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Motivation: Shimura curves

B=indefinite division quaternion algebra over Q.
O=maximal order in B.
['={y€O|Nr(y) =1}.
H={z¢€C|Im(z) > 0}.

['—- B®R ~ M3(R) acts on H.

Xr =T\ 'H is a compact Riemann surface.

Xr is a moduli space of abelian surfaces with
multiplication by O, so

Xt — Spec(Z).

Xt is smooth over Spec(Z[1/d]).




Questions about X

1.1) Fundamental domain of Xt in H.
1.2) Explicit generators of I' in SLs(RR).

These are computationally difficult problems; only

for a few I' the answer is known, cf.

M. Alsina and P. Bayer:
“Quaternion orders, quadratic forms and Shimura
curves” Amer. Math. Soc. 2004

2) Equation of Xt as a curve in PP3,.

Such equations are known only for finitely many
I', cf.

A. Kurihara: “On some examples of equations
defining Shimura curves and the Mumford uni-

formization”




3) Xr(K) for “interesting” K.
K finite (Ihara, Shimura, Cherednik, Drinfeld).
Xr(R) = (Shimura).

K=local non-archimedean such that Xp(K) =)
are classified (Jordan-Livné).

K=number field - partial results (Jordan,...)




Function field analogue of Xt

F =F,(T), A=TF,[T], co =1/T.

For x € |F|, F,=residue field at =,
deg(z) = [Fy : Fyl, gz = #F,.
Fo =F,(1/T))=completion of F w.r.t. |- |c.

— F=Drinfeld’s half-plane.

D=division quaternion algebra split at oo, i.e.,
D ®p Foo = My (Fy).

D=maximal A-order in D.

R=places where D ramifies (#R is even).
[I' =D

' D*(F) — D*(Fy) 2 GLo(Fb).

XP =T\ Q (this is a Mumford curve).




D-elliptic sheaves

X7P is a coarse modular curve of D-elliptic sheaves
(Drinfeld, Stuhler)

D-elliptic sheaves are a generalization of
Drinfeld modules.

Let K be an A-field, i.e. there is a non-zero
homomorphism v: A — K.

Drinfeld module (a.k.a. elliptic module) over K
is an embedding

A — Endp, (Go k) = K{7}, (7b=0b%7)
such that the induced action of A on the tangent
space 1s via .

D-elliptic module over K is (more-or-less) an
embedding

D — Enqu (GCQL,K)

with a condition on the induced action of A on
the tangent space. (The actual definition is in
terms of sheaves equipped with an action of D
and a Frobenius modification.)




Remark. D-elliptic sheaf gives rise to a left
D°PP @p K{7}-module which is a t-motive of

A-rank 4 and 7-rank 2 equipped with an action
of D.

XP has a canonical model over F with good
reduction at every place v € R U oo (Laumon-
Rapoport-Stuhler).

X7P has totally degenerate reduction at every
place v € R U oo (Hausberger, Stuhler).

Remark. [LRS] introduces higher dimensional

versions of X7 with level structures and uses

them to prove the local Langlands correspon-

dence in positive characteristic.




Fundamental domains for XP

7 =Bruhat-Tits tree of PGLy(F).

I' acts on 7. By Serre-Bass theory, knowing the
quotient graph I' \ 7 is equivalent to having a

presentation for I'.

Let Odd(R) = 1 if all places in R have odd de-
grees, and Odd(R) = 0 otherwise.

Theorem.
(1) '\ 7 is a finite graph with no loops.

) m@\T) =1+ 5 [[ (@ -1)

A reER

q #R—1
— 2 - Odd(R
q+1 (£)
(3) Every vertex of I' \ 7 has degree either 1 or

g+ 1, and

Vi =271 . 0dd(R)

Vit = —— (h(T\ T) — 1 + 2#52 . 0dd(R))




Although the statement of the theorem is purely
combinatorial, the proof of its key parts is arith-

metic:

'\ 7 is the dual graph of X? @ F;

hi(I'\ 7)=genus of X7P;

Vertices of I'\ 7 of degree 1 are in bijection with
Galois orbits of elliptic points on X P,




Examples.
(1) R ={z,y} and deg(z) = deg(y) = 1.
Then h; =0, V1 =2, V41 =0,80T'\ 7 is

o ————O

(2) R:{xayvzaw}v deg( ): :deg( ): 1,
and q = 4.

Then hy =0, V7 =8, Vs =2, 50 '\ 7 is

(1) and (2) are the only cases when I' \ 7 is a
tree.
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(3) “Hyperelliptic case”:
R ={x,y}, deg(x) = 1 and deg(y) = 2.
Then h1 =q, Vi =0, Vyy1 =2,50 '\ 7T is
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Corollary. I' can be generated by

2# R L h (D\ T)

elements. I'/T¢o; is a free group on hy(I'\ 7)

generators.

