Modular curves of \mathcal{D} -elliptic sheaves and applications

Mihran Papikian Pennsylvania State University

Motivation: Shimura curves

 $B = \text{indefinite division quaternion algebra over } \mathbb{Q}.$ $\mathcal{O} = \text{maximal order in } B.$ $\Gamma = \{\gamma \in \mathcal{O} \mid \operatorname{Nr}(\gamma) = 1\}.$ $\mathcal{H} = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}.$ $\Gamma \hookrightarrow B \otimes \mathbb{R} \approx M_2(\mathbb{R}) \text{ acts on } \mathcal{H}.$ $X_{\Gamma} = \Gamma \setminus \mathcal{H} \text{ is a compact Riemann surface.}$ $X_{\Gamma} \text{ is a moduli space of abelian surfaces with multiplication by } \mathcal{O}, \text{ so}$

$$X_{\Gamma} \to \operatorname{Spec}(\mathbb{Z}).$$

 X_{Γ} is smooth over $\operatorname{Spec}(\mathbb{Z}[1/d])$.

Questions about X_{Γ}

1.1) Fundamental domain of X_{Γ} in \mathcal{H} .

1.2) Explicit generators of Γ in $SL_2(\mathbb{R})$.

These are computationally difficult problems; only for a few Γ the answer is known, cf.

M. Alsina and P. Bayer:

"Quaternion orders, quadratic forms and Shimura curves" Amer. Math. Soc. 2004

2) Equation of X_{Γ} as a curve in $\mathbb{P}^2_{\mathbb{O}}$.

Such equations are known only for finitely many Γ , cf.

A. Kurihara: "On some examples of equations defining Shimura curves and the Mumford uni-formization"

3) $X_{\Gamma}(K)$ for "interesting" K.

K finite (Ihara, Shimura, Cherednik, Drinfeld). $X_{\Gamma}(\mathbb{R}) = \emptyset$ (Shimura).

K=local non-archimedean such that $X_{\Gamma}(K) = \emptyset$ are classified (Jordan-Livné).

K=number field - partial results (Jordan,...)

Function field analogue of X_{Γ} $F = \mathbb{F}_q(T), A = \mathbb{F}_q[T], \infty = 1/T.$ For $x \in |F|$, \mathbb{F}_x =residue field at x, $\deg(x) = [\mathbb{F}_x : \mathbb{F}_q], \, q_x = \#\mathbb{F}_x.$ $F_{\infty} = \mathbb{F}_q((1/T)) = \text{completion of } F \text{ w.r.t. } |\cdot|_{\infty}.$ $\mathbb{C}_{\infty} = \hat{\bar{F}}_{\infty}.$ $\Omega = \mathbb{C}_{\infty} - F_{\infty} = \text{Drinfeld's half-plane.}$ D=division quaternion algebra split at ∞ , i.e., $D \otimes_F F_{\infty} \approx M_2(F_{\infty}).$ \mathcal{D} =maximal A-order in D. R =places where D ramifies (#R is even). $\Gamma = \mathcal{D}^{\times}$ $\Gamma \hookrightarrow D^{\times}(F) \hookrightarrow D^{\times}(F_{\infty}) \cong \mathrm{GL}_2(F_{\infty}).$ $X^{\mathcal{D}} = \Gamma \setminus \Omega$ (this is a Mumford curve).

\mathcal{D} -elliptic sheaves

 $X^{\mathcal{D}}$ is a coarse modular curve of \mathcal{D} -elliptic sheaves (Drinfeld, Stuhler)

 \mathcal{D} -elliptic sheaves are a generalization of Drinfeld modules.

Let K be an A-field, i.e. there is a non-zero homomorphism $\gamma: A \to K$.

Drinfeld module (a.k.a. *elliptic module*) over K is an embedding

 $A \hookrightarrow \operatorname{End}_{\mathbb{F}_q}(\mathbb{G}_{a,K}) = K\{\tau\}, \quad (\tau b = b^q \tau)$

such that the induced action of A on the tangent space is via γ .

