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• Let K = Fq(T ), A = Fq[T ].

• Let ∞ = (1
T ) be the place at infinity of K with associated val-

uation function v = v∞ : K → Z such that v∞(f) = −deg(f)
for f in A∗.

• Then K∞ = Fq((
1
T )), A∞ = Fq[[

1
T ]].

• Let C∞ be the completion of an algebraic closure of K∞ and
denote also by v the extension of v from K to C∞.

• Let the absolute value associated to v be given by |x| =
q−v(x).
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• Let φT = T + a1τ + a2τ2 be a Drinfeld A-module of rank 2

over K.

• By uniformization, there is an A-lattice Λφ = Λφ,∞ ⊆ C∞ of

rank 2 and a surjective analytic function eφ = eφ,∞ : C∞ →
C∞ satisfying

0 −→ Λφ −→ C∞
eφ(z)−−−−→ C∞ −→ 0y y a(z)

y φa(z)

y y
0 −→ Λφ −→ C∞

eφ(z)−−−−→ C∞ −→ 0

,

that is, eφ has zero set equal to Λφ and eφ(az) = φa ◦ eφ(z)

for all a ∈ A and is normalized so e′φ(z) = 1.
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• The function eφ(z) is called the exponential function attached

to φ.

• It is uniquely determined by the above properties and can

be written in the form eφ(z) =
∑∞

i=0 ciτ
i(z) where τ(z) = zq,

ci ∈ C∞, and c0 = 1.
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• We explicitly determine the Newton polygon and slopes of

eφ(z) for a general Drinfeld A-module φ of rank 2 defined

over K.

• The method is mostly elementary but nonetheless reveals

some interesting closed form patterns which might not be

immediately apparent from the initial problem.

• The different cases of Newton polygons which arise depend

on v(j(φ)) where j(φ) = a
q+1
1 /a2 is the j-invariant of φT =

T + a1τ + a2τ2.

5



• The motivation is to study the field Kφ,a generated over K
by the a-torsion points of φ.

• By work of Gardeyn, a natural object which arises in bounding
the ramification over ∞ is the field K∞(Λφ) which contains
the field generated by the a-torsion points of φ over K∞ for
all a ∈ A.

• Since Λφ is the zero set of the analytic function eφ,∞(z), the
different of K∞(Λφ)/K∞ can be bounded using information
from the Newton polygon of eφ(z).

• Using this explicit information about the Newton polygon of
eφ, we give explicit bounds on the ramification of K∞(Λφ)/K∞
using the results of Gardeyn.
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• Let eφ =
∑∞

i=0 ciτ
i be the exponential function associated to

a Drinfeld module of rank 2 given by φT = T + a1τ + a2τ2.

• The exponential function is normalized so that c0 = 1 and

the following formulae determines its coefficient.

• (T may be replaced by a ∈ A transcendental over Fq to ob-

tained similar formulae)

c1 =
a1c

q
0

T q − T
,

ci =
a1c

q
i−1 + a2c

q2

i−2

T qi − T
for i ≥ 2.
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• Let di = v(ci)
qi . Then we have the following formula for the

di’s.

d0 = 0,

d1 =

(
v(a1)

q
+ 1

)
+ d0,

di ≥ min

(
v(a1)

qi
+ di−1,

v(a2)

qi
+ di−2

)
+ 1 for i ≥ 2,

where equality holds if the values in the minimum are distinct.
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• If v(a1)
qi +di−1 6= v(a2)

qi +di−2, then we note that at each step in

the recursion sequence, there are two choices: the new term

di to be computed is either derived by a formula involving

the previous term, called a type I term, or the term before

the previous term, called a type II term.

• When v(a1)
qi + di−1 = v(a2)

qi + di−2, we say that di is of type III

(We also call this an exceptional case).

• A run of type I (or type II) is a subsequence of consecutive

terms in the recursion sequence all of which are type I (or

type II).
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• Our strategy is to regard the sequence as being grouped into

runs: starting with a run of type I, then a run of type II, then

a run of type I, etc.

• With this point of view, we determine the exact conditions

which tell us when we switch from a run of one type to a run

of another type.

• The pattern of types are only dependent on the K-isomorphism

class of φ.

• We begin with run of a type I, that is di =
(

v(a1)
qi + 1

)
+di−1

starting from i = 1.
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• When do we switch over in the sense that di+1 has type II
or III ?

• This happens when

v(a1)

qi+1
+ di ≥

v(a2)

qi+1
+ di−1,

equivalently when

v(a1)

qi+1
+

v(a1)

qi
+ 1 ≥

v(a2)

qi+1
. (1)

• We also note that Eq. (1) is equivalent to

v(a2)

q + 1
− v(a1) ≤

qi+1

q + 1
.

11



• Let m be the least integer m ≥ 1 such that

v(a2)

q + 1
− v(a1) ≤

qm+1

q + 1
. (2)

Then d1, . . . , dm is a run of type I and dm+1 is of of type II

(or III) if we have strict inequality (or equality) in Eq. (2).

