On Mahler's method.

Federico Pellarin, University of Saint-Etienne, France

Banff, 2009-9-30

After a paper of Mahler (1921)
Mahler's method is a technique to show the transcendency of values at algebraic complex numbers of transcendental solutions $f(x) \in L[[x]]$ of

$$
f\left(x^{d}\right)=R(x, f(x)), \quad d>1, \quad R \in \mathbb{Q}(X, Y)
$$

The interest of the method is that it can be modified to produce algebraic independence

Example

Let us consider the formal series:

$$
f(x)=\prod_{n=0}^{\infty}\left(1-x^{2^{n}}\right)=\sum_{n=0}^{\infty} c_{n} x^{n} \in \mathbb{Z}[[x]]
$$

converging in the open unit ball $B(0,1) \subset \mathbb{C}$ to an analytic function.

$$
f\left(x^{2}\right)=\frac{f(x)}{1-x}
$$

f is transcendental over $\mathbb{C}(x)$.
Pólya-Carlson (1921): $f \in \mathbb{Z}[[x]]$ converging in $B(0,1)$ is either rational or transcendental

- f is irrational because of the functional equation

$$
f=\sum_{n=0}^{\infty}(-1)^{a_{n}} x^{n}
$$

with $\left(a_{n}\right)_{n \geq 0}$ the Thue-Morse sequence, is irrational because Thue-Morse sequence is known to be not ultimately periodic Riemann-Hurwitz: if f is algebraic then f must be rational

Following Mahler's paper of 1929,
$f(\alpha)$ is transcendental for α algebraic, with $0<|\alpha|<1$.
Let $L \subset \mathbb{C}$ be a number field.
Absolute logarithmic height of $\left(\alpha_{0}: \cdots: \alpha_{n}\right) \in \mathbb{P}_{n}(L)$:

$$
h\left(\alpha_{0}: \cdots: \alpha_{n}\right)=\frac{1}{[L: \mathbb{Q}]} \sum_{v \in M_{L}} d_{v} \log \max \left\{\left|\alpha_{0}\right|_{v}, \ldots,\left|\alpha_{n}\right|_{v}\right\} .
$$

$|\cdot|_{v}$ chosen so that product formula holds:

$$
\prod_{v \in M_{L}}|\alpha|_{v}^{d_{v}}=1, \quad \alpha \in L^{\times}
$$

If $n=1$ we also write $h(\alpha):=h(1: \alpha)$.

For all $N \geq 0$, choose $P_{N} \in \mathbb{Z}[X, Y]$ non-zero of partial degrees $\leq N$, such that

$$
F_{N}(x):=P_{N}(x, f(x))=c x^{\nu(N)}+\cdots \quad \text { (auxiliary function) }
$$

with $\nu(N) \geq N^{2}$.
For all n big enough depending on N and α, f,

$$
-\infty<\log \left|F_{N}\left(\alpha^{2^{n+1}}\right)\right| \leq c_{1} \nu(N) 2^{n+1} \log |\alpha|
$$

Let us suppose by contradiction that $L=\mathbb{Q}(\alpha, f(\alpha)) \subset \mathbb{Q}^{\text {alg. }}$

$$
F_{N}\left(\alpha^{2^{n+1}}\right)=P_{N}\left(\alpha^{2^{n+1}}, \frac{f(\alpha)}{(1-\alpha) \cdots\left(1-\alpha^{2^{n}}\right)}\right) \in L
$$

$$
d=[L: \mathbb{Q}]
$$

$$
\begin{aligned}
& \log \left|F_{N}\left(\alpha^{2^{n+1}}\right)\right| \geq \\
& \quad \geq-d\left(L\left(P_{N}\right)+N h\left(\alpha^{2^{n+1}}\right)+N h\left(f(\alpha) /(1-\alpha) \cdots\left(1-\alpha^{2^{n}}\right)\right)\right) \\
& \geq-d\left(L\left(P_{N}\right)+N 2^{n+1} h(\alpha)+N h(f(\alpha))+\sum_{i=0}^{n} h\left(1-\alpha^{2^{n}}\right)\right) \\
& \geq-d\left(L\left(P_{N}\right)+2 N 2^{n+1} h(\alpha)+N h(f(\alpha))+(n+1) \log 2\right)
\end{aligned}
$$

Therefore, dividing by $2^{n+1} N$,

$$
c_{2} N \log |\alpha| \geq-2 d h(\alpha)
$$

A good choice of N yields a contradiction.