 \mathcal{D} -elliptic module over K is (more-or-less) an embedding

$$\mathcal{D} \hookrightarrow \operatorname{End}_{\mathbb{F}_q}(\mathbb{G}^2_{a,K})$$

with a condition on the induced action of A on the tangent space. (The actual definition is in terms of sheaves equipped with an action of \mathcal{D} and a Frobenius modification.) *Remark.* \mathcal{D} -elliptic sheaf gives rise to a left $\mathcal{D}^{\mathrm{opp}} \otimes_{\mathbb{F}_q} K\{\tau\}$ -module which is a *t*-motive of *A*-rank 4 and τ -rank 2 equipped with an action of \mathcal{D} .

 $X^{\mathcal{D}}$ has a canonical model over F with good reduction at every place $v \notin R \cup \infty$ (Laumon-Rapoport-Stuhler).

 $X^{\mathcal{D}}$ has totally degenerate reduction at every place $v \in R \cup \infty$ (Hausberger, Stuhler).

Remark. [LRS] introduces higher dimensional versions of $X_I^{\mathcal{D}}$ with level structures and uses them to prove the local Langlands correspondence in positive characteristic.

<u>Fundamental domains for $X^{\mathcal{D}}$ </u>

 \mathcal{T} =Bruhat-Tits tree of PGL₂(F_{∞}).

 Γ acts on \mathcal{T} . By Serre-Bass theory, knowing the quotient graph $\Gamma \setminus \mathcal{T}$ is equivalent to having a presentation for Γ .

Let Odd(R) = 1 if all places in R have odd degrees, and Odd(R) = 0 otherwise.

Theorem.

(1) $\Gamma \setminus \mathcal{T}$ is a finite graph with no loops.

(2)
$$h_1(\Gamma \setminus \mathcal{T}) = 1 + \frac{1}{q^2 - 1} \prod_{x \in R} (q_x - 1)$$

 $- \frac{q}{q+1} \cdot 2^{\#R-1} \cdot \text{Odd}(R)$

(3) Every vertex of $\Gamma \setminus \mathcal{T}$ has degree either 1 or q+1, and

$$V_1 = 2^{\#R-1} \cdot \mathrm{Odd}(R)$$

 $V_{q+1} = \frac{2}{q-1} \left(h_1(\Gamma \setminus \mathcal{T}) - 1 + 2^{\# R - 2} \cdot \text{Odd}(R) \right)$

Although the statement of the theorem is purely combinatorial, the proof of its key parts is arithmetic:

 $\Gamma \setminus \mathcal{T}$ is the dual graph of $X^{\mathcal{D}} \otimes \mathbb{F}_{\infty}$;

 $h_1(\Gamma \setminus \mathcal{T}) = \text{genus of } X^{\mathcal{D}};$

Vertices of $\Gamma \setminus \mathcal{T}$ of degree 1 are in bijection with Galois orbits of elliptic points on $X^{\mathcal{D}}$.

Examples.

(1) $R = \{x, y\}$ and $\deg(x) = \deg(y) = 1$. Then $h_1 = 0, V_1 = 2, V_{q+1} = 0$, so $\Gamma \setminus \mathcal{T}$ is

(2) $R = \{x, y, z, w\}, \deg(x) = \dots = \deg(w) = 1,$ and q = 4.

Then $h_1 = 0, V_1 = 8, V_5 = 2$, so $\Gamma \setminus \mathcal{T}$ is

(1) and (2) are the only cases when $\Gamma \setminus \mathcal{T}$ is a tree.

(3) "Hyperelliptic case": $R = \{x, y\}, \deg(x) = 1 \text{ and } \deg(y) = 2.$ Then $h_1 = q, V_1 = 0, V_{q+1} = 2$, so $\Gamma \setminus \mathcal{T}$ is

Corollary. Γ can be generated by

$$2^{\#R-1} + h_1(\Gamma \setminus \mathcal{T})$$

elements. $\Gamma/\Gamma_{\text{tor}}$ is a free group on $h_1(\Gamma \setminus \mathcal{T})$ generators.

