Algebraic relations among periods and logarithms for Drinfeld modules

BIRS Workshop on *t*-motives

Chieh-Yu Chang

(Joint work with Matt Papanikolas)

NCTS and National Central University

October 2 2009, Banff

- $A := \mathbb{F}_q[\theta];$
- $(2) \ k := \mathbb{F}_q(\theta), \ |\theta|_{\infty} = q;$

- (a) t: independent variable of θ ;
- $\mathbb{T} := \{ f \in \mathbb{C}_{\infty}[[t]]; f \text{ converges on } |t|_{\infty} \leq 1 \};$
- ρ : a rank *r* Drinfeld $\mathbb{F}_q[t]$ -module defined over \bar{k} ;
- (a) Λ_{ρ} : the period lattice of ρ ;
- If $H_{DR}^{1}(\rho)$: the DeRham cohomology of ρ ;
- F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

- $A := \mathbb{F}_q[\theta];$
- $2 k := \mathbb{F}_q(\theta), \, |\theta|_{\infty} = q;$

- (a) t: independent variable of θ ;
- $\mathbb{T} := \{ f \in \mathbb{C}_{\infty}[[t]]; f \text{ converges on } |t|_{\infty} \leq 1 \};$
- ρ : a rank *r* Drinfeld $\mathbb{F}_q[t]$ -module defined over \bar{k} ;
- (a) Λ_{ρ} : the period lattice of ρ ;
- If $H_{DR}^{1}(\rho)$: the DeRham cohomology of ρ ;
- F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

- $A := \mathbb{F}_q[\theta];$
- $2 k := \mathbb{F}_q(\theta), \, |\theta|_{\infty} = q;$

- *t*: independent variable of θ ;
- $\mathbb{T} := \{ f \in \mathbb{C}_{\infty}[[t]]; f \text{ converges on } |t|_{\infty} \leq 1 \};$
- ρ : a rank *r* Drinfeld $\mathbb{F}_q[t]$ -module defined over \bar{k} ;
- (a) Λ_{ρ} : the period lattice of ρ ;
- If $H_{DR}^{1}(\rho)$: the DeRham cohomology of ρ ;
- F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

- $A := \mathbb{F}_q[\theta];$ $k := \mathbb{F}_q(\theta), |\theta|_{\infty} = q;$ $k_{\infty} := \mathbb{F}_q((1/\theta));$
- (a) t: independent variable of θ ;
- $\mathbb{T} := \{ f \in \mathbb{C}_{\infty}[[t]]; f \text{ converges on } |t|_{\infty} \leq 1 \};$
- ρ : a rank *r* Drinfeld $\mathbb{F}_q[t]$ -module defined over \bar{k} ;
- (a) Λ_{ρ} : the period lattice of ρ ;
- If $H_{DR}^{1}(\rho)$: the DeRham cohomology of ρ ;
- F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

- $\begin{array}{l} \bullet \quad A := \mathbb{F}_q[\theta]; \\ \bullet \quad k := \mathbb{F}_q(\theta), \ |\theta|_{\infty} = q; \\ \bullet \quad k_{\infty} := \mathbb{F}_q((1/\theta)); \end{array}$
- *t*: independent variable of θ ;
- **6** $\mathbb{T} := \{ f \in \mathbb{C}_{\infty}[[t]]; f \text{ converges on } |t|_{\infty} \leq 1 \};$
- ρ : a rank *r* Drinfeld $\mathbb{F}_q[t]$ -module defined over \bar{k} ;
- (a) Λ_{ρ} : the period lattice of ρ ;
- If $H_{DR}^{1}(\rho)$: the DeRham cohomology of ρ ;
- **(**) F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

- $\begin{array}{l} \bullet \quad A := \mathbb{F}_q[\theta]; \\ \bullet \quad k := \mathbb{F}_q(\theta), \ |\theta|_{\infty} = q; \\ \bullet \quad k_{\infty} := \mathbb{F}_q((1/\theta)); \end{array}$
- *t*: independent variable of θ ;
- $T := \{ f \in \mathbb{C}_{\infty}[[t]]; f \text{ converges on } |t|_{\infty} \leq 1 \};$
- ρ : a rank *r* Drinfeld $\mathbb{F}_q[t]$ -module defined over \bar{k} ;
- (a) Λ_{ρ} : the period lattice of ρ ;
- If $H_{DR}^{1}(\rho)$: the DeRham cohomology of ρ ;
- **(**) F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

