Newton polygons of exponential functions attached to Drinfeld modules of rank 2
(joint work with Yoonjin Lee)
Imin Chen
Simon Fraser University
ichen@math.sfu.ca

- Let $K=\mathbb{F}_{q}(T), A=\mathbb{F}_{q}[T]$.
- Let $\infty=\left(\frac{1}{T}\right)$ be the place at infinity of K with associated valuation function $v=v_{\infty}: K \rightarrow \mathbb{Z}$ such that $v_{\infty}(f)=-\operatorname{deg}(f)$ for f in A^{*}.
- Then $K_{\infty}=\mathbb{F}_{q}\left(\left(\frac{1}{T}\right)\right), A_{\infty}=\mathbb{F}_{q}\left[\left[\frac{1}{T}\right]\right]$.
- Let C_{∞} be the completion of an algebraic closure of K_{∞} and denote also by v the extension of v from K to C_{∞}.
- Let the absolute value associated to v be given by $|x|=$ $q^{-v(x)}$.
- Let $\phi_{T}=T+a_{1} \tau+a_{2} \tau^{2}$ be a Drinfeld A-module of rank 2 over K.
- By uniformization, there is an A-lattice $\wedge_{\phi}=\wedge_{\phi, \infty} \subseteq C_{\infty}$ of rank 2 and a surjective analytic function $e_{\phi}=e_{\phi, \infty}: C_{\infty} \rightarrow$ C_{∞} satisfying

$$
\begin{aligned}
& 0 \longrightarrow \wedge_{\phi} \longrightarrow C_{\infty} \xrightarrow{e_{\phi}(z)} C_{\infty} \longrightarrow 0 \\
& \left.\left|\begin{array}{l}
\text { a }
\end{array}\right| \begin{array}{l}
0 \\
\phi_{a}(z)
\end{array} \right\rvert\, \\
& 0 \longrightarrow \wedge_{\phi} \longrightarrow C_{\infty} \xrightarrow{e_{\phi}(z)} C_{\infty} \longrightarrow
\end{aligned}
$$

that is, e_{ϕ} has zero set equal to \wedge_{ϕ} and $e_{\phi}(a z)=\phi_{a} \circ e_{\phi}(z)$ for all $a \in A$ and is normalized so $e_{\phi}^{\prime}(z)=1$.

- The function $e_{\phi}(z)$ is called the exponential function attached to ϕ.
- It is uniquely determined by the above properties and can be written in the form $e_{\phi}(z)=\sum_{i=0}^{\infty} c_{i} \tau^{i}(z)$ where $\tau(z)=z^{q}$, $c_{i} \in C_{\infty}$, and $c_{0}=1$.
- We explicitly determine the Newton polygon and slopes of $e_{\phi}(z)$ for a general Drinfeld A-module ϕ of rank 2 defined over K.
- The method is mostly elementary but nonetheless reveals some interesting closed form patterns which might not be immediately apparent from the initial problem.
- The different cases of Newton polygons which arise depend on $v(j(\phi))$ where $j(\phi)=a_{1}^{q+1} / a_{2}$ is the j-invariant of $\phi_{T}=$ $T+a_{1} \tau+a_{2} \tau^{2}$.
- The motivation is to study the field $K_{\phi, a}$ generated over K by the a-torsion points of ϕ.
- By work of Gardeyn, a natural object which arises in bounding the ramification over ∞ is the field $K_{\infty}\left(\Lambda_{\phi}\right)$ which contains the field generated by the a-torsion points of ϕ over K_{∞} for all $a \in A$.
- Since Λ_{ϕ} is the zero set of the analytic function $e_{\phi, \infty}(z)$, the different of $K_{\infty}\left(\Lambda_{\phi}\right) / K_{\infty}$ can be bounded using information from the Newton polygon of $e_{\phi}(z)$.
- Using this explicit information about the Newton polygon of e_{ϕ}, we give explicit bounds on the ramification of $K_{\infty}\left(\Lambda_{\phi}\right) / K_{\infty}$ using the results of Gardeyn.
- Let $e_{\phi}=\sum_{i=0}^{\infty} c_{i} \tau^{i}$ be the exponential function associated to a Drinfeld module of rank 2 given by $\phi_{T}=T+a_{1} \tau+a_{2} \tau^{2}$.
- The exponential function is normalized so that $c_{0}=1$ and the following formulae determines its coefficient.
- (T may be replaced by $a \in A$ transcendental over \mathbb{F}_{q} to obtained similar formulae)

$$
\begin{aligned}
c_{1} & =\frac{a_{1} c_{0}^{q}}{T^{q}-T} \\
c_{i} & =\frac{a_{1} c_{i-1}^{q}+a_{2} c_{i-2}^{q^{2}}}{T^{q^{i}}-T} \text { for } i \geq 2 .
\end{aligned}
$$