Corollary. Γ can be generated by torsion elements if and only if one of the following holds:

(1) $R = \{x, y\}$ and $\deg(x) = \deg(y) = 1$. In this case, Γ has a presentation

$$\langle \gamma_1, \gamma_2 \mid \gamma_1^{q^2 - 1} = \gamma_2^{q^2 - 1} = 1, \ \gamma_1^{q + 1} = \gamma_2^{q + 1} \rangle.$$

(2) $R = \{x, y, z, w\}, \deg(x) = \cdots = \deg(w) = 1,$ and q = 4. In this case, Γ has a presentation

$$\langle \gamma_1, \dots, \gamma_8 \mid \gamma_1^{15} = \dots = \gamma_8^{15} = 1, \ \gamma_1^5 = \dots = \gamma_8^5 \rangle.$$

Explicit sets of generators of Γ

Assume q is odd. If $\Gamma = \Gamma_{\text{tor}}$, then can write down the explicit matrices generating Γ as a subgroup of $\text{GL}_2(F_{\infty})$.

Example. Let q = 3, $R = \{(T), (T - 1)\}$. Denote $\mathfrak{d} = T(T - 1)$.

 Γ is isomorphic to the subgroup of $\operatorname{GL}_2(F_{\infty})$ generated by the matrices

$$\gamma_1 = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

$$\gamma_2 = \begin{pmatrix} 1 & (T+1) - \sqrt{\mathfrak{d}} \\ -(T+1) - \sqrt{\mathfrak{d}} & 1 \end{pmatrix}$$

both of which have order 8 and satisfy $\gamma_1^4 = \gamma_2^4 = -1.$

In the general case, D has a presentation

$$i^2 = \mathfrak{p}, \quad j^2 = \mathfrak{d}, \quad ij = -ji,$$

where \mathfrak{p} is an appropriate irreducible polynomial in A and \mathfrak{d} is the discriminant of D.

$$\mathcal{D} = A \oplus Ai \oplus Aj \oplus Aij$$

is an Eichler order of level \mathfrak{p} (so it is maximal if only if $\mathfrak{p} \in \mathbb{F}_q^{\times}$ is a constant).

Theorem. Let $\Gamma = \mathcal{D}^{\times}$. The finite set of elements

$$\gamma = a + bi + cj + dij \in \Gamma$$

satisfying

```
\max(\deg(a), \deg(b), \deg(c), \deg(d))
```

$$\leq q^{\deg(\mathfrak{p}) + \deg(\mathfrak{d})}$$

generates Γ .

$\underline{X^{\mathcal{D}}}$ over finite fields

Let X be a smooth, geometrically irreducible projective curve over \mathbb{F}_q of genus g(X).

Drinfeld and Vladut proved

$$\limsup_{g(X)\to\infty}\frac{\#X(\mathbb{F}_{q^n})}{g(X)} \le q^{n/2} - 1$$

Weil's bound only gives $\leq 2q^{n/2}$ (in particular, curves of large genus never have as many points as the Weil bound allows).

Definition. A sequence of curves $\{X_i\}_{i\in\mathbb{N}}$ over \mathbb{F}_{q^n} is called *asymptotically optimal* if

$$\lim_{i \to \infty} \frac{\#X_i(\mathbb{F}_{q^n})}{g(X_i)} = q^{n/2} - 1.$$

Theorem. (Ihara, Tsfasman, Vladut, Zink) If q^n is a square, then asymptotically optimal sequences of curves exist.

It is still not known whether D-V is the best possible upper bound when q^n is not a square (even for a single q^n).

If q^n is a square then every <u>known</u> asymptotically optimal sequence has the property that for all sufficiently large *i* the curve X_i is a classical, Shimura or Drinfeld modular curve.

Theorem. Let $v \notin R \cup \infty$.

 $\{X^{\mathcal{D}}\}_D$ and $\{X^{\mathcal{D}}_I\}_I$ are asymptotically optimal over $\mathbb{F}_v^{(2)}$.