• It follows that once Eq. (1) holds for i = m, it will hold for

any i ≥ m.

• Once we switch to a type II or III term, the conditions become

more involved.
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Proposition. Let m be the least integer m ≥ 1 such that

v(a2)

q + 1
− v(a1) ≤

qm+1

q + 1
. (3)

Then d1, . . . , dm is a run of type I. For the type of dm+n with

n ≥ 1, there are three cases: dm+n is of type I, II or III. We

determine the type of dm+n+1 for n ≥ 1 as follows:

(i) If dm+n is of type II, and m+n−i is the largest integer < m+n

such that dm+n−i is of type I with dm+n−i+1, dm+n−i+2, . . . , dm+n

a run of type II, then
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dm+n+1 has type I when

v(a2)

q + 1
− v(a1) >

qm+n+1

qi+1 + 1
if i is even, (4)

v(a2)

q + 1
− v(a1) < 0 if i is odd, (5)

dm+n+1 has type II when

v(a2)

q + 1
− v(a1) <

qm+n+1

qi+1 + 1
if i is even, (6)

v(a2)

q + 1
− v(a1) > 0 if i is odd, (7)
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and dm+n+1 has type III when

v(a2)

q + 1
− v(a1) =

qm+n+1

qi+1 + 1
if i is even, (8)

v(a2)

q + 1
− v(a1) = 0 if i is odd. (9)



(ii) If dm+n is of type III and v(a2)
q+1 −v(a1) < qm+n+1

q+1 , then dm+n+1
is of type II.

(iii) Assume dm+n is of type II, and m+n−i is the largest integer
< m + n such that dm+n−i is of type III with

dm+n−i+1, dm+n−i+2, . . . , dm+n

a run of type II.

If i is even, then dm+n+1 has type II if v(a2)
q+1 − v(a1) < qm+n+1

qi+1+1
,

and dm+n+1 has type II or III if v(a2)
q+1 − v(a1) = qm+n+1

qi+1+1
.

If i is odd, then dm+n+1 has type I if v(a2)
q+1 − v(a1) < 0, and

dm+n+1 has type I or III if v(a2)
q+1 − v(a1) = 0.

(Note (ii) and (iii) are only sufficient conditions.)
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Theorem. Let φT = T + a1τ + a2τ2 be a Drinfeld A-module

defined over K of rank 2. Let eφ(z) =
∑∞

i=0 ciτ
i(z) be its asso-

ciated exponential function and let di = v(ci)/qi. We have the

following cases for the types of the sequence d1, d2, . . .

Let m be the smallest integer m ≥ 1 such that v(a2)
q+1 − v(a1) ≤

qm+1

q+1 .

Case 1: v(a2)
q+1 − v(a1) < 0.

Then the sequence d1, d2, d3, d4, . . . , dj, . . . has type I, II, I, II, . . .,

that is, dj has type I if j is odd, and dj has type II if j is even.
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Case 2: v(a2)
q+1 − v(a1) > 0.

(i) If v(a2)
q+1 − v(a1) < qm+1

q+1 , then d1, . . . , dm is a run of type I, and

dm+i has type II for any i ≥ 1.

(ii) Assume v(a2)
q+1 − v(a1) = qm+1

q+1 .

Let δm+n−i ≥ 0 be defined as follows: dm+n = dm+n−1 + v(a1)
qm+n +

1 + δm+n.

If there exists k such that k is the smallest integer ≥ 1 with

δm+(2k−1) 6=
q−1
q2k , then the sequence

d1, . . . , dm, dm+1, dm+2, . . . ,

dm+(2k−1), dm+2k, dm+(2k+1), dm+(2k+2), dm+(2k+3), . . . (10)
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has types I, . . . , I, III, II, . . . , III, II, I/II, II, II, . . ., where d1 through dm

have type I and dm+j has the following types for j ≥ 1:

type III if j = 1,3,5, . . . , (2k − 1),

type I or II if j = 2k + 1,

type II otherwise.



If there is no such k, that is, δm+(2k−1) = q−1
q2k for any k ≥ 1,

then the sequence

d1, . . . , dm, dm+1, dm+2, . . . , dm+(2k−1), dm+2k, dm+(2k+1), dm+(2k+2), . . .

has types I, . . . , I, III, II, . . . , III, II, III, II, . . ., where d1 through dm

have type I and dm+j has the following types for j ≥ 1 with

k ≥ 1:

type III if j = 2k − 1,

type II if j = 2k.
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Case 3: v(a2)
q+1 − v(a1) = 0.

The sequence d1, d2, d3, d4, d5, d6, d7, d8, . . . has types:

I, II, III, II, I/III, II, I/III, II, . . ., where d1 has type I, d3 has type III,

for k ≥ 1, dj has type II if j = 2k and type I or III if j = 2k + 3.

