Newton polygons of exponential functions attached to Drinfeld modules of rank 2 (joint work with Yoonjin Lee) Imin Chen Simon Fraser University ichen@math.sfu.ca

- Let $K = \mathbb{F}_q(T)$, $A = \mathbb{F}_q[T]$.
- Let $\infty = (\frac{1}{T})$ be the place at infinity of K with associated valuation function $v = v_{\infty} : K \to \mathbb{Z}$ such that $v_{\infty}(f) = -\deg(f)$ for f in A^* .

• Then
$$K_{\infty} = \mathbb{F}_q((\frac{1}{T})), A_{\infty} = \mathbb{F}_q[[\frac{1}{T}]].$$

- Let C_{∞} be the completion of an algebraic closure of K_{∞} and denote also by v the extension of v from K to C_{∞} .
- Let the absolute value associated to v be given by $|x| = q^{-v(x)}$.

- Let $\phi_T = T + a_1 \tau + a_2 \tau^2$ be a Drinfeld A-module of rank 2 over K.
- By uniformization, there is an A-lattice $\Lambda_{\phi} = \Lambda_{\phi,\infty} \subseteq C_{\infty}$ of rank 2 and a surjective analytic function $e_{\phi} = e_{\phi,\infty} : C_{\infty} \to C_{\infty}$ satisfying

that is, e_{ϕ} has zero set equal to Λ_{ϕ} and $e_{\phi}(az) = \phi_a \circ e_{\phi}(z)$ for all $a \in A$ and is normalized so $e'_{\phi}(z) = 1$.

- The function $e_{\phi}(z)$ is called the exponential function attached to ϕ .
- It is uniquely determined by the above properties and can be written in the form $e_{\phi}(z) = \sum_{i=0}^{\infty} c_i \tau^i(z)$ where $\tau(z) = z^q$, $c_i \in C_{\infty}$, and $c_0 = 1$.

- We explicitly determine the Newton polygon and slopes of $e_{\phi}(z)$ for a general Drinfeld A-module ϕ of rank 2 defined over K.
- The method is mostly elementary but nonetheless reveals some interesting closed form patterns which might not be immediately apparent from the initial problem.
- The different cases of Newton polygons which arise depend on $v(j(\phi))$ where $j(\phi) = a_1^{q+1}/a_2$ is the *j*-invariant of $\phi_T = T + a_1\tau + a_2\tau^2$.

- The motivation is to study the field $K_{\phi,a}$ generated over K by the *a*-torsion points of ϕ .
- By work of Gardeyn, a natural object which arises in bounding the ramification over ∞ is the field $K_{\infty}(\Lambda_{\phi})$ which contains the field generated by the *a*-torsion points of ϕ over K_{∞} for all $a \in A$.
- Since Λ_{ϕ} is the zero set of the analytic function $e_{\phi,\infty}(z)$, the different of $K_{\infty}(\Lambda_{\phi})/K_{\infty}$ can be bounded using information from the Newton polygon of $e_{\phi}(z)$.
- Using this explicit information about the Newton polygon of e_{ϕ} , we give explicit bounds on the ramification of $K_{\infty}(\Lambda_{\phi})/K_{\infty}$ using the results of Gardeyn.

- Let $e_{\phi} = \sum_{i=0}^{\infty} c_i \tau^i$ be the exponential function associated to a Drinfeld module of rank 2 given by $\phi_T = T + a_1 \tau + a_2 \tau^2$.
- The exponential function is normalized so that $c_0 = 1$ and the following formulae determines its coefficient.
- (T may be replaced by $a \in A$ transcendental over \mathbb{F}_q to obtained similar formulae)

$$c_{1} = \frac{a_{1}c_{0}^{q}}{T^{q} - T},$$

$$c_{i} = \frac{a_{1}c_{i-1}^{q} + a_{2}c_{i-2}^{q^{2}}}{T^{q^{i}} - T} \text{ for } i \ge 2.$$