Corollary. I' can be generated by torsion ele-

ments if and only if one of the following holds:

(1) R ={x,y} and deg(x) = deg(y) = 1. In this
case, I' has a presentation

21 21 1 1
2 [ T =A8 T =1, 48 =45,

(2) R=A{x,y,2z,w}, deg(x) = --- = deg(w) = 1,
and g = 4. In this case, I' has a presentation

(s == =L =
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Explicit sets of generators of I

Assume ¢q is odd. If I' = I'y,;, then can write

down the explicit matrices generating I as a sub-
group of GLa(Fy).

Example. Let ¢ =3, R={(T),(T —1)}.
Denote o =T(T —1).
[' is isomorphic to the subgroup of GLo(Fy)

generated by the matrices

—1
1 1

7=

1 (T+1) -0
—(T+1) -0 1

2 =

both of which have order 8 and satisty
4 _ 4 _
7 =72 = —1L
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In the general case, D has a presentation

i‘=p, j°=0, ij=—ji,

where p is an appropriate irreducible polynomial

in A and 0 is the discriminant of D.
D=A® Ai® Aj  Aij

is an Fichler order of level p (so it is maximal if

only if p € F is a constant).

Theorem. Let I' = D*. The finite set of ele-

ments
y=a+bi+cj+dijel
satistying

max(deg(a), deg(b), deg(c), deg(d))

< (AeB(p)+des(d)

generates I'.
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XD over finite fields

Let X be a smooth, geometrically irreducible

projective curve over F, of genus ¢g(X).

Drinfeld and Vladut proved

X(F,n
limsup# (Fyr) < "2

< —1

Weil’s bound only gives < 2¢™/2 (in particular,

curves of large genus never have as many points
as the Weil bound allows).

Definition. A sequence of curves { X };cn over
Fyn is called asymptotically optimal if

X‘ n
lim #Xi(Fgn) — /2~ 1.
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Theorem. (Thara, Tsfasman, Vladut, Zink)
If ¢" is a square, then asymptotically optimal

sequences of curves exist.

It is still not known whether D-V is the best
possible upper bound when ¢" is not a square

(even for a single ¢").

If ¢ is a square then every known asymptoti-
cally optimal sequence has the property that for
all sufficiently large ¢ the curve X, is a classical,

Shimura or Drinfeld modular curve.

Theorem. Let v € RU oo.
{XP}p and {XP}; are asymptotically optimal

over E()Q) .
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Let D be a central division algebra over F' of

dimension d?. Fix some place v € R U oco. As-

sume [ is coprime to v. Denote the reduction
of XP at v by Xp,. The finite group (A/I)*

acts on X})v via its natural action on the level

structures. Denote the quotient variety by X7j.

Theorem. There is an infinite subset {p<1A} of
prime ideals in A such that each X, is a smooth,
projective, geometrically irreducible,

(d — 1)-dimensional variety defined over F, and

1d—l '
— E H(q:z&) o 1)7

1=1

where h(X,) is the sum of /-adic Betti numbers.

Moreover, the limit of the Weil-Deligne bound
for #X, (R()d)) ig g4 1/2,
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XD over local fields

Let v € |F|.

K= finite extension of F,.

f = f(K/F,)= relative degree of K/F,.

e = e(K/F,)= ramification index of K/F,.

A > p,= monic generator of (v) for v # oo.

7

XP(K)

0
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Places of good reduction.

Theorem. Assume v € |F| — R — oc.
e If f is even, then XP(K) # 0.
o If f is odd, then XP(K) = () if and only

if for every « satisfying a polynomial of the

form

X +aX +cp] witha€ AandceF),

either some place in (R U co) splits in the
quadratic extension F'(«) of F', or p, divides

a and v splits in F'(a).

Remark. To decide whether XP(K) = ) one
needs to consider only finitely many quadratic
polynomials. If ¢ is even, then XP(K) # 0. If
q is odd and deg(a) > fdeg(v)/2, then oo splits
in F(a).
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Finite places of bad reduction.

Theorem. Assume v € R.
1. If f is even, then XP(K) # 0.
2. If f is odd and e is even, then XP(K) = ()

if and only if in every quadratic extension
F(\/cpy)/F, with ¢ € F, some place in
(R — v) U oo splits.

3. If f and e are both odd, then XP(K) = 0.

Corollary. XP(F) = 0.
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Place at infinity.

Theorem. If [K : F,,] > 0, then XP(K) # 0.
XP(Fy) =0 if and only if Odd(R) = 1.

Corollary. Assume q is odd, R = {v,w}, and
deg(v) = deg(w) = 1.
Let £ € F; be a non-square and 0 = @,y

Then X7 is isomorphic to the conic in P2,

X% —¢y?—07% =0.
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