- $A := \mathbb{F}_q[\theta];$ • $k := \mathbb{F}_q(\theta), |\theta|_{\infty} = q;$ • $k_{\infty} := \mathbb{F}_q((1/\theta));$
- *t*: independent variable of θ ;
- $\mathbb{T} := \{ f \in \mathbb{C}_{\infty}[[t]]; f \text{ converges on } |t|_{\infty} \leq 1 \};$
- ρ : a rank *r* Drinfeld $\mathbb{F}_q[t]$ -module defined over \bar{k} ;
- (a) Λ_{ρ} : the period lattice of ρ ;
- If $H_{DR}^{1}(\rho)$: the DeRham cohomology of ρ ;
- F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

- $\begin{array}{l} \bullet \quad A := \mathbb{F}_q[\theta]; \\ \bullet \quad k := \mathbb{F}_q(\theta), \ |\theta|_{\infty} = q; \\ \bullet \quad k_{\infty} := \mathbb{F}_q((1/\theta)); \\ \hline \quad & \widehat{} \end{array}$
- *t*: independent variable of θ ;
- $\mathbb{T} := \{ f \in \mathbb{C}_{\infty}[[t]]; f \text{ converges on } |t|_{\infty} \leq 1 \};$
- ρ : a rank *r* Drinfeld $\mathbb{F}_q[t]$ -module defined over \bar{k} ;
- **3** Λ_{ρ} : the period lattice of ρ ;
- If $H_{DR}^{1}(\rho)$: the DeRham cohomology of ρ ;
- **(**) F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

- $\begin{array}{l} \bullet \quad A := \mathbb{F}_q[\theta]; \\ \bullet \quad k := \mathbb{F}_q(\theta), \ |\theta|_{\infty} = q; \\ \bullet \quad k_{\infty} := \mathbb{F}_q((1/\theta)); \\ \widehat{ \quad \ } \end{array}$
- *t*: independent variable of θ ;
- $\mathbb{T} := \{ f \in \mathbb{C}_{\infty}[[t]]; f \text{ converges on } |t|_{\infty} \leq 1 \};$
- ρ : a rank *r* Drinfeld $\mathbb{F}_q[t]$ -module defined over \bar{k} ;
- **3** Λ_{ρ} : the period lattice of ρ ;
- $H_{DR}^{1}(\rho)$: the DeRham cohomology of ρ ;
- **(**) F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

- *t*: independent variable of θ ;
- $\mathbb{T} := \{ f \in \mathbb{C}_{\infty}[[t]]; f \text{ converges on } |t|_{\infty} \leq 1 \};$
- ρ : a rank *r* Drinfeld $\mathbb{F}_q[t]$ -module defined over \bar{k} ;
- **3** Λ_{ρ} : the period lattice of ρ ;
- **9** $H_{DR}^{1}(\rho)$: the DeRham cohomology of ρ ;
- **(**) F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

Recall the well-defined pairing:

$$\begin{array}{rcl} H^1_{DR}(\rho) \times \Lambda_{\rho} & \to & \mathbb{C}_{\infty} \\ ([\delta], \lambda) & \mapsto & \int_{\lambda} \delta := F_{\delta}(\lambda). \end{array}$$

Anderson, Gekeler: The above map is a perfect pairing. So we have the isomorphism as comparison between the DeRham and Betti cohomologies of the Drinfeld module ρ :

$$H^1_{DR}(\rho) \to \operatorname{Hom}_{\mathcal{A}}(\Lambda_{\rho}, \mathbb{C}_{\infty}) =: H^{Betti}(\rho).$$

For any basis $\{[\delta_1], \ldots, [\delta_r]\}$ of $H^1_{DR}(\rho)$ defined over \bar{k} , i.e., $\delta_i(\mathbb{F}_q[t]) \subseteq \bar{k}[\tau]\tau$, and any *A*-basis $\{\lambda_1, \ldots, \lambda_r\}$ of Λ_ρ , the $r \times r$ matrix

$$P_{\rho} = \left(\int_{\lambda_i} \delta_j\right)$$

Recall the well-defined pairing:

$$\begin{array}{rcl} H^1_{DR}(\rho) \times \Lambda_\rho & \to & \mathbb{C}_\infty\\ ([\delta], \lambda) & \mapsto & \int_\lambda \delta := F_\delta(\lambda). \end{array}$$