In detail, if d2k+3 has type I (respectively, III) with k ≥ 1, then

d2k+5 has type III (respectively, I or III).
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Theorem. Let φT = T + a1τ + a2τ2 be a Drinfeld A-module de-

fined over K of rank 2. Let eφ(z) =
∑∞

i=0 ciτ
i(z) be its associated

exponential function. As before, let vi = v(ci) and Pi = (qi, vi)

for i ≥ 0. Let si =
vi−vi−1
qi−qi−1 be the slope of the line segment

from the point Pi−1 = (qi−1, vi−1) to Pi = (qi, vi). Let m be the

smallest integer m ≥ 1 such that v(a2)
q+1 − v(a1) ≤ qm+1

q+1 . Then the

Newton polygon of eφ(z) is determined as follows.

Case 1: If v(a2)
q+1 − v(a1) < 0, then the Newton polygon consists

of the points P0, P2, P4, . . . , P2k−2, P2k, . . . with slopes such that

Sk+1 = Sk + 1 for each k ≥ 1, where Sk denotes the slope of

the line segment joining P2k−2 and P2k for k ≥ 1 and S1 =
v(a2)+q2

q2−1
+ v0.
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Case 2: v(a2)
q+1 − v(a1) > 0.

(i) If v(a2)
q+1 − v(a1) < qm+1

q+1 , then all the points Pi with i ≥ 0 form

the Newton Polygon with slopes such that s1 < s2 < . . . < sm <

sm+1 < . . ., si+1 = si + 1 for each 1 ≤ i ≤ m − 1, sm+1 − sm =
v(a2)−(q+1)v(a1)−qm

qm(q−1) , si+1 = si−1 + 1 for each i ≥ m + 1, and

s1 = v(a1)+q
q−1 + v0.

(ii) If v(a2)
q+1 − v(a1) = qm+1

q+1 , then the Newton polygon consists of

the points P0, P1, . . . , Pm, Pm+2, Pm+4, . . . , Pm+2i, . . . with slopes

satisfying the following: Let Sj denote the slope of the line

segment joining Pm+(2j−2) and Pm+2j for j ≥ 1. Then si+1 =

si + 1 for each 1 ≤ i ≤ m − 1, S1 = s1 + m, Sj+1 = Sj + 1 for

each j ≥ 1, and s1 = v(a1)+q
q−1 + v0.
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Case 3: If v(a2)
q+1 − v(a1) = 0, then the Newton polygon consists

of the points P0, P2, P4, . . . , P2k−2, P2k, . . . with slopes such that

Sk+1 = Sk + 1 for each k ≥ 1 and S1 = v(a2)+q2

q2−1
+ v0, where Sk

denote the slope of the line segment joining P2k−2 and P2k for

k ≥ 1.



• We say Λ ⊆ C∞ is an A-lattice of rank 2 if Λ = Aλ1 + Aλ2
with λ1, λ2 ∈ C∞ being K∞-linearly independent, and we refer
to {λ1, λ2} as an A-basis for Λ.

• First of all we note that if λ ∈ Λ and λ = κ1λ1 + κ2λ2 with
κ1, κ2 ∈ K, then in fact, κ1, κ2 ∈ A.

• Let Bκ = {λ ∈ Λ : |λ| ≤ κ} for κ ∈ R. We define νi to be the
infimum of the set of κ such that Bκ contains i number of
K-linearly independent elements.

• An A-basis {λ1, λ2} for Λ arising as in the following lemma is
called a minimal A-basis for Λ, and because the hypotheses
can always be satisfied (as Bκ is finite for each κ), minimal
A-bases for Λ exist.
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Lemma 1. Let λi ∈ Λ be elements such that {λ1, λ2} are K-

linearly independent and |λi| = νi for each i = 1,2. Then {λ1, λ2}
is an A-basis for Λ.

Theorem. (Gardeyn). Let {λ1, λ2} be a minimal A-basis for Λφ.

Let

DΛφ
∞ = 2 · q · (v(λ1)− v(λ2))

ν2

ν1

= 2 · q · (v(λ1)− v(λ2)) qv(λ1)−v(λ2).

Then

v(D(K∞(Λφ)/K∞)) ≤ 1 +DΛφ
∞ .
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The zero set of eφ is precisely Λφ. From the Newton polygon

of eφ, it is possible to derive information about the valuations of

the zeros of eφ and to determine a minimal A-basis for Λφ.

Theorem. Let φT = T + a1τ + a2τ2 be a Drinfeld A-module

of rank 2 over K, and let D(K∞(Λφ)/K∞) be the different of

K∞(Λφ)/K∞. Let m be the smallest integer m ≥ 1 such that
v(a2)
q+1 − v(a1) ≤ qm+1

q+1 . Then we have the following upper bound

for the different of K∞(Λφ)/K∞ :

v(D(K∞(Λφ)/K∞)) ≤

1 +


2q2 if v(a2)− (q + 1)v(a1) ≤ 0

2mqm+1 if v(a2)− (q + 1)v(a1) = qm+1

2δqδ+1 if 0 < v(a2)− (q + 1)v(a1) < qm+1

where δ = v(a2)−(q+1)v(a1)
qm(q−1) − 1

q−1 + m− 1.
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