- Let $d_{i}=\frac{v\left(c_{i}\right)}{q^{i}}$. Then we have the following formula for the d_{i} 's.

$$
\begin{aligned}
& d_{0}=0 \\
& d_{1}=\left(\frac{v\left(a_{1}\right)}{q}+1\right)+d_{0}, \\
& d_{i} \geq \min \left(\frac{v\left(a_{1}\right)}{q^{i}}+d_{i-1}, \frac{v\left(a_{2}\right)}{q^{i}}+d_{i-2}\right)+1 \text { for } i \geq 2,
\end{aligned}
$$

where equality holds if the values in the minimum are distinct.

- If $\frac{v\left(a_{1}\right)}{q^{i}}+d_{i-1} \neq \frac{v\left(a_{2}\right)}{q^{i}}+d_{i-2}$, then we note that at each step in the recursion sequence, there are two choices: the new term d_{i} to be computed is either derived by a formula involving the previous term, called a type I term, or the term before the previous term, called a type II term.
- When $\frac{v\left(a_{1}\right)}{q^{i}}+d_{i-1}=\frac{v\left(a_{2}\right)}{q^{i}}+d_{i-2}$, we say that d_{i} is of type III (We also call this an exceptional case).
- A run of type I (or type II) is a subsequence of consecutive terms in the recursion sequence all of which are type I (or type II).
- Our strategy is to regard the sequence as being grouped into runs: starting with a run of type I, then a run of type II, then a run of type I, etc.
- With this point of view, we determine the exact conditions which tell us when we switch from a run of one type to a run of another type.
- The pattern of types are only dependent on the \bar{K}-isomorphism class of ϕ.
- We begin with run of a type I, that is $d_{i}=\left(\frac{v\left(a_{1}\right)}{q^{i}}+1\right)+d_{i-1}$ starting from $i=1$.
- When do we switch over in the sense that d_{i+1} has type II or III ?
- This happens when

$$
\frac{v\left(a_{1}\right)}{q^{i+1}}+d_{i} \geq \frac{v\left(a_{2}\right)}{q^{i+1}}+d_{i-1}
$$

equivalently when

$$
\begin{equation*}
\frac{v\left(a_{1}\right)}{q^{i+1}}+\frac{v\left(a_{1}\right)}{q^{i}}+1 \geq \frac{v\left(a_{2}\right)}{q^{i+1}} \tag{1}
\end{equation*}
$$

- We also note that Eq. (1) is equivalent to

$$
\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right) \leq \frac{q^{i+1}}{q+1}
$$

- Let m be the least integer $m \geq 1$ such that

$$
\begin{equation*}
\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right) \leq \frac{q^{m+1}}{q+1} \tag{2}
\end{equation*}
$$

Then d_{1}, \ldots, d_{m} is a run of type I and d_{m+1} is of of type II (or III) if we have strict inequality (or equality) in Eq. (2).

- It follows that once Eq. (1) holds for $i=m$, it will hold for any $i \geq m$.
- Once we switch to a type II or III term, the conditions become more involved.

Proposition. Let m be the least integer $m \geq 1$ such that

$$
\begin{equation*}
\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right) \leq \frac{q^{m+1}}{q+1} . \tag{3}
\end{equation*}
$$