Anderson, Gekeler: The above map is a perfect pairing. So we have the isomorphism as comparison between the DeRham and Betti cohomologies of the Drinfeld module ρ :

$$H^1_{DR}(\rho) \to \operatorname{Hom}_{\mathcal{A}}(\Lambda_{\rho}, \mathbb{C}_{\infty}) =: H^{Betti}(\rho).$$

For any basis { $[\delta_1], \ldots, [\delta_r]$ } of $H^1_{DR}(\rho)$ defined over \bar{k} , i.e., $\delta_i(\mathbb{F}_q[t]) \subseteq \bar{k}[\tau]\tau$, and any *A*-basis { $\lambda_1, \ldots, \lambda_r$ } of Λ_ρ , the $r \times r$ matrix

$$P_{\rho} = \left(\int_{\lambda_i} \delta_j\right)$$

Recall the well-defined pairing:

$$\begin{array}{rcl} {\sf H}^1_{DR}(\rho) \times {\sf A}_\rho & \to & \mathbb{C}_\infty\\ ([\delta], \lambda) & \mapsto & \int_\lambda \delta := {\sf F}_\delta(\lambda). \end{array}$$

Anderson, Gekeler: The above map is a perfect pairing. So we have the isomorphism as comparison between the DeRham and Betti cohomologies of the Drinfeld module ρ :

$$H^{1}_{DR}(\rho) \to \operatorname{Hom}_{\mathcal{A}}(\Lambda_{\rho}, \mathbb{C}_{\infty}) =: H^{\operatorname{Betti}}(\rho).$$

For any basis { $[\delta_1], \ldots, [\delta_r]$ } of $H^1_{DR}(\rho)$ defined over \bar{k} , i.e., $\delta_i(\mathbb{F}_q[t]) \subseteq \bar{k}[\tau]\tau$, and any *A*-basis { $\lambda_1, \ldots, \lambda_r$ } of Λ_ρ , the $r \times r$ matrix

$$\boldsymbol{P}_{\rho} = \left(\int_{\lambda_i} \delta_j\right)$$

Recall the well-defined pairing:

$$\begin{array}{rcl} {\sf H}^1_{DR}(\rho) \times {\sf A}_\rho & \to & \mathbb{C}_\infty\\ ([\delta], \lambda) & \mapsto & \int_\lambda \delta := {\sf F}_\delta(\lambda). \end{array}$$

Anderson, Gekeler: The above map is a perfect pairing. So we have the isomorphism as comparison between the DeRham and Betti cohomologies of the Drinfeld module ρ :

$$H^1_{DR}(\rho) \to \operatorname{Hom}_{\mathcal{A}}(\Lambda_{\rho}, \mathbb{C}_{\infty}) =: H^{\operatorname{Betti}}(\rho).$$

For any basis { $[\delta_1], \ldots, [\delta_r]$ } of $H^1_{DR}(\rho)$ defined over \bar{k} , i.e., $\delta_i(\mathbb{F}_q[t]) \subseteq \bar{k}[\tau]\tau$, and any *A*-basis { $\lambda_1, \ldots, \lambda_r$ } of Λ_ρ , the $r \times r$ matrix

$$\boldsymbol{P}_{\rho} = (\int_{\lambda_i} \delta_j)$$

Natural Relations among Entries of Period Matrix

Each endomorphism f of ρ induces a homomorphism

$$f^*: (\delta \mapsto f^*\delta \ (t \mapsto \delta_t f)): H_{DR}(\rho) \to H_{DR}(\rho).$$

The quasi-periodic function of $f^*\delta$ is given by $F_{f^*\delta}(z) = F_{\delta}(b_0 x)$ for $f = \sum_{i=0}^{n} b_0 \tau^i$. Write $f^*\delta_j = \sum_{\ell=1}^{r} c_\ell \delta_\ell$ and $b_0 \lambda_i = \sum_{\ell=1}^{r} d_\ell \lambda_\ell$, then evaluating $z = \lambda_i \in \Lambda_\rho$ we obtain

$$\sum_{\ell=1}^r c_\ell F_{\delta_\ell}(\lambda_i) = \sum_{\ell=1}^r d_\ell F_{\delta_j}(\lambda_\ell).$$

If $f \notin \rho(\mathbb{F}_q[t])$, then it is a nontrivial \overline{k} -linear relation among the values

$$\int_{\lambda_i} \delta_j := F_{\delta_j}(\lambda_i).$$

◆□ > ◆□ > ◆□ > ◆□ > → □ → ○ < ○

Natural Relations among Entries of Period Matrix

Each endomorphism f of ρ induces a homomorphism

$$f^*: (\delta \mapsto f^*\delta \ (t \mapsto \delta_t f)): H_{DR}(\rho) \to H_{DR}(\rho).$$