For example, to prove that $f(1 / 2) \notin \mathbb{Q}^{\text {alg. it suffices to consider }}$ the polynomial
$P(X, Y)=2 X^{2}+X Y+Y-1$
similarly, $f(2 / 3) \notin \mathbb{Q}^{\text {alg. }}$ is proved with
$P=X^{2} Y^{2}-4 X+8 X^{2}+4 Y+8 X Y-12 X^{2} Y-3 Y^{2}-6 X Y^{2}-1$

Variant in positive characteristic

$$
q=p^{e}, \quad A=\mathbb{F}_{q}[\theta], \quad K=\mathbb{F}_{q}(\theta), \quad K^{\text {alg. }}, \quad|\cdot|, \quad K_{\infty}, \quad \mathbb{C}_{\infty}
$$

Consider the power series

$$
\Pi(u)=\prod_{n=1}^{\infty}\left(1-\theta u^{q^{i}}\right)
$$

which converges for $u \in \mathbb{C}_{\infty}$ such that $|u|<1$ and satisfies the functional equation:

$$
\Pi\left(u^{q}\right)=\frac{\Pi(u)}{1-\theta u^{q}}
$$

For $q=2$, we notice that $\Pi(u)=\sum_{n=0}^{\infty} \theta^{b_{n}} u^{2 n}$, where

$$
\left(b_{n}\right)_{n \geq 0}=0,1,1,2,1,2,2,3,1,2,2, \ldots
$$

is the sequence with b_{n} which counts the number of 1 's in the binary expansion of n
Π is transcendental over $\mathbb{C}_{\infty}(x)$

- Because it has infinitely many zeroes

■ By a criterion of Sharif and Woodcock generalising part of Christol's theorem (exercise, using that b has infinite image)

For α algebraic over K with $0<|\alpha|<1, \Pi(\alpha)$ is transcendental over K
"Same" proof as before

■ Construction of an auxiliary function with multiplicity in 0

- Extrapolation on $\left\{\alpha^{q^{n}}\right\}$
- Absolute logarithmic height $h: \mathbb{P}_{n}\left(K^{\text {alg. }}\right) \rightarrow \mathbb{R}_{\geq 0}$
- An analogue of Liouville's inequality

More generally, assume that we are in one of the following two cases.

■ $\mathcal{C}=\mathbb{C}, \mathcal{Q}=\mathbb{Q},|\cdot|$ archimedean absolute value
■ $\mathcal{C}=\mathbb{C}_{\infty}, \mathcal{Q}=K,|\cdot|$ ultrametric absolute value $|\theta|=q$
L finite extension of \mathcal{Q}
Let $f \in L[[x]], R \in L(X, Y), h_{Y}(R)<d$ and $\alpha \in L$ be such that:
■ f is transcendental over $\mathcal{C}(x)$

- f converges for $x \in \mathcal{C},|x|<1$
- There exists $d>1$ such that $f\left(x^{d}\right)=R(x, f(x))$

Then, for all $n \gg 0, f\left(\alpha^{d^{n}}\right) \in \mathcal{C}$ is transcendental over \mathcal{Q}.

Application (Denis, $\mathcal{C}=\mathbb{C}_{\infty}$): the following "number" is transcendental

$$
\begin{aligned}
& \quad \widetilde{\pi}=\theta(-\theta)^{1 /(q-1)} \prod_{i=1}^{\infty}\left(1-\theta^{1-q^{i}}\right)^{-1}=\theta(-\theta)^{1 /(q-1)} \Pi\left(\theta^{-1}\right)^{-1} \\
& \left(\alpha=\theta^{-1}\right)
\end{aligned}
$$

A result of Corvaja and Zannier 2002 (deduced from Schmidt's Subspace Theorem).
L number field

- $f \in \mathbb{Q}^{\text {alg }}[[[x]]$ not a polynomial
- $\alpha \in L$

■ S a finite set of places containing the archimedean ones

- $\mathcal{A} \subset \mathbb{N}$ an infinite set
- $f\left(\alpha^{n}\right) \in L$ is an S-integer for all $n \in \mathcal{A}$