Then d_{1}, \ldots, d_{m} is a run of type I. For the type of d_{m+n} with $n \geq 1$, there are three cases: d_{m+n} is of type I, II or III. We determine the type of d_{m+n+1} for $n \geq 1$ as follows:
(i) If d_{m+n} is of type II, and $m+n-i$ is the largest integer $<m+n$ such that d_{m+n-i} is of type I with $d_{m+n-i+1}, d_{m+n-i+2}, \ldots, d_{m+n}$ a run of type II, then
d_{m+n+1} has type I when

$$
\begin{array}{ll}
\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)>\frac{q^{m+n+1}}{q^{i+1}+1} & \text { if } i \text { is even } \\
\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)<0 & \text { if } i \text { is odd } \tag{5}
\end{array}
$$

d_{m+n+1} has type II when

$$
\begin{array}{ll}
\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)<\frac{q^{m+n+1}}{q^{i+1}+1} & \text { if } i \text { is even, } \\
\frac{v\left(a_{2}\right)}{1}-v\left(a_{1}\right)>0 & \text { if } i \text { is odd } \tag{7}
\end{array}
$$

and d_{m+n+1} has type III when

$$
\begin{array}{ll}
\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)=\frac{q^{m+n+1}}{q^{i+1}+1} & \text { if } i \text { is even } \\
\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)=0 & \text { if } i \text { is odd } \tag{9}
\end{array}
$$

(ii) If d_{m+n} is of type III and $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)<\frac{q^{m+n+1}}{q+1}$, then d_{m+n+1} is of type II.
(iii) Assume d_{m+n} is of type II, and $m+n-i$ is the largest integer $<m+n$ such that d_{m+n-i} is of type III with

$$
d_{m+n-i+1}, d_{m+n-i+2}, \ldots, d_{m+n}
$$

a run of type II.
If i is even, then d_{m+n+1} has type II if $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)<\frac{q^{m+n+1}}{q^{i+1}+1}$, and d_{m+n+1} has type II or III if $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)=\frac{q^{m+n+1}}{q^{i+1}+1}$.

If i is odd, then d_{m+n+1} has type I if $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)<0$, and d_{m+n+1} has type I or III if $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)=0$.
(Note (ii) and (iii) are only sufficient conditions.)

Theorem. Let $\phi_{T}=T+a_{1} \tau+a_{2} \tau^{2}$ be a Drinfeld A-module defined over K of rank 2. Let $e_{\phi}(z)=\sum_{i=0}^{\infty} c_{i} \tau^{i}(z)$ be its associated exponential function and let $d_{i}=v\left(c_{i}\right) / q^{i}$. We have the following cases for the types of the sequence d_{1}, d_{2}, \ldots

Let m be the smallest integer $m \geq 1$ such that $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right) \leq$ $\frac{q^{m+1}}{q+1}$.

Case 1: $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)<0$.
Then the sequence $d_{1}, d_{2}, d_{3}, d_{4}, \ldots, d_{j}, \ldots$ has type I, II, I, II, \ldots, that is, d_{j} has type I if j is odd, and d_{j} has type II if j is even.

Case 2: $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)>0$.
(i) If $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)<\frac{q^{m+1}}{q+1}$, then d_{1}, \ldots, d_{m} is a run of type I, and d_{m+i} has type II for any $i \geq 1$.
(ii) Assume $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)=\frac{q^{m+1}}{q+1}$.

Let $\delta_{m+n-i} \geq 0$ be defined as follows: $d_{m+n}=d_{m+n-1}+\frac{v\left(a_{1}\right)}{q^{m+n}}+$ $1+\delta_{m+n}$.

If there exists k such that k is the smallest integer ≥ 1 with $\delta_{m+(2 k-1)} \neq \frac{q-1}{q^{2 k}}$, then the sequence

$$
\begin{align*}
& d_{1}, \ldots, d_{m}, d_{m+1}, d_{m+2}, \ldots \\
& \quad d_{m+(2 k-1)}, d_{m+2 k}, d_{m+(2 k+1)}, d_{m+(2 k+2)}, d_{m+(2 k+3)}, \ldots \tag{10}
\end{align*}
$$

has types I, ..., I, III, II, ..., III, II, I/II, II, II, where d_{1} through d_{m} have type I and d_{m+j} has the following types for $j \geq 1$:

```
type III if j=1,3,5,\ldots,(2k-1),
type I or II if j=2k+1,
type II otherwise.
```

If there is no such k, that is, $\delta_{m+(2 k-1)}=\frac{q-1}{q^{2 k}}$ for any $k \geq 1$, then the sequence
$d_{1}, \ldots, d_{m}, d_{m+1}, d_{m+2}, \ldots, d_{m+(2 k-1)}, d_{m+2 k}, d_{m+(2 k+1)}, d_{m+(2 k+2)}, \ldots$ has types I, ..., I, III, II, ..., III, II, III, II, ..., where d_{1} through d_{m} have type I and d_{m+j} has the following types for $j \geq 1$ with $k \geq 1$:

$$
\begin{aligned}
& \text { type III if } \quad j=2 k-1, \\
& \text { type II if } \quad j=2 k
\end{aligned}
$$