The quasi-periodic function of $f^*\delta$ is given by $F_{f^*\delta}(z) = F_{\delta}(b_0 x)$ for $f = \sum_{i=0}^{n} b_0 \tau^i$. Write $f^*\delta_j = \sum_{\ell=1}^{r} c_\ell \delta_\ell$ and $b_0 \lambda_i = \sum_{\ell=1}^{r} d_\ell \lambda_\ell$, then evaluating $z = \lambda_i \in \Lambda_\rho$ we obtain

$$\sum_{\ell=1}^r c_\ell F_{\delta_\ell}(\lambda_i) = \sum_{\ell=1}^r d_\ell F_{\delta_j}(\lambda_\ell).$$

If $f \notin \rho(\mathbb{F}_q[t])$, then it is a nontrivial \overline{k} -linear relation among the values

$$\int_{\lambda_i} \delta_j := F_{\delta_j}(\lambda_i).$$

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Natural Relations among Entries of Period Matrix

Each endomorphism f of ρ induces a homomorphism

$$f^*: (\delta \mapsto f^*\delta \ (t \mapsto \delta_t f)): H_{DR}(\rho) \to H_{DR}(\rho).$$

The quasi-periodic function of $f^*\delta$ is given by $F_{f^*\delta}(z) = F_{\delta}(b_0 x)$ for $f = \sum_{i=0}^{n} b_0 \tau^i$. Write $f^*\delta_j = \sum_{\ell=1}^{r} c_\ell \delta_\ell$ and $b_0 \lambda_i = \sum_{\ell=1}^{r} d_\ell \lambda_\ell$, then evaluating $z = \lambda_i \in \Lambda_\rho$ we obtain

$$\sum_{\ell=1}^r c_\ell F_{\delta_\ell}(\lambda_i) = \sum_{\ell=1}^r d_\ell F_{\delta_j}(\lambda_\ell).$$

If $f \notin \rho(\mathbb{F}_q[t])$, then it is a nontrivial \overline{k} -linear relation among the values

$$\int_{\lambda_i} \delta_j := F_{\delta_j}(\lambda_i).$$

Period Conjecture for Drinfeld modules

Yu 1997, Brownawell 2001

All the \bar{k} -linearly relations among the entries of the period matrix P_{ρ} are those induced from the endomorphisms of ρ . In particular, dim_{\bar{k}} \bar{k} -Span $\left\{\int_{\lambda_i} \delta_j; 1 \le i, j \le r\right\} = r^2/s$, where $s := [\text{End}(\rho) : A]$.

Period Conjecture for Drinfeld modules (Brownawell-Yu)

All the \bar{k} -algebraic relations among the entries of the period matrix P_{ρ} are those induced from the endomorphisms of ρ . So

tr.deg_{$$\bar{k}$$} $\bar{k}(\int_{\lambda_i} \delta_j) = r^2/s.$

Theorem 1 (Chang-Papanikolas 2009)

The period conjecture is true (also true for general A).

Period Conjecture for Drinfeld modules

Yu 1997, Brownawell 2001

All the \bar{k} -linearly relations among the entries of the period matrix P_{ρ} are those induced from the endomorphisms of ρ . In particular, $\dim_{\bar{k}} \bar{k}$ -Span $\left\{ \int_{\lambda_i} \delta_j; 1 \le i, j \le r \right\} = r^2/s$, where $s := [\operatorname{End}(\rho) : A]$.

Period Conjecture for Drinfeld modules (Brownawell-Yu)

All the \bar{k} -algebraic relations among the entries of the period matrix P_{ρ} are those induced from the endomorphisms of ρ . So

tr.deg_{$$\bar{k}$$} $\bar{k}(\int_{\lambda_i} \delta_j) = r^2/s.$

Theorem 1 (Chang-Papanikolas 2009)

The period conjecture is true (also true for general A).

Period Conjecture for Drinfeld modules

Yu 1997, Brownawell 2001

All the \bar{k} -linearly relations among the entries of the period matrix P_{ρ} are those induced from the endomorphisms of ρ . In particular, $\dim_{\bar{k}} \bar{k}$ -Span $\left\{ \int_{\lambda_i} \delta_j; 1 \le i, j \le r \right\} = r^2/s$, where $s := [\operatorname{End}(\rho) : A]$.