Let D be a central division algebra over F of dimension d^2 . Fix some place $v \notin R \cup \infty$. Assume I is coprime to v. Denote the reduction of $X_I^{\mathcal{D}}$ at v by $X_{I,v}^{\mathcal{D}}$. The finite group $(A/I)^{\times}$ acts on $X_{I,v}^{\mathcal{D}}$ via its natural action on the level structures. Denote the quotient variety by X_I .

Theorem. There is an infinite subset $\{\mathfrak{p} \triangleleft A\}$ of prime ideals in A such that each $X_{\mathfrak{p}}$ is a smooth, projective, geometrically irreducible,

(d-1)-dimensional variety defined over \mathbb{F}_v and

$$\lim_{\deg(\mathfrak{p})\to\infty}\frac{\#X_{\mathfrak{p}}(\mathbb{F}_v^{(d)})}{h(X_{\mathfrak{p}})} = \frac{1}{d}\prod_{i=1}^{d-1}(q_v^i-1),$$

where $h(X_{\mathfrak{p}})$ is the sum of ℓ -adic Betti numbers. Moreover, the limit of the Weil-Deligne bound for $\#X_{\mathfrak{p}}(\mathbb{F}_v^{(d)})$ is $q_v^{d(d-1)/2}$.

$\underline{X^{\mathcal{D}}}$ over local fields

Let $v \in |F|$.

 $K = \text{finite extension of } F_v.$ $f = f(K/F_v) = \text{relative degree of } K/F_v.$ $e = e(K/F_v) = \text{ramification index of } K/F_v.$ $A \ni \wp_v = \text{monic generator of } (v) \text{ for } v \neq \infty.$

$$X^{\mathcal{D}}(K) \stackrel{?}{=} \emptyset$$

Places of good reduction.

Theorem. Assume $v \in |F| - R - \infty$.

- If f is even, then $X^{\mathcal{D}}(K) \neq \emptyset$.
- If f is odd, then X^D(K) = Ø if and only if for every α satisfying a polynomial of the form

$$X^2 + aX + c\wp_v^f$$
 with $a \in A$ and $c \in \mathbb{F}_q^{\times}$,

either some place in $(R \cup \infty)$ splits in the quadratic extension $F(\alpha)$ of F, or \wp_v divides α and v splits in $F(\alpha)$.

Remark. To decide whether $X^{\mathcal{D}}(K) = \emptyset$ one needs to consider only finitely many quadratic polynomials. If q is even, then $X^{\mathcal{D}}(K) \neq \emptyset$. If q is odd and deg(a) > $f \deg(v)/2$, then ∞ splits in $F(\alpha)$. Finite places of bad reduction.

Theorem. Assume $v \in R$.

- 1. If f is even, then $X^{\mathcal{D}}(K) \neq \emptyset$.
- 2. If f is odd and e is even, then $X^{\mathcal{D}}(K) = \emptyset$ if and only if in every quadratic extension $F(\sqrt{c\wp_v})/F$, with $c \in \mathbb{F}_q^{\times}$, some place in $(R-v) \cup \infty$ splits.
- 3. If f and e are both odd, then $X^{\mathcal{D}}(K) = \emptyset$.

Corollary. $X^{\mathcal{D}}(F) = \emptyset$.

Place at infinity.

Theorem. If $[K : F_{\infty}] > 0$, then $X^{\mathcal{D}}(K) \neq \emptyset$. $X^{\mathcal{D}}(F_{\infty}) = \emptyset$ if and only if Odd(R) = 1.

Corollary. Assume q is odd, $R = \{v, w\}$, and $\deg(v) = \deg(w) = 1$. Let $\xi \in \mathbb{F}_q^{\times}$ be a non-square and $\mathfrak{d} = \wp_v \wp_w$. Then $X^{\mathcal{D}}$ is isomorphic to the conic in \mathbb{P}_F^2

$$X^2 - \xi Y^2 - \mathfrak{d} Z^2 = 0.$$

Ralf Butenuth