Case 3: $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)=0$.
The sequence $d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{7}, d_{8}, \ldots$ has types:
I, II, III, II, I/III, II, I/III, II, where d_{1} has type I, d_{3} has type III, for $k \geq 1, d_{j}$ has type II if $j=2 k$ and type I or III if $j=2 k+3$. In detail, if $d_{2 k+3}$ has type I (respectively, III) with $k \geq 1$, then $d_{2 k+5}$ has type III (respectively, I or III).

Theorem. Let $\phi_{T}=T+a_{1} \tau+a_{2} \tau^{2}$ be a Drinfeld A-module defined over K of rank 2. Let $e_{\phi}(z)=\sum_{i=0}^{\infty} c_{i} \tau^{i}(z)$ be its associated exponential function. As before, let $v_{i}=v\left(c_{i}\right)$ and $P_{i}=\left(q^{i}, v_{i}\right)$ for $i \geq 0$. Let $s_{i}=\frac{v_{i} v_{i-1}}{q^{i}-q^{i-1}}$ be the slope of the line segment from the point $P_{i-1}=\left(q^{i-1}, v_{i-1}\right)$ to $P_{i}=\left(q^{i}, v_{i}\right)$. Let m be the smallest integer $m \geq 1$ such that $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right) \leq \frac{q^{m+1}}{q+1}$. Then the Newton polygon of $e_{\phi}(z)$ is determined as follows.

Case 1: If $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)<0$, then the Newton polygon consists of the points $P_{0}, P_{2}, P_{4}, \ldots, P_{2 k-2}, P_{2 k}, \ldots$ with slopes such that $S_{k+1}=S_{k}+1$ for each $k \geq 1$, where S_{k} denotes the slope of the line segment joining $P_{2 k-2}$ and $P_{2 k}$ for $k \geq 1$ and $S_{1}=$ $\frac{v\left(a_{2}\right)+q^{2}}{q^{2}-1}+v_{0}$.

Case 2: $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)>0$.
(i) If $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)<\frac{q^{m+1}}{q+1}$, then all the points P_{i} with $i \geq 0$ form the Newton Polygon with slopes such that $s_{1}<s_{2}<\ldots<s_{m}<$ $s_{m+1}<\ldots, s_{i+1}=s_{i}+1$ for each $1 \leq i \leq m-1, s_{m+1}-s_{m}=$ $\frac{v\left(a_{2}\right)-(q+1) v\left(a_{1}\right)-q^{m}}{q^{m}(q-1)}, s_{i+1}=s_{i-1}+1$ for each $i \geq m+1$, and $s_{1}=\frac{v\left(a_{1}\right)+q}{q-1}+v_{0}$.
(ii) If $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)=\frac{q^{m+1}}{q+1}$, then the Newton polygon consists of the points $P_{0}, P_{1}, \ldots, P_{m}, P_{m+2}, P_{m+4}, \ldots, P_{m+2 i}, \ldots$ with slopes satisfying the following: Let S_{j} denote the slope of the line segment joining $P_{m+(2 j-2)}$ and $P_{m+2 j}$ for $j \geq 1$. Then $s_{i+1}=$ $s_{i}+1$ for each $1 \leq i \leq m-1, S_{1}=s_{1}+m, S_{j+1}=S_{j}+1$ for each $j \geq 1$, and $s_{1}=\frac{v\left(a_{1}\right)+q}{q-1}+v_{0}$.

Case 3: If $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right)=0$, then the Newton polygon consists of the points $P_{0}, P_{2}, P_{4}, \ldots, P_{2 k-2}, P_{2 k}, \ldots$ with slopes such that $S_{k+1}=S_{k}+1$ for each $k \geq 1$ and $S_{1}=\frac{v\left(a_{2}\right)+q^{2}}{q^{2}-1}+v_{0}$, where S_{k} denote the slope of the line segment joining $P_{2 k-2}$ and $P_{2 k}$ for $k \geq 1$.