Period Conjecture for Drinfeld modules (Brownawell-Yu)

All the \bar{k} -algebraic relations among the entries of the period matrix P_{ρ} are those induced from the endomorphisms of ρ . So

tr.deg_{$$\bar{k}$$} $\bar{k}(\int_{\lambda_i} \delta_j) = r^2/s.$

Theorem 1 (Chang-Papanikolas 2009)

The period conjecture is true (also true for general A).

Yu 1997 (Analogue of Baker's Theorem)

Let $u_1, \ldots, u_n \in \mathbb{C}_{\infty}$ satisfy $\exp_{\rho}(u_i) \in \overline{k}$ for all *i*. If u_1, \ldots, u_n are linear independent over $\operatorname{End}(\rho)$, then $1, u_1, \ldots, u_n$ are linearly independent over \overline{k} .

Theorem 2 (Chang-Papanikolas 2009)

Assumption as above. Then u_1, \ldots, u_n are algebraically independent over \bar{k} (also valid for general A).

Classical conjecture

Let u_1, \ldots, u_n satisfy $e^{u_i} \in \overline{\mathbb{Q}}$ for all *i*. If u_1, \ldots, u_n are linearly independent over \mathbb{Q} , then u_1, \ldots, u_n are algebraically independent over $\overline{\mathbb{Q}}$.

Yu 1997 (Analogue of Baker's Theorem)

Let $u_1, \ldots, u_n \in \mathbb{C}_{\infty}$ satisfy $\exp_{\rho}(u_i) \in \overline{k}$ for all *i*. If u_1, \ldots, u_n are linear independent over $\operatorname{End}(\rho)$, then $1, u_1, \ldots, u_n$ are linearly independent over \overline{k} .

Theorem 2 (Chang-Papanikolas 2009)

Assumption as above. Then u_1, \ldots, u_n are algebraically independent over \bar{k} (also valid for general *A*).

Classical conjecture

Let u_1, \ldots, u_n satisfy $e^{u_i} \in \overline{\mathbb{Q}}$ for all *i*. If u_1, \ldots, u_n are linearly independent over \mathbb{Q} , then u_1, \ldots, u_n are algebraically independent over $\overline{\mathbb{Q}}$.

Yu 1997 (Analogue of Baker's Theorem)

Let $u_1, \ldots, u_n \in \mathbb{C}_{\infty}$ satisfy $\exp_{\rho}(u_i) \in \overline{k}$ for all *i*. If u_1, \ldots, u_n are linear independent over $\operatorname{End}(\rho)$, then $1, u_1, \ldots, u_n$ are linearly independent over \overline{k} .

Theorem 2 (Chang-Papanikolas 2009)

Assumption as above. Then u_1, \ldots, u_n are algebraically independent over \bar{k} (also valid for general *A*).

Classical conjecture

Let u_1, \ldots, u_n satisfy $e^{u_i} \in \overline{\mathbb{Q}}$ for all *i*. If u_1, \ldots, u_n are linearly independent over \mathbb{Q} , then u_1, \ldots, u_n are algebraically independent over $\overline{\mathbb{Q}}$.

Logarithms and Quasi-Periodic Functions

Yu 1997, Brownawell 2001

Fix a basis $\{[\delta_1], \ldots, [\delta_r]\}$ of $H_{DR}^1(\rho)$ defined over \bar{k} . Let $u_1, \ldots, u_n \in \mathbb{C}_{\infty}$ satisfy $\exp_{\rho}(u_i) \in \bar{k}$ for all *i*. Suppose that u_1, \ldots, u_n are linearly independent over $\operatorname{End}(\rho)$, then the following *rn* values

$$F_{\delta_1}(u_1), \dots, F_{\delta_1}(u_n)$$

$$\vdots$$

$$F_{\delta_r}(u_1), \dots, F_{\delta_r}(u_n)$$

are linearly independent over \bar{k} .

Theorem 3 (Chang-Papanikolas 2009)

Assumption as above. Suppose that the fraction field of $End(\rho)$ is separable over k. Then the above rn values are algebraically independent over \bar{k} .

Logarithms and Quasi-Periodic Functions

Yu 1997, Brownawell 2001

Fix a basis $\{[\delta_1], \ldots, [\delta_r]\}$ of $H_{DR}^1(\rho)$ defined over \bar{k} . Let $u_1, \ldots, u_n \in \mathbb{C}_{\infty}$ satisfy $\exp_{\rho}(u_i) \in \bar{k}$ for all *i*. Suppose that u_1, \ldots, u_n are linearly independent over $\operatorname{End}(\rho)$, then the following *rn* values

$$F_{\delta_1}(u_1), \dots, F_{\delta_1}(u_n)$$

$$\vdots$$

$$F_{\delta_r}(u_1), \dots, F_{\delta_r}(u_n)$$

are linearly independent over \bar{k} .

