice of N yields a contradiction.

An example Transcendence at algebraic numbers

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

For example, to prove that $f(1/2) \notin \mathbb{Q}^{\mathsf{alg.}}$ it suffices to consider the polynomial

$$P(X,Y) = 2X^2 + XY + Y - 1$$

similarly, $f(2/3) \notin \mathbb{Q}^{\text{alg.}}$ is proved with

 $P = X^2 Y^2 - 4X + 8X^2 + 4Y + 8XY - 12X^2 Y - 3Y^2 - 6XY^2 - 1$

Introduction Variant in positive characteristic Algebraic independence of numbers From alg. dep. of functions to linear dependence	Transcendence of $\widetilde{\pi}$ A more general result Digression. Consequence of subspace Theorem ($\mathcal{C}=\mathbb{C}_\infty$)
---	--

Variant in positive characteristic

$$q = p^{e}, \quad A = \mathbb{F}_{q}[\theta], \quad K = \mathbb{F}_{q}(\theta), \quad K^{\mathsf{alg.}}, \quad |\cdot|, \quad K_{\infty}, \quad \mathbb{C}_{\infty}$$

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

Transcendence of $\tilde{\pi}$ A more general result Digression. Consequence of subspace Theorem ($C = \mathbb{C}_{\infty}$)

Consider the power series

$$\Pi(u) = \prod_{n=1}^{\infty} (1 - \theta u^{q^i}),$$

which converges for $u \in \mathbb{C}_{\infty}$ such that |u| < 1 and satisfies the functional equation:

$$\Pi(u^q) = \frac{\Pi(u)}{1 - \theta u^q}.$$

For q=2, we notice that $\Pi(u)=\sum_{n=0}^{\infty} \theta^{b_n} u^{2n}$, where

 $(b_n)_{n\geq 0} = 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, \ldots$

is the sequence with b_n which counts the number of 1's in the binary expansion of n

Federico Pellarin, University of Saint-Etienne, France On Mahler's method

Transcendence of $\tilde{\pi}$ A more general result Digression. Consequence of subspace Theorem ($C = \mathbb{C}_{\infty}$)

イロト イヨト イヨト イヨト

Π is transcendental over $\mathbb{C}_{\infty}(x)$

- Because it has infinitely many zeroes
- By a criterion of Sharif and Woodcock generalising part of Christol's theorem (exercise, using that b has infinite image)

イロン イヨン イヨン イヨン

For α algebraic over K with $0 < |\alpha| < 1$, $\Pi(\alpha)$ is transcendental over K

"Same" proof as before

- Construction of an auxiliary function with multiplicity in 0
- Extrapolation on $\{\alpha^{q^n}\}$
- Absolute logarithmic height $h: \mathbb{P}_n(K^{\mathsf{alg.}}) \to \mathbb{R}_{\geq 0}$
- An analogue of Liouville's inequality

More generally, assume that we are in one of the following two cases.

- $\mathcal{C} = \mathbb{C}$, $\mathcal{Q} = \mathbb{Q}$, $|\cdot|$ archimedean absolute value
- $\mathcal{C} = \mathbb{C}_{\infty}$, $\mathcal{Q} = \mathcal{K}$, $|\cdot|$ ultrametric absolute value $|\theta| = q$
- L finite extension of $\mathcal Q$

Let $f \in L[[x]]$, $R \in L(X, Y)$, $h_Y(R) < d$ and $\alpha \in L$ be such that:

・ロン ・四マ ・ヨマ ・ヨマ

- f is transcendental over $\mathcal{C}(x)$
- f converges for $x \in \mathcal{C}$, |x| < 1
- There exists d > 1 such that $f(x^d) = R(x, f(x))$

Then, for all $n \gg 0$, $f(\alpha^{d^n}) \in C$ is transcendental over Q.

Application (Denis,
$$\mathcal{C} = \mathbb{C}_{\infty}$$
): the following "number" is transcendental

$$\widetilde{\pi} = \theta(-\theta)^{1/(q-1)} \prod_{i=1}^{\infty} (1 - \theta^{1-q^i})^{-1} = \theta(-\theta)^{1/(q-1)} \Pi(\theta^{-1})^{-1}$$

・ロン ・回 と ・ ヨン ・ モン

Э

 $(\alpha=\theta^{-1})$

Transcendence of $\tilde{\pi}$ A more general result Digression. Consequence of subspace Theorem ($C = \mathbb{C}_{\infty}$)

イロン イヨン イヨン イヨン

A result of Corvaja and Zannier 2002 (deduced from Schmidt's Subspace Theorem).