• Let $d_i = \frac{v(c_i)}{q^i}$. Then we have the following formula for the d_i 's.

$$d_{0} = 0,$$

$$d_{1} = \left(\frac{v(a_{1})}{q} + 1\right) + d_{0},$$

$$d_{i} \ge \min\left(\frac{v(a_{1})}{q^{i}} + d_{i-1}, \frac{v(a_{2})}{q^{i}} + d_{i-2}\right) + 1 \text{ for } i \ge 2,$$

where equality holds if the values in the minimum are distinct.

- If $\frac{v(a_1)}{q^i} + d_{i-1} \neq \frac{v(a_2)}{q^i} + d_{i-2}$, then we note that at each step in the recursion sequence, there are two choices: the new term d_i to be computed is either derived by a formula involving the previous term, called a *type* I term, or the term before the previous term, called a *type* II term.
- When $\frac{v(a_1)}{q^i} + d_{i-1} = \frac{v(a_2)}{q^i} + d_{i-2}$, we say that d_i is of type III (We also call this an *exceptional* case).
- A run of type I (or type II) is a subsequence of consecutive terms in the recursion sequence all of which are type I (or type II).

- Our strategy is to regard the sequence as being grouped into runs: starting with a run of type I, then a run of type II, then a run of type I, etc.
- With this point of view, we determine the exact conditions which tell us when we switch from a run of one type to a run of another type.
- The pattern of types are only dependent on the \overline{K} -isomorphism class of ϕ .
- We begin with run of a type I, that is $d_i = \left(\frac{v(a_1)}{q^i} + 1\right) + d_{i-1}$ starting from i = 1.

- When do we switch over in the sense that d_{i+1} has type II or III ?
- This happens when

$$\frac{v(a_1)}{q^{i+1}} + d_i \ge \frac{v(a_2)}{q^{i+1}} + d_{i-1},$$

equivalently when

$$\frac{v(a_1)}{q^{i+1}} + \frac{v(a_1)}{q^i} + 1 \ge \frac{v(a_2)}{q^{i+1}}.$$
(1)

• We also note that Eq. (1) is equivalent to

$$\frac{v(a_2)}{q+1} - v(a_1) \le \frac{q^{i+1}}{q+1}.$$

• Let m be the least integer $m \geq 1$ such that

$$\frac{v(a_2)}{q+1} - v(a_1) \le \frac{q^{m+1}}{q+1}.$$
(2)

Then d_1, \ldots, d_m is a run of type I and d_{m+1} is of of type II (or III) if we have strict inequality (or equality) in Eq. (2).

- It follows that once Eq. (1) holds for i = m, it will hold for any $i \ge m$.
- Once we switch to a type II or III term, the conditions become more involved.

Proposition. Let m be the least integer $m \geq 1$ such that

$$\frac{v(a_2)}{q+1} - v(a_1) \le \frac{q^{m+1}}{q+1}.$$
(3)

Then d_1, \ldots, d_m is a run of type I. For the type of d_{m+n} with $n \ge 1$, there are three cases: d_{m+n} is of type I, II or III. We determine the type of d_{m+n+1} for $n \ge 1$ as follows:

(i) If d_{m+n} is of type II, and m+n-i is the largest integer < m+n such that d_{m+n-i} is of type I with $d_{m+n-i+1}, d_{m+n-i+2}, \ldots, d_{m+n}$ a run of type II, then

 d_{m+n+1} has type I when

$$\frac{v(a_2)}{q+1} - v(a_1) > \frac{q^{m+n+1}}{q^{i+1}+1}$$
 if *i* is even, (4)
$$\frac{v(a_2)}{q+1} - v(a_1) < 0$$
 if *i* is odd, (5)

 d_{m+n+1} has type II when

$$\frac{v(a_2)}{q+1} - v(a_1) < \frac{q^{m+n+1}}{q^{i+1}+1}$$
 if *i* is even, (6)
$$\frac{v(a_2)}{q+1} - v(a_1) > 0$$
 if *i* is odd, (7)

and d_{m+n+1} has type III when

$$\frac{v(a_2)}{q+1} - v(a_1) = \frac{q^{m+n+1}}{q^{i+1}+1} \qquad \text{if } i \text{ is even}, \qquad (8)$$
$$\frac{v(a_2)}{q+1} - v(a_1) = 0 \qquad \text{if } i \text{ is odd}. \qquad (9)$$