Theorem 3 (Chang-Papanikolas 2009)

Assumption as above. Suppose that the fraction field of $End(\rho)$ is separable over k. Then the above rn values are algebraically independent over \bar{k} .

Step I: Solving difference equations W.L.O.G, we may assume that ρ is given by $\rho_t := \theta + \kappa_1 \tau + \ldots + \kappa_{r-1} \tau^{r-1} + \tau^r$. Let

$$\Phi := \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ (t-\theta) & -\kappa_1^{1/q} & -\kappa_2^{1/q^2} & \cdots & -\kappa_{r-1}^{1/q^{r-1}} \end{bmatrix} \in \operatorname{Mat}_r(\bar{k}[t]),$$

then following Pellarin we use Anderson generating functions to create $\Psi \in GL_r(\mathbb{T})$ so that

$$\Psi^{(-1)} = \Phi \Psi$$
, and $\bar{k}(\Psi(\theta)) = \bar{k}(\int_{\lambda_i} \delta_j)$.

By Papanikolas' theory, it suffices to prove dim $\Gamma_{\mu} = r_{\mu}^2 / s_{\mu}$, $s_{\mu} = s_{\mu} s_{\mu}$

Step I: Solving difference equations

W.L.O.G, we may assume that ρ is given by $\rho_t := \theta + \kappa_1 \tau + \ldots + \kappa_{r-1} \tau^{r-1} + \tau^r$. Let

$$\Phi := \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ (t-\theta) & -\kappa_1^{1/q} & -\kappa_2^{1/q^2} & \cdots & -\kappa_{r-1}^{1/q^{r-1}} \end{bmatrix} \in \operatorname{Mat}_r(\bar{k}[t]),$$

then following Pellarin we use Anderson generating functions to create $\Psi \in GL_r(\mathbb{T})$ so that

$$\Psi^{(-1)} = \Phi \Psi$$
, and $\bar{k}(\Psi(\theta)) = \bar{k}(\int_{\lambda_j} \delta_j)$.

By Papanikolas' theory, it suffices to prove dim $\Gamma_{\mu} = r_{\mu}^2 / s_{\mu}$, $s_{\mu} = s_{\mu} s_{\mu}$

Step I: Solving difference equations W.L.O.G, we may assume that ρ is given by $\rho_t := \theta + \kappa_1 \tau + \ldots + \kappa_{r-1} \tau^{r-1} + \tau^r$. Let

$$\Phi := egin{bmatrix} 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & \cdots & 0 \ dots & dots & \ddots & \ddots & dots \ 0 & 0 & \cdots & 0 & 1 \ (t- heta) & -\kappa_1^{1/q} & -\kappa_2^{1/q^2} & \cdots & -\kappa_{r-1}^{1/q^{r-1}} \end{bmatrix} \in \operatorname{Mat}_r(ar k[t]),$$

then following Pellarin we use Anderson generating functions to create $\Psi\in GL_r(\mathbb{T})$ so that

$$\Psi^{(-1)} = \Phi \Psi, \text{ and } \bar{k}(\Psi(heta)) = \bar{k}(\int_{\lambda_i} \delta_j).$$

By Papanikolas' theory, it suffices to prove dim $\Gamma_{\mu} = r_{\mu}^2 / s_{\mu}$, $s_{\mu} = s_{\mu} c_{\mu}^2$

Step I: Solving difference equations W.L.O.G, we may assume that ρ is given by $\rho_t := \theta + \kappa_1 \tau + \ldots + \kappa_{r-1} \tau^{r-1} + \tau^r$. Let

$$\Phi := \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ (t-\theta) & -\kappa_1^{1/q} & -\kappa_2^{1/q^2} & \cdots & -\kappa_{r-1}^{1/q^{r-1}} \end{bmatrix} \in \mathsf{Mat}_r(\bar{k}[t]),$$

then following Pellarin we use Anderson generating functions to create $\Psi\in GL_r(\mathbb{T})$ so that

$$\Psi^{(-1)} = \Phi \Psi, \text{ and } \bar{k}(\Psi(heta)) = \bar{k}(\int_{\lambda_j} \delta_j).$$

By Papanikolas' theory, it suffices to prove dim $\Gamma_{\Psi} = r_{\rm e}^2/s$.