- L number field
 - $f \in \mathbb{Q}^{\mathsf{alg.}}[[x]]$ not a polynomial
 - $\alpha \in L$
 - S a finite set of places containing the archimedean ones
 - $\mathcal{A} \subset \mathbb{N}$ an infinite set
 - $f(\alpha^n) \in L$ is an *S*-integer for all $n \in A$

Then,

$$\liminf_{n\in\mathcal{A}}\frac{h(f(\alpha^n))}{n}=\infty$$

Application with $\mathcal{A} = \{d, d^2, d^3, \ldots\}$:

• $f \in \mathbb{Q}^{\mathsf{alg.}}[[x]]$

f not a polynomial

•
$$f(x^d) = R(x, f(x))$$
 with $R \in \mathbb{Q}^{\text{alg.}}(X, Y)$

•
$$\deg_Y R < d$$

Then, $f(\alpha^{d^n})$ is transcendental for α algebraic and for all $n \gg 0$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

< ロ > < 回 > < 回 > < 回 > < 回 > <

Algebraic independence (Loxton-van der Poorten, Denis,...)

L finite extension of ${\mathcal Q}$

Let $f_1, \ldots, f_m \in L[[x]]$ and $\alpha \in L$, $0 < |\alpha| < 1$ be such that:

- f_1, \ldots, f_m are algebraically independent over $\mathcal{C}(x)$
- f_i converges for $x \in \mathcal{C}$, |x| < 1 for all i
- There exists d > 1 such that $f_i(x^d) = a_i(x)f_i(x) + b_i(x)$ with $a_i, b_i \in L(x)$ for all i

Then, for $n \gg 0$, $f_1(\alpha^{d^n}), \ldots, f_m(\alpha^{d^n}) \in C$ are algebraically independent over Q.

・ロン ・回と ・ヨン ・ヨン

2

- If C = C, Loxton-van der Poorten (1977), generalised by Nishioka, Becker, Töpfer,...
- In both cases C = C, C_∞, it can be deduced from a criterion of Philippon (1992).
- Denis (2000) used this criterion in the case $\mathcal{C} = \mathbb{C}_{\infty}$.

Some criteria "More general" results for $C = \mathbb{C}$ Some results with $C = \mathbb{C}_{\infty}$

・ロン ・回と ・ヨン ・ヨン

More is true when $\mathcal{C} = \mathbb{C}$ (Philippon)

Let

•
$$f_1, \ldots, f_m \in L[[x]]$$

• $\mathcal{A} \in \operatorname{Mat}_{n \times n}(L(x)), \quad \mathcal{B} \in \operatorname{Mat}_{n \times 1}(L(x))$
• $\alpha \in \mathbb{C}$

be such that:

- f_1, \ldots, f_m are algebraically independent
- f_i converges for $x \in C$, |x| < 1
- $\underline{f}(x^d) = \mathcal{A}(x) \cdot \underline{f}(x) + \mathcal{B}(x)$

Then, for $n \gg 0$, α , $f_1(\alpha^{d^n}), \ldots, f_m(\alpha^{d^n}) \in C$ generate a subfield of \mathbb{C} of transcendence degree $\geq m$.

Some criteria "More general" results for $C = \mathbb{C}$ Some results with $C = \mathbb{C}_{\infty}$

イロト イヨト イヨト イヨト

Uses:

- A criterion for algebraic independence by Philippon (1998)
- Construction at x = 0 with Siegel's lemma and extrapolation on {a^{dⁿ}}
- A multiplicity estimate by Nishioka (1990).

・ロン ・回と ・ヨン ・ヨン

Some results with $\mathcal{C}=\mathbb{C}_\infty$ (by Denis method)

- $\beta_1, \ldots, \beta_m \in K$. $\log_{Carlitz}(\beta_i)$ K-linearly independent \Rightarrow algebraically independent
- The first p-1 "divided derivatives" of $\widetilde{\pi}$ are algebraically independent
- $\hfill \widetilde{\pi}$ and "odd" values of Carlitz-Goss zeta function are algebraically independent
- Various $\widetilde{\pi}$'s are algebraically independent

Denis deformation of Carlitz's logarithms Other deformations Measures of transcendence and algebraic independence

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Denis deformation of Carlitz's logarithms ($\alpha = \theta$)

- /

$$eta = eta(heta) \in {oldsymbol K}$$
, $|eta| < q^{q/(q-1)}$.