(*ii*) If d_{m+n} is of type III and $\frac{v(a_2)}{q+1} - v(a_1) < \frac{q^{m+n+1}}{q+1}$, then d_{m+n+1} is of type II.

(*iii*) Assume d_{m+n} is of type II, and m+n-i is the largest integer < m+n such that d_{m+n-i} is of type III with

$$d_{m+n-i+1}, d_{m+n-i+2}, \dots, d_{m+n}$$

a run of type II.

If *i* is even, then d_{m+n+1} has type II if $\frac{v(a_2)}{q+1} - v(a_1) < \frac{q^{m+n+1}}{q^{i+1}+1}$, and d_{m+n+1} has type II or III if $\frac{v(a_2)}{q+1} - v(a_1) = \frac{q^{m+n+1}}{q^{i+1}+1}$.

If *i* is odd, then d_{m+n+1} has type I if $\frac{v(a_2)}{q+1} - v(a_1) < 0$, and d_{m+n+1} has type I or III if $\frac{v(a_2)}{q+1} - v(a_1) = 0$.

(Note (ii) and (iii) are only sufficient conditions.)

Theorem. Let $\phi_T = T + a_1\tau + a_2\tau^2$ be a Drinfeld A-module defined over K of rank 2. Let $e_{\phi}(z) = \sum_{i=0}^{\infty} c_i \tau^i(z)$ be its associated exponential function and let $d_i = v(c_i)/q^i$. We have the following cases for the types of the sequence d_1, d_2, \ldots

Let *m* be the smallest integer $m \ge 1$ such that $\frac{v(a_2)}{q+1} - v(a_1) \le \frac{q^{m+1}}{q+1}$.

Case 1: $\frac{v(a_2)}{q+1} - v(a_1) < 0$. Then the sequence $d_1, d_2, d_3, d_4, \dots, d_j, \dots$ has type I, II, I, II, ..., that is, d_j has type I if j is odd, and d_j has type II if j is even.

Case 2:
$$\frac{v(a_2)}{q+1} - v(a_1) > 0$$
.
(*i*) If $\frac{v(a_2)}{q+1} - v(a_1) < \frac{q^{m+1}}{q+1}$, then d_1, \ldots, d_m is a run of type I, and d_{m+i} has type II for any $i \ge 1$.

(*ii*) Assume
$$\frac{v(a_2)}{q+1} - v(a_1) = \frac{q^{m+1}}{q+1}$$
.

Let $\delta_{m+n-i} \ge 0$ be defined as follows: $d_{m+n} = d_{m+n-1} + \frac{v(a_1)}{q^{m+n}} + 1 + \delta_{m+n}$.

If there exists k such that k is the smallest integer ≥ 1 with $\delta_{m+(2k-1)} \neq \frac{q-1}{q^{2k}}$, then the sequence

$$d_{1}, \dots, d_{m}, d_{m+1}, d_{m+2}, \dots, \\ d_{m+(2k-1)}, d_{m+2k}, d_{m+(2k+1)}, d_{m+(2k+2)}, d_{m+(2k+3)}, \dots$$
(10)

> type III if $j = 1, 3, 5, \dots, (2k - 1)$, type I or II if j = 2k + 1, type II otherwise.