Let *M* be the rigid analytically trivial pre-*t*-motive defined by Φ . Anderson showed that there is a fully faithful functor

 $\left\{ \text{ Drinfeld } \mathbb{F}_q[t]\text{-modules}/\bar{k} \text{ up to isogeny} \right\} \rightarrow \left\{ \text{R.A.T. pre-}t\text{-motives} \right\},$

we have

$$\operatorname{frac}(\operatorname{End}(\rho)) \cong \operatorname{End}_{\overline{k}(t)[\sigma,\sigma^{-1}]}(M) =: \mathcal{K}$$

Note that $[\mathcal{K} : \mathbb{F}_q(t)] = s$. Step II: Prove

$$\Gamma_{\Psi} = \operatorname{Cent}_{GL_{r/\mathbb{F}_q(t)}}(\mathcal{K}) \cong \operatorname{Res}_{\mathcal{K}/\mathbb{F}_q(t)}(\operatorname{GL}_{\frac{r}{s}/\mathcal{K}})$$

and hence finish the proof of Period Conjecture.

Let *M* be the rigid analytically trivial pre-*t*-motive defined by Φ . Anderson showed that there is a fully faithful functor

 $\left\{ \text{ Drinfeld } \mathbb{F}_q[t] \text{-modules} / \overline{k} \text{ up to isogeny} \right\} \rightarrow \left\{ \text{R.A.T. pre-}t \text{-motives} \right\},$

we have

$$\operatorname{frac}(\operatorname{End}(\rho)) \cong \operatorname{End}_{\overline{k}(t)[\sigma,\sigma^{-1}]}(M) =: \mathcal{K}$$

Note that $[\mathcal{K} : \mathbb{F}_q(t)] = s$. Step II: Prove

$$\Gamma_{\Psi} = \operatorname{Cent}_{GL_{r/\mathbb{F}_q(t)}}(\mathcal{K}) \cong \operatorname{Res}_{\mathcal{K}/\mathbb{F}_q(t)}(\operatorname{GL}_{\frac{r}{s}/\mathcal{K}})$$

and hence finish the proof of Period Conjecture.

Let *M* be the rigid analytically trivial pre-*t*-motive defined by Φ . Anderson showed that there is a fully faithful functor

 $\{ \text{ Drinfeld } \mathbb{F}_q[t] \text{-modules}/\bar{k} \text{ up to isogeny} \} \rightarrow \{ \text{R.A.T. pre-}t \text{-motives} \},$

we have

$$\operatorname{frac}(\operatorname{End}(\rho)) \cong \operatorname{End}_{\overline{k}(t)[\sigma,\sigma^{-1}]}(M) =: \mathcal{K}$$

Note that $[\mathcal{K} : \mathbb{F}_q(t)] = s$. Step II: Prove

$$\Gamma_{\Psi} = \operatorname{Cent}_{GL_{r/\mathbb{F}_q(t)}}(\mathcal{K}) \cong \operatorname{Res}_{\mathcal{K}/\mathbb{F}_q(t)}(\operatorname{GL}_{\frac{r}{s}/\mathcal{K}})$$

and hence finish the proof of Period Conjecture.

Sketch of the proof of $\Gamma_{\Psi} \cong \operatorname{Cent}_{GL_{r/\mathbb{F}_{q}(t)}}(\mathcal{K})$

Let \mathcal{R}_M be the Tannakian subcategory generated by M. As \mathcal{R}_M is functorial in M, we have a natural upper bound for Γ_{Ψ} :

 $\Gamma_{\Psi} \subseteq \operatorname{Cent}_{GL_{r/\mathbb{F}_q(t)}}(\mathcal{K}).$

Question: How to obtain a lower bound for Γ_{Ψ} ? Answer: Connection to Galois representations. Let *K* be a finite extension of *k* so that $End(\rho) \subseteq K[\tau]$. Given a prime *v* in $\mathbb{F}_q[t]$, we let

 $T_{v}(\rho) := \lim_{\succeq} \rho[v^{n}].$

Let $\mathbf{A}_{v} := \mathbb{F}_{q}[t]_{v}$ and $\mathbf{k}_{v} := \mathbb{F}_{q}(t)_{v}$, then we have the *v*-adic Galois representation

 $\phi_{V}: G_{K}:= \operatorname{Gal}(K^{sep}/K) \to \operatorname{Aut}(\mathbf{k}_{V} \otimes_{\mathbf{A}_{V}} T_{V}(\rho)) = \operatorname{GL}_{r}(\mathbf{k}_{V}).$

