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After a paper of Mahler (1921)

Mahler’s method is a technique to show the transcendency of
values at algebraic complex numbers of transcendental solutions
f (x) ∈ L[[x ]] of

f (xd) = R(x , f (x)), d > 1, R ∈ Q(X ,Y )

The interest of the method is that it can be modified to produce
algebraic independence
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Example

Let us consider the formal series:

f (x) =
∞∏

n=0

(1− x2n
) =

∞∑
n=0

cnx
n ∈ Z[[x ]],

converging in the open unit ball B(0, 1) ⊂ C to an analytic
function.

f (x2) =
f (x)

1− x
.
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f is transcendental over C(x).

Pólya-Carlson (1921): f ∈ Z[[x ]] converging in B(0, 1) is either
rational or transcendental

f is irrational because of the functional equation

f =
∞∑

n=0

(−1)anxn

with (an)n≥0 the Thue-Morse sequence, is irrational because
Thue-Morse sequence is known to be not ultimately periodic

Riemann-Hurwitz: if f is algebraic then f must be rational
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Following Mahler’s paper of 1929,

f (α) is transcendental for α algebraic, with 0 < |α| < 1.

Let L ⊂ C be a number field.
Absolute logarithmic height of (α0 : · · · : αn) ∈ Pn(L):

h(α0 : · · · : αn) =
1

[L : Q]

∑
v∈ML

dv log max{|α0|v , . . . , |αn|v}.

| · |v chosen so that product formula holds:∏
v∈ML

|α|dv
v = 1, α ∈ L×.

If n = 1 we also write h(α) := h(1 : α).
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For all N ≥ 0, choose PN ∈ Z[X ,Y ] non-zero of partial degrees
≤ N, such that

FN(x) := PN(x , f (x)) = cxν(N) + · · · (auxiliary function)

with ν(N) ≥ N2.
For all n big enough depending on N and α, f ,

−∞ < log |FN(α2n+1
)| ≤ c1ν(N)2n+1 log |α|.

Let us suppose by contradiction that L = Q(α, f (α)) ⊂ Qalg.

FN(α2n+1
) = PN

(
α2n+1

,
f (α)

(1− α) · · · (1− α2n)

)
∈ L
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d = [L : Q]

log |FN(α2n+1
)| ≥

≥ −d(L(PN) + Nh(α2n+1
) + Nh(f (α)/(1− α) · · · (1− α2n

)))

≥ −d(L(PN) + N2n+1h(α) + Nh(f (α)) +
n∑

i=0

h(1− α2n
))

≥ −d(L(PN) + 2N2n+1h(α) + Nh(f (α)) + (n + 1) log 2).

Therefore, dividing by 2n+1N,

c2N log |α| ≥ −2dh(α).

A good choice of N yields a contradiction.
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For example, to prove that f (1/2) 6∈ Qalg. it suffices to consider
the polynomial

P(X ,Y ) = 2X 2 + XY + Y − 1

similarly, f (2/3) 6∈ Qalg. is proved with

P = X 2Y 2 − 4X + 8X 2 + 4Y + 8XY − 12X 2Y − 3Y 2 − 6XY 2 − 1
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Digression. Consequence of subspace Theorem (C = C∞)

Variant in positive characteristic

q = pe , A = Fq[θ], K = Fq(θ), K alg., | · |, K∞, C∞
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Consider the power series

Π(u) =
∞∏

n=1

(1− θuqi
),

which converges for u ∈ C∞ such that |u| < 1 and satisfies the
functional equation:

Π(uq) =
Π(u)

1− θuq
.

For q = 2, we notice that Π(u) =
∑∞

n=0 θ
bnu2n, where

(bn)n≥0 = 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, . . .

is the sequence with bn which counts the number of 1’s in the
binary expansion of n
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Π is transcendental over C∞(x)

Because it has infinitely many zeroes

By a criterion of Sharif and Woodcock generalising part of
Christol’s theorem (exercise, using that b has infinite image)
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For α algebraic over K with 0 < |α| < 1, Π(α) is transcendental
over K

“Same” proof as before

Construction of an auxiliary function with multiplicity in 0

Extrapolation on {αqn}
Absolute logarithmic height h : Pn(K alg.)→ R≥0

An analogue of Liouville’s inequality
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More generally, assume that we are in one of the following two
cases.

C = C, Q = Q, | · | archimedean absolute value

C = C∞, Q = K , | · | ultrametric absolute value |θ| = q

L finite extension of Q

Let f ∈ L[[x ]], R ∈ L(X ,Y ), hY (R) < d and α ∈ L be such that:

f is transcendental over C(x)

f converges for x ∈ C, |x | < 1

There exists d > 1 such that f (xd) = R(x , f (x))

Then, for all n� 0, f (αdn
) ∈ C is transcendental over Q.
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Application (Denis, C = C∞): the following “number” is
transcendental

π̃ = θ(−θ)1/(q−1)
∞∏
i=1

(1− θ1−qi
)−1 = θ(−θ)1/(q−1)Π(θ−1)−1

(α = θ−1)
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A result of Corvaja and Zannier 2002 (deduced from Schmidt’s
Subspace Theorem).