Then,

$$
\liminf _{n \in \mathcal{A}} \frac{h\left(f\left(\alpha^{n}\right)\right)}{n}=\infty
$$

Application with $\mathcal{A}=\left\{d, d^{2}, d^{3}, \ldots\right\}:$

- $f \in \mathbb{Q}^{\text {alg }} \cdot[[x]]$
- f not a polynomial
- $f\left(x^{d}\right)=R(x, f(x))$ with $R \in \mathbb{Q}^{\text {alg. }}(X, Y)$
- $\operatorname{deg}_{Y} R<d$

Then, $f\left(\alpha^{d^{n}}\right)$ is transcendental for α algebraic and for all $n \gg 0$

Algebraic independence (Loxton-van der Poorten, Denis,...)
L finite extension of \mathcal{Q}
Let $f_{1}, \ldots, f_{m} \in L[[x]]$ and $\alpha \in L, 0<|\alpha|<1$ be such that:

- f_{1}, \ldots, f_{m} are algebraically independent over $\mathcal{C}(x)$
- f_{i} converges for $x \in \mathcal{C},|x|<1$ for all i
- There exists $d>1$ such that $f_{i}\left(x^{d}\right)=a_{i}(x) f_{i}(x)+b_{i}(x)$ with $a_{i}, b_{i} \in L(x)$ for all i

Then, for $n \gg 0, f_{1}\left(\alpha^{d^{n}}\right), \ldots, f_{m}\left(\alpha^{d^{n}}\right) \in \mathcal{C}$ are algebraically independent over \mathcal{Q}.

■ If $\mathcal{C}=\mathbb{C}$, Loxton-van der Poorten (1977), generalised by Nishioka, Becker, Töpfer,...
■ In both cases $\mathcal{C}=\mathbb{C}, \mathbb{C}_{\infty}$, it can be deduced from a criterion of Philippon (1992).
■ Denis (2000) used this criterion in the case $\mathcal{C}=\mathbb{C}_{\infty}$.

More is true when $\mathcal{C}=\mathbb{C}$ (Philippon)
Let
■ $f_{1}, \ldots, f_{m} \in L[[x]]$

- $\mathcal{A} \in \mathbf{M a t}_{n \times n}(L(x)), \quad \mathcal{B} \in$ Mat $_{n \times 1}(L(x))$
- $\alpha \in \mathbb{C}$
be such that:
- f_{1}, \ldots, f_{m} are algebraically independent
- f_{i} converges for $x \in \mathcal{C},|x|<1$
- $\underline{f}\left(x^{d}\right)=\mathcal{A}(x) \cdot \underline{f}(x)+\mathcal{B}(x)$

Then, for $n \gg 0, \alpha, f_{1}\left(\alpha^{d^{n}}\right), \ldots, f_{m}\left(\alpha^{d^{n}}\right) \in \mathcal{C}$ generate a subfield of \mathbb{C} of transcendence degree $\geq m$.

Uses:

- A criterion for algebraic independence by Philippon (1998)

■ Construction at $x=0$ with Siegel's lemma and extrapolation on $\left\{\alpha^{d^{n}}\right\}$
■ A multiplicity estimate by Nishioka (1990).

Some results with $C=\mathbb{C}_{\infty}$ (by Denis method)

- $\beta_{1}, \ldots, \beta_{m} \in K . \log _{\text {Carlitz }}\left(\beta_{i}\right) K$-linearly independent \Rightarrow algebraically independent
- The first $p-1$ "divided derivatives" of $\widetilde{\pi}$ are algebraically independent
■ $\widetilde{\pi}$ and "odd" values of Carlitz-Goss zeta function are algebraically independent
- Various $\widetilde{\pi}$'s are algebraically independent

Denis deformation of Carlitz's logarithms $(\alpha=\theta)$

$$
\beta=\beta(\theta) \in K,|\beta|<q^{q /(q-1)} .
$$

$$
F_{\beta}(x)=\beta(x)+\sum_{n \geq 1}(-1)^{n} \frac{\beta\left(x^{q^{n}}\right)}{\prod_{j=1}^{n}\left(x^{q^{j}}-\theta\right)}
$$