If there is no such k, that is, $\delta_{m+(2k-1)}=\frac{q-1}{q^{2k}}$ for any $k\geq 1,$ then the sequence

type III if
$$j = 2k - 1$$
,
type II if $j = 2k$.

Case 3: $\frac{v(a_2)}{q+1} - v(a_1) = 0$. The sequence $d_1, d_2, d_3, d_4, d_5, d_6, d_7, d_8, \ldots$ has types: I, II, III, II, I/III, II, I/III, II, ..., where d_1 has type I, d_3 has type III, for $k \ge 1$, d_j has type II if j = 2k and type I or III if j = 2k + 3. In detail, if d_{2k+3} has type I (respectively, III) with $k \ge 1$, then d_{2k+5} has type III (respectively, I or III). **Theorem**. Let $\phi_T = T + a_1\tau + a_2\tau^2$ be a Drinfeld A-module defined over K of rank 2. Let $e_{\phi}(z) = \sum_{i=0}^{\infty} c_i\tau^i(z)$ be its associated exponential function. As before, let $v_i = v(c_i)$ and $P_i = (q^i, v_i)$ for $i \ge 0$. Let $s_i = \frac{v_i - v_{i-1}}{q^i - q^{i-1}}$ be the slope of the line segment from the point $P_{i-1} = (q^{i-1}, v_{i-1})$ to $P_i = (q^i, v_i)$. Let m be the smallest integer $m \ge 1$ such that $\frac{v(a_2)}{q+1} - v(a_1) \le \frac{q^{m+1}}{q+1}$. Then the Newton polygon of $e_{\phi}(z)$ is determined as follows.

Case 1: If $\frac{v(a_2)}{q+1} - v(a_1) < 0$, then the Newton polygon consists of the points P_0 , P_2 , P_4 , ..., P_{2k-2} , P_{2k} , ... with slopes such that $S_{k+1} = S_k + 1$ for each $k \ge 1$, where S_k denotes the slope of the line segment joining P_{2k-2} and P_{2k} for $k \ge 1$ and $S_1 = \frac{v(a_2)+q^2}{q^2-1} + v_0$.

Case 2: $\frac{v(a_2)}{q+1} - v(a_1) > 0$. (*i*) If $\frac{v(a_2)}{q+1} - v(a_1) < \frac{q^{m+1}}{q+1}$, then all the points P_i with $i \ge 0$ form the Newton Polygon with slopes such that $s_1 < s_2 < \ldots < s_m < s_{m+1} < \ldots, s_{i+1} = s_i + 1$ for each $1 \le i \le m - 1, s_{m+1} - s_m = \frac{v(a_2) - (q+1)v(a_1) - q^m}{q^m(q-1)}, s_{i+1} = s_{i-1} + 1$ for each $i \ge m + 1$, and $s_1 = \frac{v(a_1) + q}{q-1} + v_0$.

(*ii*) If $\frac{v(a_2)}{q+1} - v(a_1) = \frac{q^{m+1}}{q+1}$, then the Newton polygon consists of the points $P_0, P_1, \ldots, P_m, P_{m+2}, P_{m+4}, \ldots, P_{m+2i}, \ldots$ with slopes satisfying the following: Let S_j denote the slope of the line segment joining $P_{m+(2j-2)}$ and P_{m+2j} for $j \ge 1$. Then $s_{i+1} = s_i + 1$ for each $1 \le i \le m-1$, $S_1 = s_1 + m$, $S_{j+1} = S_j + 1$ for each $j \ge 1$, and $s_1 = \frac{v(a_1)+q}{q-1} + v_0$.

Case 3: If $\frac{v(a_2)}{q+1} - v(a_1) = 0$, then the Newton polygon consists of the points P_0 , P_2 , P_4 , ..., P_{2k-2} , P_{2k} , ... with slopes such that $S_{k+1} = S_k + 1$ for each $k \ge 1$ and $S_1 = \frac{v(a_2) + q^2}{q^2 - 1} + v_0$, where S_k denote the slope of the line segment joining P_{2k-2} and P_{2k} for $k \ge 1$.