$$F_{\beta}(x) = \beta(x) + \sum_{n \ge 1} (-1)^n \frac{\beta(x^{q^n})}{\prod_{j=1}^n (x^{q^j} - \theta)}$$

1 converges for
$$|x| > q^{1/q}$$

2 $\log_{Carlitz}(\beta) = F_{\beta}(\theta)$,
3 $F_{\beta}(x^q) = (\theta - x^q)(F_{\beta}(x) - \beta(x))$,
4 $F_{\beta_1+\beta_2} = F_{\beta_1} + F_{\beta_2}$,
5 $F_{\Phi_{Carlitz}(\theta)\beta}(x) = \theta F_{\beta}(x) + (x - \theta)\beta(x)$

Denis deformation of Carlitz's logarithms Other deformations Measures of transcendence and algebraic independence

æ

$$\beta_1,\ldots,\beta_m \in K$$
, $|\beta_i| < q^{q/(q-1)}$

$$f_1 := F_{\beta_1}, \ldots, f_m := F_{\beta_m}$$

 $a = \theta - x^q$

$$b_i = -\frac{\beta_i(x)}{\theta - x^q}$$

If f_1, \ldots, f_m are algebraically dependent over $K^{\text{alg.}}(x)$, then, there is a non-trivial linear dependence relation

$$c_1f_1+\cdots+c_mf_m+c_0=0$$

with

•
$$c_1, \ldots, c_m \in K^{alg.}$$

• $c_0 \in K^{alg.}(x), c_0(x^q) = ac_0(x) - \sum_i c_i b_i$

Introduction Variant in positive characteristic Algebraic independence of numbers From alg. dep. of functions to linear dependence	Denis deformation of Carlitz's logarithms Other deformations Measures of transcendence and algebraic independence
---	---

 $\log_{Carlitz}(\beta_1), \log_{Carlitz}(\beta_2)$ are algebraically independent (after Papanikolas Theorem).

Is it possible to prove it with Mahler's method?

Probably not with $\alpha = \theta$ but it can be done with $\alpha = \beta_1$

Define, for $\beta \in K$,

$$\widetilde{F}_{\beta}(x) = \beta(x) + \sum_{n=1}^{\infty} (-1)^n \frac{\beta(x^{q^n})}{\prod_{j=1}^n (x^{q^{j+1}} - x^{q^j} - \theta)}$$

・ロト ・回ト ・ヨト ・ヨト

æ

We have:

1
$$\widetilde{F}_{\beta}(x^{q}) = (\theta - x^{q^{2}} + x^{q})(\widetilde{F}_{\beta}(x) - \beta(x))$$

2 $\widetilde{F}_{(\theta^{q} - \theta)\beta + \beta^{q}}(x) = \theta \widetilde{F}_{\beta}(x) + (x^{q} - x - \theta)\beta(x)$
3 $\widetilde{F}_{\beta}(\alpha) = \log_{\text{Carlitz}}(\beta(\alpha))$

In particular

•
$$\widetilde{F}_{\theta}(\alpha) = \log_{\mathsf{Carlitz}}(\alpha)$$

• $\widetilde{F}_{\theta^q - \theta}(\alpha) = \log_{\mathsf{Carlitz}}(\theta)$

Introduction Variant in positive characteristic Algebraic independence of numbers From alg. dep. of functions to linear dependence	Denis deformation of Carlitz's logarithms Other deformations Measures of transcendence and algebraic independence
---	---

Mahler's method gives measures of algebraic independence: $Q \in \mathbb{Z}[X_1, \dots, X_m] \setminus \{0\}$

• deg
$$Q \leq D$$
,

• $H(Q) \leq H$

 $|Q(f_1(\alpha),\ldots,f_m(\alpha))| \ge \exp\{-c_1 D^m (D^{m+2} + \log H)\}$

(Töpfer, 1995)

Recent result by Denis:

$|Q(\widetilde{\pi})| \ge \exp\{-c_2 D^4 (D + \log H)\}$

(extends to Carlitz's logarithms of rationals and to certain ζ -values)

・ 同 ト ・ ヨ ト ・ ヨ ト

Mahler's method (for $C = \mathbb{C}$) extends to:

- Functions of several variables, linear functional equations (Loxton-van der Poorten, Nishioka,...)
- Non-linear functional equations: P(x, f(x), f(x^d)) = 0 (Greuel, 2000)

・ 同 ト ・ ヨ ト ・ ヨ ト