1 converges for $|x|>q^{1 / q}$
$2 \log _{\text {Carlitz }}(\beta)=F_{\beta}(\theta)$,
$3 F_{\beta}\left(x^{q}\right)=\left(\theta-x^{q}\right)\left(F_{\beta}(x)-\beta(x)\right)$,
$4 F_{\beta_{1}+\beta_{2}}=F_{\beta_{1}}+F_{\beta_{2}}$,
$5 F_{\Phi_{\text {Carlitz }}(\theta) \beta}(x)=\theta F_{\beta}(x)+(x-\theta) \beta(x)$
$\beta_{1}, \ldots, \beta_{m} \in K,\left|\beta_{i}\right|<q^{q /(q-1)}$
$f_{1}:=F_{\beta_{1}}, \ldots, f_{m}:=F_{\beta_{m}}$
$a=\theta-x^{q}$
$b_{i}=-\frac{\beta_{i}(x)}{\theta-x^{q}}$
If f_{1}, \ldots, f_{m} are algebraically dependent over $K^{\text {alg. }}(x)$, then, there is a non-trivial linear dependence relation

$$
c_{1} f_{1}+\cdots+c_{m} f_{m}+c_{0}=0
$$

with

- $c_{1}, \ldots, c_{m} \in K^{\text {alg. }}$
- $c_{0} \in K^{\text {alg. }}(x), c_{0}\left(x^{q}\right)=a c_{0}(x)-\sum_{i} c_{i} b_{i}$
- $\beta_{1}=$ root of $X^{q}-X-\theta=0$
- $\beta_{2}=\theta$
$\log _{\text {Carlitz }}\left(\beta_{1}\right), \log _{\text {Carlitz }}\left(\beta_{2}\right)$ are algebraically independent (after Papanikolas Theorem).

Is it possible to prove it with Mahler's method?
Probably not with $\alpha=\theta$ but it can be done with $\alpha=\beta_{1}$

Define, for $\beta \in K$,

$$
\widetilde{F}_{\beta}(x)=\beta(x)+\sum_{n=1}^{\infty}(-1)^{n} \frac{\beta\left(x^{q^{n}}\right)}{\prod_{j=1}^{n}\left(x^{q^{j+1}}-x^{q^{j}}-\theta\right)}
$$

We have:
1 $\widetilde{F}_{\beta}\left(x^{q}\right)=\left(\theta-x^{q^{2}}+x^{q}\right)\left(\widetilde{F}_{\beta}(x)-\beta(x)\right)$
2. $\widetilde{F}_{\left(\theta^{q}-\theta\right) \beta+\beta^{q}}(x)=\theta \widetilde{F}_{\beta}(x)+\left(x^{q}-x-\theta\right) \beta(x)$
$3 \widetilde{F}_{\beta}(\alpha)=\log _{\text {Carlitz }}(\beta(\alpha))$
In particular

- $\widetilde{F}_{\theta}(\alpha)=\log _{\text {Carlitz }}(\alpha)$
- $\widetilde{F}_{\theta^{q}-\theta}(\alpha)=\log _{\text {Carlitz }}(\theta)$

Mahler's method gives measures of algebraic independence:
$Q \in \mathbb{Z}\left[X_{1}, \ldots, X_{m}\right] \backslash\{0\}$

- $\operatorname{deg} Q \leq D$,
- $H(Q) \leq H$

$$
\left|Q\left(f_{1}(\alpha), \ldots, f_{m}(\alpha)\right)\right| \geq \exp \left\{-c_{1} D^{m}\left(D^{m+2}+\log H\right)\right\}
$$

(Töpfer, 1995)

Recent result by Denis:

$$
|Q(\widetilde{\pi})| \geq \exp \left\{-c_{2} D^{4}(D+\log H)\right\}
$$

(extends to Carlitz's logarithms of rationals and to certain ζ-values)

Mahler's method (for $\mathcal{C}=\mathbb{C}$) extends to:

- Functions of several variables, linear functional equations (Loxton-van der Poorten, Nishioka,...)
- Non-linear functional equations: $P\left(x, f(x), f\left(x^{d}\right)\right)=0$ (Greuel, 2000)