L number field

f ∈ Qalg.[[x ]] not a polynomial

α ∈ L

S a finite set of places containing the archimedean ones

A ⊂ N an infinite set

f (αn) ∈ L is an S-integer for all n ∈ A

Then,

lim inf
n∈A

h(f (αn))

n
=∞
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Application with A = {d , d2, d3, . . .}:

f ∈ Qalg.[[x ]]

f not a polynomial

f (xd) = R(x , f (x)) with R ∈ Qalg.(X ,Y )

degY R < d

Then, f (αdn
) is transcendental for α algebraic and for all n� 0
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Algebraic independence (Loxton-van der Poorten, Denis,. . . )

L finite extension of Q

Let f1, . . . , fm ∈ L[[x ]] and α ∈ L, 0 < |α| < 1 be such that:

f1, . . . , fm are algebraically independent over C(x)

fi converges for x ∈ C, |x | < 1 for all i

There exists d > 1 such that fi (x
d) = ai (x)fi (x) + bi (x) with

ai , bi ∈ L(x) for all i

Then, for n� 0, f1(αdn
), . . . , fm(αdn

) ∈ C are algebraically
independent over Q.
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If C = C, Loxton-van der Poorten (1977), generalised by
Nishioka, Becker, Töpfer,. . .

In both cases C = C,C∞, it can be deduced from a criterion
of Philippon (1992).

Denis (2000) used this criterion in the case C = C∞.
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More is true when C = C (Philippon)

Let

f1, . . . , fm ∈ L[[x ]]

A ∈Matn×n(L(x)), B ∈Matn×1(L(x))

α ∈ C
be such that:

f1, . . . , fm are algebraically independent

fi converges for x ∈ C, |x | < 1

f (xd) = A(x) · f (x) + B(x)

Then, for n� 0, α, f1(αdn
), . . . , fm(αdn

) ∈ C generate a subfield of
C of transcendence degree ≥ m.
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Uses:

A criterion for algebraic independence by Philippon (1998)

Construction at x = 0 with Siegel’s lemma and extrapolation
on {αdn}
A multiplicity estimate by Nishioka (1990).
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Some results with C = C∞ (by Denis method)

β1, . . . , βm ∈ K . logCarlitz(βi ) K -linearly independent ⇒
algebraically independent

The first p − 1 “divided derivatives” of π̃ are algebraically
independent

π̃ and “odd” values of Carlitz-Goss zeta function are
algebraically independent

Various π̃’s are algebraically independent
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Denis deformation of Carlitz’s logarithms (α = θ)

β = β(θ) ∈ K , |β| < qq/(q−1).

Fβ(x) = β(x) +
∑
n≥1

(−1)n β(xqn
)∏n

j=1(xqj − θ)

1 converges for |x | > q1/q

2 logCarlitz(β) = Fβ(θ),

3 Fβ(xq) = (θ − xq)(Fβ(x)− β(x)),

4 Fβ1+β2 = Fβ1 + Fβ2 ,

5 FΦCarlitz(θ)β(x) = θFβ(x) + (x − θ)β(x)
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β1, . . . , βm ∈ K , |βi | < qq/(q−1)

f1 := Fβ1 , . . . , fm := Fβm

a = θ − xq

bi = − βi (x)
θ−xq

If f1, . . . , fm are algebraically dependent over K alg.(x), then, there
is a non-trivial linear dependence relation

c1f1 + · · ·+ cmfm + c0 = 0

with

c1, . . . , cm ∈ K alg.

c0 ∈ K alg.(x), c0(xq) = ac0(x)−
∑

i cibi
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β1 = root of X q − X − θ = 0

β2 = θ

logCarlitz(β1), logCarlitz(β2) are algebraically independent (after
Papanikolas Theorem).

Is it possible to prove it with Mahler’s method?

Probably not with α = θ but it can be done with α = β1
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Define, for β ∈ K ,

F̃β(x) = β(x) +
∞∑

n=1

(−1)n β(xqn
)∏n

j=1(xqj+1 − xqj − θ)

We have:

1 F̃β(xq) = (θ − xq2
+ xq)(F̃β(x)− β(x))

2 F̃(θq−θ)β+βq (x) = θF̃β(x) + (xq − x − θ)β(x)

3 F̃β(α) = logCarlitz(β(α))

In particular

F̃θ(α) = logCarlitz(α)

F̃θq−θ(α) = logCarlitz(θ)
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Mahler’s method gives measures of algebraic independence:
Q ∈ Z[X1, . . . ,Xm] \ {0}

deg Q ≤ D,

H(Q) ≤ H

|Q(f1(α), . . . , fm(α))| ≥ exp{−c1D
m(Dm+2 + log H)}

(Töpfer, 1995)
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Recent result by Denis:

|Q(π̃)| ≥ exp{−c2D
4(D + log H)}

(extends to Carlitz’s logarithms of rationals and to certain ζ-values)
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Mahler’s method (for C = C) extends to:

Functions of several variables, linear functional equations
(Loxton-van der Poorten, Nishioka,. . . )

Non-linear functional equations: P(x , f (x), f (xd)) = 0
(Greuel, 2000)
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