Modular curves of \mathcal{D}-elliptic sheaves and applications

Mihran Papikian
Pennsylvania State University

Motivation: Shimura curves

$B=$ indefinite division quaternion algebra over \mathbb{Q}.
$\mathcal{O}=$ maximal order in B.
$\Gamma=\{\gamma \in \mathcal{O} \mid \operatorname{Nr}(\gamma)=1\}$.
$\mathcal{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$.
$\Gamma \hookrightarrow B \otimes \mathbb{R} \approx M_{2}(\mathbb{R})$ acts on \mathcal{H}.
$X_{\Gamma}=\Gamma \backslash \mathcal{H}$ is a compact Riemann surface.
X_{Γ} is a moduli space of abelian surfaces with multiplication by \mathcal{O}, so

$$
X_{\Gamma} \rightarrow \operatorname{Spec}(\mathbb{Z})
$$

X_{Γ} is smooth over $\operatorname{Spec}(\mathbb{Z}[1 / d])$.

Questions about X_{Γ}

1.1) Fundamental domain of X_{Γ} in \mathcal{H}.
1.2) Explicit generators of Γ in $\mathrm{SL}_{2}(\mathbb{R})$.

These are computationally difficult problems; only for a few Γ the answer is known, cf.
M. Alsina and P. Bayer:
"Quaternion orders, quadratic forms and Shimura curves" Amer. Math. Soc. 2004
2) Equation of X_{Γ} as a curve in $\mathbb{P}_{\mathbb{Q}}^{2}$.

Such equations are known only for finitely many Γ, cf.
A. Kurihara: "On some examples of equations defining Shimura curves and the Mumford uniformization"
3) $X_{\Gamma}(K)$ for "interesting" K.
K finite (Ihara, Shimura, Cherednik, Drinfeld). $X_{\Gamma}(\mathbb{R})=\emptyset$ (Shimura).
$K=$ local non-archimedean such that $X_{\Gamma}(K)=\emptyset$ are classified (Jordan-Livné).
$K=$ number field - partial results (Jordan,...)

Function field analogue of X_{Γ}

$F=\mathbb{F}_{q}(T), A=\mathbb{F}_{q}[T], \infty=1 / T$.
For $x \in|F|, \mathbb{F}_{x}=$ residue field at x, $\operatorname{deg}(x)=\left[\mathbb{F}_{x}: \mathbb{F}_{q}\right], q_{x}=\# \mathbb{F}_{x}$.
$F_{\infty}=\mathbb{F}_{q}((1 / T))=$ completion of F w.r.t. $|\cdot|_{\infty}$.
$\mathbb{C}_{\infty}=\hat{\bar{F}}_{\infty}$.
$\Omega=\mathbb{C}_{\infty}-F_{\infty}=$ Drinfeld's half-plane.
$D=$ division quaternion algebra split at ∞, i.e.,
$D \otimes_{F} F_{\infty} \approx M_{2}\left(F_{\infty}\right)$.
$\mathcal{D}=$ maximal A-order in D.
$R=$ places where D ramifies ($\# R$ is even).
$\Gamma=\mathcal{D}^{\times}$

$$
\Gamma \hookrightarrow D^{\times}(F) \hookrightarrow D^{\times}\left(F_{\infty}\right) \cong \mathrm{GL}_{2}\left(F_{\infty}\right)
$$

$X^{\mathcal{D}}=\Gamma \backslash \Omega$ (this is a Mumford curve).

D-elliptic sheaves

$X^{\mathcal{D}}$ is a coarse modular curve of \mathcal{D}-elliptic sheaves (Drinfeld, Stuhler)
\mathcal{D}-elliptic sheaves are a generalization of Drinfeld modules.

Let K be an A-field, i.e. there is a non-zero homomorphism $\gamma: A \rightarrow K$.

Drinfeld module (a.k.a. elliptic module) over K is an embedding

$$
A \hookrightarrow \operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{G}_{a, K}\right)=K\{\tau\}, \quad\left(\tau b=b^{q} \tau\right)
$$

such that the induced action of A on the tangent space is via γ.
\mathcal{D}-elliptic module over K is (more-or-less) an embedding

$$
\mathcal{D} \hookrightarrow \operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{G}_{a, K}^{2}\right)
$$

with a condition on the induced action of A on the tangent space. (The actual definition is in terms of sheaves equipped with an action of \mathcal{D} and a Frobenius modification.)