- We say $\Lambda \subseteq C_{\infty}$ is an *A*-lattice of rank 2 if $\Lambda = A\lambda_1 + A\lambda_2$ with $\lambda_1, \lambda_2 \in C_{\infty}$ being K_{∞} -linearly independent, and we refer to $\{\lambda_1, \lambda_2\}$ as an *A*-basis for Λ .
- First of all we note that if $\lambda \in \Lambda$ and $\lambda = \kappa_1 \lambda_1 + \kappa_2 \lambda_2$ with $\kappa_1, \kappa_2 \in K$, then in fact, $\kappa_1, \kappa_2 \in A$.
- Let $B_{\kappa} = \{\lambda \in \Lambda : |\lambda| \leq \kappa\}$ for $\kappa \in \mathbb{R}$. We define ν_i to be the infimum of the set of κ such that B_{κ} contains *i* number of *K*-linearly independent elements.
- An A-basis $\{\lambda_1, \lambda_2\}$ for Λ arising as in the following lemma is called a *minimal* A-basis for Λ , and because the hypotheses can always be satisfied (as B_{κ} is finite for each κ), minimal A-bases for Λ exist.

Lemma 1. Let $\lambda_i \in \Lambda$ be elements such that $\{\lambda_1, \lambda_2\}$ are *K*-linearly independent and $|\lambda_i| = \nu_i$ for each i = 1, 2. Then $\{\lambda_1, \lambda_2\}$ is an *A*-basis for Λ .

Theorem. (Gardeyn). Let $\{\lambda_1, \lambda_2\}$ be a minimal *A*-basis for Λ_{ϕ} . Let

$$\mathcal{D}_{\infty}^{\Lambda_{\phi}} = 2 \cdot q \cdot (v(\lambda_1) - v(\lambda_2)) \frac{\nu_2}{\nu_1}$$
$$= 2 \cdot q \cdot (v(\lambda_1) - v(\lambda_2)) q^{v(\lambda_1) - v(\lambda_2)}.$$

Then

$$v(\mathcal{D}(K_{\infty}(\Lambda_{\phi})/K_{\infty})) \leq 1 + \mathcal{D}_{\infty}^{\Lambda_{\phi}}.$$

The zero set of e_{ϕ} is precisely Λ_{ϕ} . From the Newton polygon of e_{ϕ} , it is possible to derive information about the valuations of the zeros of e_{ϕ} and to determine a minimal A-basis for Λ_{ϕ} .

Theorem. Let $\phi_T = T + a_1\tau + a_2\tau^2$ be a Drinfeld A-module of rank 2 over K, and let $\mathcal{D}(K_{\infty}(\Lambda_{\phi})/K_{\infty})$ be the different of $K_{\infty}(\Lambda_{\phi})/K_{\infty}$. Let m be the smallest integer $m \ge 1$ such that $\frac{v(a_2)}{q+1} - v(a_1) \le \frac{q^{m+1}}{q+1}$. Then we have the following upper bound for the different of $K_{\infty}(\Lambda_{\phi})/K_{\infty}$:

$$\begin{aligned} v(\mathcal{D}(K_{\infty}(\Lambda_{\phi})/K_{\infty})) \leq \\ 1 + \begin{cases} 2q^2 & \text{if } v(a_2) - (q+1)v(a_1) \leq 0\\ 2mq^{m+1} & \text{if } v(a_2) - (q+1)v(a_1) = q^{m+1}\\ 2\delta q^{\delta+1} & \text{if } 0 < v(a_2) - (q+1)v(a_1) < q^{m+1} \end{cases} \\ \end{aligned}$$
where $\delta = \frac{v(a_2) - (q+1)v(a_1)}{q^m(q-1)} - \frac{1}{q-1} + m - 1.$