- We say $\Lambda \subseteq C_{\infty}$ is an A-lattice of rank 2 if $\Lambda=A \lambda_{1}+A \lambda_{2}$ with $\lambda_{1}, \lambda_{2} \in C_{\infty}$ being K_{∞}-linearly independent, and we refer to $\left\{\lambda_{1}, \lambda_{2}\right\}$ as an A-basis for \wedge.
- First of all we note that if $\lambda \in \Lambda$ and $\lambda=\kappa_{1} \lambda_{1}+\kappa_{2} \lambda_{2}$ with $\kappa_{1}, \kappa_{2} \in K$, then in fact, $\kappa_{1}, \kappa_{2} \in A$.
- Let $B_{\kappa}=\{\lambda \in \Lambda:|\lambda| \leq \kappa\}$ for $\kappa \in \mathbb{R}$. We define ν_{i} to be the infimum of the set of κ such that B_{κ} contains i number of K-linearly independent elements.
- An A-basis $\left\{\lambda_{1}, \lambda_{2}\right\}$ for Λ arising as in the following lemma is called a minimal A-basis for \wedge, and because the hypotheses can always be satisfied (as B_{κ} is finite for each κ), minimal A-bases for \wedge exist.

Lemma 1. Let $\lambda_{i} \in \wedge$ be elements such that $\left\{\lambda_{1}, \lambda_{2}\right\}$ are K linearly independent and $\left|\lambda_{i}\right|=\nu_{i}$ for each $i=1,2$. Then $\left\{\lambda_{1}, \lambda_{2}\right\}$ is an A-basis for \wedge.

Theorem. (Gardeyn). Let $\left\{\lambda_{1}, \lambda_{2}\right\}$ be a minimal A-basis for Λ_{ϕ}. Let

$$
\begin{aligned}
\mathcal{D}_{\infty}^{\wedge_{\phi}} & =2 \cdot q \cdot\left(v\left(\lambda_{1}\right)-v\left(\lambda_{2}\right)\right) \frac{\nu_{2}}{\nu_{1}} \\
& =2 \cdot q \cdot\left(v\left(\lambda_{1}\right)-v\left(\lambda_{2}\right)\right) q^{v\left(\lambda_{1}\right)-v\left(\lambda_{2}\right)} .
\end{aligned}
$$

Then

$$
v\left(\mathcal{D}\left(K_{\infty}\left(\wedge_{\phi}\right) / K_{\infty}\right)\right) \leq 1+\mathcal{D}_{\infty}^{\wedge_{\phi}}
$$

The zero set of e_{ϕ} is precisely Λ_{ϕ}. From the Newton polygon of e_{ϕ}, it is possible to derive information about the valuations of the zeros of e_{ϕ} and to determine a minimal A-basis for Λ_{ϕ}.
Theorem. Let $\phi_{T}=T+a_{1} \tau+a_{2} \tau^{2}$ be a Drinfeld A-module of rank 2 over K, and let $\mathcal{D}\left(K_{\infty}\left(\wedge_{\phi}\right) / K_{\infty}\right)$ be the different of $K_{\infty}\left(\wedge_{\phi}\right) / K_{\infty}$. Let m be the smallest integer $m \geq 1$ such that $\frac{v\left(a_{2}\right)}{q+1}-v\left(a_{1}\right) \leq \frac{q^{m+1}}{q+1}$. Then we have the following upper bound for the different of $K_{\infty}\left(\wedge_{\phi}\right) / K_{\infty}$:

$$
\begin{aligned}
& v\left(\mathcal{D}\left(K_{\infty}\left(\wedge_{\phi}\right) / K_{\infty}\right)\right) \leq \\
& 1+ \begin{cases}2 q^{2} & \text { if } v\left(a_{2}\right)-(q+1) v\left(a_{1}\right) \leq 0 \\
2 m q^{m+1} & \text { if } v\left(a_{2}\right)-(q+1) v\left(a_{1}\right)=q^{m+1} \\
2 \delta q^{\delta+1} & \text { if } 0<v\left(a_{2}\right)-(q+1) v\left(a_{1}\right)<q^{m+1}\end{cases}
\end{aligned}
$$

where $\delta=\frac{v\left(a_{2}\right)-(q+1) v\left(a_{1}\right)}{q^{m}(q-1)}-\frac{1}{q-1}+m-1$.