Remark. \mathcal{D}-elliptic sheaf gives rise to a left $\mathcal{D}^{\text {opp }} \otimes_{\mathbb{F}_{q}} K\{\tau\}$-module which is a t-motive of A-rank 4 and τ-rank 2 equipped with an action of \mathcal{D}.
$X^{\mathcal{D}}$ has a canonical model over F with good reduction at every place $v \notin R \cup \infty$ (Laumon-Rapoport-Stuhler).
$X^{\mathcal{D}}$ has totally degenerate reduction at every place $v \in R \cup \infty$ (Hausberger, Stuhler).

Remark. [LRS] introduces higher dimensional versions of $X_{I}^{\mathcal{D}}$ with level structures and uses them to prove the local Langlands correspondence in positive characteristic.

Fundamental domains for $X^{\mathcal{D}}$

$\mathcal{T}=$ Bruhat-Tits tree of $\mathrm{PGL}_{2}\left(F_{\infty}\right)$.
Γ acts on \mathcal{T}. By Serre-Bass theory, knowing the quotient graph $\Gamma \backslash \mathcal{T}$ is equivalent to having a presentation for Γ.

Let $\operatorname{Odd}(R)=1$ if all places in R have odd degrees, and $\operatorname{Odd}(R)=0$ otherwise.

Theorem.

(1) $\Gamma \backslash \mathcal{T}$ is a finite graph with no loops.

$$
\text { (2) } \begin{aligned}
h_{1}(\Gamma \backslash \mathcal{T}) & =1+\frac{1}{q^{2}-1} \prod_{x \in R}\left(q_{x}-1\right) \\
& -\frac{q}{q+1} \cdot 2^{\# R-1} \cdot \operatorname{Odd}(R)
\end{aligned}
$$

(3) Every vertex of $\Gamma \backslash \mathcal{T}$ has degree either 1 or $q+1$, and

$$
\begin{gathered}
V_{1}=2^{\# R-1} \cdot \operatorname{Odd}(R) \\
V_{q+1}=\frac{2}{q-1}\left(h_{1}(\Gamma \backslash \mathcal{T})-1+2^{\# R-2} \cdot \operatorname{Odd}(R)\right)
\end{gathered}
$$

Although the statement of the theorem is purely combinatorial, the proof of its key parts is arithmetic:
$\Gamma \backslash \mathcal{T}$ is the dual graph of $X^{\mathcal{D}} \otimes \mathbb{F}_{\infty} ;$ $h_{1}(\Gamma \backslash \mathcal{T})=$ genus of $X^{\mathcal{D}}$;

Vertices of $\Gamma \backslash \mathcal{T}$ of degree 1 are in bijection with Galois orbits of elliptic points on $X^{\mathcal{D}}$.

Examples.
(1) $R=\{x, y\}$ and $\operatorname{deg}(x)=\operatorname{deg}(y)=1$.

Then $h_{1}=0, V_{1}=2, V_{q+1}=0$, so $\Gamma \backslash \mathcal{T}$ is
(2) $R=\{x, y, z, w\}, \operatorname{deg}(x)=\cdots=\operatorname{deg}(w)=1$, and $q=4$.

Then $h_{1}=0, V_{1}=8, V_{5}=2$, so $\Gamma \backslash \mathcal{T}$ is
(1) and (2) are the only cases when $\Gamma \backslash \mathcal{T}$ is a tree.
(3) "Hyperelliptic case":
$R=\{x, y\}, \operatorname{deg}(x)=1$ and $\operatorname{deg}(y)=2$.
Then $h_{1}=q, V_{1}=0, V_{q+1}=2$, so $\Gamma \backslash \mathcal{T}$ is

Corollary. Γ can be generated by

$$
2^{\# R-1}+h_{1}(\Gamma \backslash \mathcal{T})
$$

elements. $\quad \Gamma / \Gamma_{\text {tor }}$ is a free group on $h_{1}(\Gamma \backslash \mathcal{T})$ generators.

Corollary. Γ can be generated by torsion elements if and only if one of the following holds:
(1) $R=\{x, y\}$ and $\operatorname{deg}(x)=\operatorname{deg}(y)=1$. In this case, Γ has a presentation

$$
\left\langle\gamma_{1}, \gamma_{2} \mid \gamma_{1}^{q^{2}-1}=\gamma_{2}^{q^{2}-1}=1, \gamma_{1}^{q+1}=\gamma_{2}^{q+1}\right\rangle
$$

(2) $R=\{x, y, z, w\}, \operatorname{deg}(x)=\cdots=\operatorname{deg}(w)=1$, and $q=4$. In this case, Γ has a presentation $\left\langle\gamma_{1}, \ldots, \gamma_{8} \mid \gamma_{1}^{15}=\cdots=\gamma_{8}^{15}=1, \gamma_{1}^{5}=\cdots=\gamma_{8}^{5}\right\rangle$.

$\underline{\text { Explicit sets of generators of } \Gamma}$

Assume q is odd. If $\Gamma=\Gamma_{\text {tor }}$, then can write down the explicit matrices generating Γ as a subgroup of $\mathrm{GL}_{2}\left(F_{\infty}\right)$.

Example. Let $q=3, R=\{(T),(T-1)\}$.
Denote $\mathfrak{d}=T(T-1)$.
Γ is isomorphic to the subgroup of $\mathrm{GL}_{2}\left(F_{\infty}\right)$ generated by the matrices

$$
\begin{gathered}
\gamma_{1}=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \\
\gamma_{2}=\left(\begin{array}{cc}
1 & (T+1)-\sqrt{\mathfrak{d}} \\
-(T+1)-\sqrt{\mathfrak{d}} & 1
\end{array}\right)
\end{gathered}
$$

both of which have order 8 and satisfy $\gamma_{1}^{4}=\gamma_{2}^{4}=-1$.

In the general case, D has a presentation

$$
i^{2}=\mathfrak{p}, \quad j^{2}=\mathfrak{d}, \quad i j=-j i
$$

where \mathfrak{p} is an appropriate irreducible polynomial in A and \mathfrak{d} is the discriminant of D.

$$
\mathcal{D}=A \oplus A i \oplus A j \oplus A i j
$$

is an Eichler order of level \mathfrak{p} (so it is maximal if only if $\mathfrak{p} \in \mathbb{F}_{q}^{\times}$is a constant).
Theorem. Let $\Gamma=\mathcal{D}^{\times}$. The finite set of elements

$$
\gamma=a+b i+c j+d i j \in \Gamma
$$

satisfying

$$
\begin{gathered}
\max (\operatorname{deg}(a), \operatorname{deg}(b), \operatorname{deg}(c), \operatorname{deg}(d)) \\
\leq q^{\operatorname{deg}(\mathfrak{p})+\operatorname{deg}(\mathfrak{d})}
\end{gathered}
$$

generates Γ.

$\underline{X^{\mathcal{D}} \text { over finite fields }}$

Let X be a smooth, geometrically irreducible projective curve over \mathbb{F}_{q} of genus $g(X)$.

Drinfeld and Vladut proved

$$
\limsup _{g(X) \rightarrow \infty} \frac{\# X\left(\mathbb{F}_{q^{n}}\right)}{g(X)} \leq q^{n / 2}-1
$$

Weil's bound only gives $\leq 2 q^{n / 2}$ (in particular, curves of large genus never have as many points as the Weil bound allows).

Definition. A sequence of curves $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ over $\mathbb{F}_{q^{n}}$ is called asymptotically optimal if

$$
\lim _{i \rightarrow \infty} \frac{\# X_{i}\left(\mathbb{F}_{q^{n}}\right)}{g\left(X_{i}\right)}=q^{n / 2}-1
$$

Theorem. (Ihara, Tsfasman, Vladut, Zink)
If q^{n} is a square, then asymptotically optimal sequences of curves exist.

It is still not known whether $\mathrm{D}-\mathrm{V}$ is the best possible upper bound when q^{n} is not a square (even for a single q^{n}).

If q^{n} is a square then every known asymptotically optimal sequence has the property that for all sufficiently large i the curve X_{i} is a classical, Shimura or Drinfeld modular curve.

Theorem. Let $v \notin R \cup \infty$.
$\left\{X^{\mathcal{D}}\right\}_{D}$ and $\left\{X_{I}^{\mathcal{D}}\right\}_{I}$ are asymptotically optimal over $\mathbb{F}_{v}^{(2)}$.

Let D be a central division algebra over F of dimension d^{2}. Fix some place $v \notin R \cup \infty$. Assume I is coprime to v. Denote the reduction of $X_{I}^{\mathcal{D}}$ at v by $X_{I, v}^{\mathcal{D}}$. The finite group $(A / I)^{\times}$ acts on $X_{I, v}^{\mathcal{D}}$ via its natural action on the level structures. Denote the quotient variety by X_{I}.

Theorem. There is an infinite subset $\{\mathfrak{p} \triangleleft A\}$ of prime ideals in A such that each $X_{\mathfrak{p}}$ is a smooth, projective, geometrically irreducible, $(d-1)$-dimensional variety defined over \mathbb{F}_{v} and

$$
\lim _{\operatorname{deg}(\mathfrak{p}) \rightarrow \infty} \frac{\# X_{\mathfrak{p}}\left(\mathbb{F}_{v}^{(d)}\right)}{h\left(X_{\mathfrak{p}}\right)}=\frac{1}{d} \prod_{i=1}^{d-1}\left(q_{v}^{i}-1\right)
$$

where $h\left(X_{\mathfrak{p}}\right)$ is the sum of ℓ-adic Betti numbers. Moreover, the limit of the Weil-Deligne bound for $\# X_{\mathfrak{p}}\left(\mathbb{F}_{v}^{(d)}\right)$ is $q_{v}^{d(d-1) / 2}$.

$X^{\mathcal{D}}$ over local fields

Let $v \in|F|$.
$K=$ finite extension of F_{v}.
$f=f\left(K / F_{v}\right)=$ relative degree of K / F_{v}. $e=e\left(K / F_{v}\right)=$ ramification index of K / F_{v}. $A \ni \wp_{v}=$ monic generator of (v) for $v \neq \infty$.

$$
X^{\mathcal{D}}(K) \stackrel{?}{=} \emptyset
$$

Places of good reduction.
Theorem. Assume $v \in|F|-R-\infty$.

- If f is even, then $X^{\mathcal{D}}(K) \neq \emptyset$.
- If f is odd, then $X^{\mathcal{D}}(K)=\emptyset$ if and only if for every α satisfying a polynomial of the form

$$
X^{2}+a X+c \wp_{v}^{f} \quad \text { with } a \in A \text { and } c \in \mathbb{F}_{q}^{\times}
$$

either some place in $(R \cup \infty)$ splits in the quadratic extension $F(\alpha)$ of F, or \wp_{v} divides α and v splits in $F(\alpha)$.

Remark. To decide whether $X^{\mathcal{D}}(K)=\emptyset$ one needs to consider only finitely many quadratic polynomials. If q is even, then $X^{\mathcal{D}}(K) \neq \emptyset$. If q is odd and $\operatorname{deg}(a)>f \operatorname{deg}(v) / 2$, then ∞ splits in $F(\alpha)$.

Finite places of bad reduction.
Theorem. Assume $v \in R$.

1. If f is even, then $X^{\mathcal{D}}(K) \neq \emptyset$.
2. If f is odd and e is even, then $X^{\mathcal{D}}(K)=\emptyset$ if and only if in every quadratic extension $F\left(\sqrt{c \wp_{v}}\right) / F$, with $c \in \mathbb{F}_{q}^{\times}$, some place in $(R-v) \cup \infty$ splits.
3. If f and e are both odd, then $X^{\mathcal{D}}(K)=\emptyset$.

Corollary. $X^{\mathcal{D}}(F)=\emptyset$.

Place at infinity.
Theorem. If $\left[K: F_{\infty}\right]>0$, then $X^{\mathcal{D}}(K) \neq \emptyset$. $X^{\mathcal{D}}\left(F_{\infty}\right)=\emptyset$ if and only if $\operatorname{Odd}(R)=1$.

Corollary. Assume q is odd, $R=\{v, w\}$, and $\operatorname{deg}(v)=\operatorname{deg}(w)=1$.
Let $\xi \in \mathbb{F}_{q}^{\times}$be a non-square and $\mathfrak{d}=\wp_{v} \wp_{w}$. Then $X^{\mathcal{D}}$ is isomorphic to the conic in \mathbb{P}_{F}^{2}

$$
X^{2}-\xi Y^{2}-\mathfrak{d} Z^{2}=0
$$

Rale Butenuth

$$
\begin{array}{lc}
q=5 \quad R=\{x, y, z, w\} \\
& \operatorname{deg}(x)=\operatorname{deg}(y)=\operatorname{deg}(z)=\operatorname{deg}(w)=1
\end{array}
$$

$$
\begin{aligned}
& h_{1}=5 \\
& V_{1}=8 \\
& V_{6}=4
\end{aligned}
$$

Has the same h_{1}, v_{1}, v_{6} but does not occur as raJ

$$
\begin{aligned}
q & =5 \\
\operatorname{disc} & =T(T+1)(T+2)\left(T^{2}+2\right)
\end{aligned}
$$

$$
q=5
$$

$$
\text { dise }=T(T+1)(T+2)\left(T^{2}+3\right)
$$