Sketch of the proof of $\Gamma_{\Psi} \cong \operatorname{Cent}_{GL_{r/\mathbb{F}_{q}(t)}}(\mathcal{K})$

Let \mathcal{R}_M be the Tannakian subcategory generated by M. As \mathcal{R}_M is functorial in M, we have a natural upper bound for Γ_{Ψ} :

 $\Gamma_{\Psi} \subseteq Cent_{GL_{r/\mathbb{F}_{q}(t)}}(\mathcal{K}).$

Question: How to obtain a lower bound for Γ_{Ψ} ?

Answer: Connection to Galois representations. Let *K* be a finite extension of *k* so that $End(\rho) \subseteq K[\tau]$. Given a prime *v* in $\mathbb{F}_q[t]$, we let

 $T_{\nu}(\rho) := \lim_{\leftarrow} \rho[\nu^n].$

Let $\mathbf{A}_{v} := \mathbb{F}_{q}[t]_{v}$ and $\mathbf{k}_{v} := \mathbb{F}_{q}(t)_{v}$, then we have the *v*-adic Galois representation

 $\phi_{V}: G_{K}:= \operatorname{Gal}(K^{sep}/K) \to \operatorname{Aut}(\mathbf{k}_{V} \otimes_{\mathbf{A}_{V}} T_{V}(\rho)) = \operatorname{GL}_{r}(\mathbf{k}_{V}).$

Sketch of the proof of $\Gamma_{\Psi} \cong \operatorname{Cent}_{GL_{r/\mathbb{F}_{q}(t)}}(\mathcal{K})$

Let \mathcal{R}_M be the Tannakian subcategory generated by M. As \mathcal{R}_M is functorial in M, we have a natural upper bound for Γ_{Ψ} :

 $\Gamma_{\Psi} \subseteq \text{Cent}_{GL_{r/\mathbb{F}_q(t)}}(\mathcal{K}).$

Question: How to obtain a lower bound for Γ_{Ψ} ? Answer: Connection to Galois representations.

Let *K* be a finite extension of *k* so that $End(\rho) \subseteq K[\tau]$. Given a prime *v* in $\mathbb{F}_q[t]$, we let

 $T_{v}(\rho) := \lim_{\leftarrow} \rho[v^{n}].$

Let $\mathbf{A}_{v} := \mathbb{F}_{q}[t]_{v}$ and $\mathbf{k}_{v} := \mathbb{F}_{q}(t)_{v}$, then we have the *v*-adic Galois representation

 $\phi_{V}: G_{K}:= \operatorname{Gal}(K^{sep}/K) \to \operatorname{Aut}(\mathbf{k}_{V} \otimes_{\mathbf{A}_{V}} T_{V}(\rho)) = \operatorname{GL}_{r}(\mathbf{k}_{V}).$

Let \mathcal{R}_M be the Tannakian subcategory generated by M. As \mathcal{R}_M is functorial in M, we have a natural upper bound for Γ_{Ψ} :

 $\Gamma_{\Psi} \subseteq \text{Cent}_{GL_{r/\mathbb{F}_q(t)}}(\mathcal{K}).$

Question: How to obtain a lower bound for Γ_{Ψ} ? Answer: Connection to Galois representations. Let *K* be a finite extension of *k* so that $End(\rho) \subseteq K[\tau]$. Given a prime *v* in $\mathbb{F}_q[t]$, we let

$$T_{\boldsymbol{v}}(\rho) := \lim_{\leftarrow} \rho[\boldsymbol{v}^n].$$

Let $\mathbf{A}_{v} := \mathbb{F}_{q}[t]_{v}$ and $\mathbf{k}_{v} := \mathbb{F}_{q}(t)_{v}$, then we have the *v*-adic Galois representation

$$\phi_{\mathsf{v}}: G_{\mathsf{K}} := \operatorname{Gal}({\mathsf{K}}^{\operatorname{sep}}/{\mathsf{K}}) \to \operatorname{Aut}(\mathbf{k}_{\mathsf{v}} \otimes_{\mathbf{A}_{\mathsf{v}}} T_{\mathsf{v}}(\rho)) = \operatorname{GL}_{r}(\mathbf{k}_{\mathsf{v}}).$$

Pink 1997: $\phi_v(G_K) \subseteq \text{Cent}_{GL_r(\mathbf{k}_v)}(\mathcal{K})$ is Zariski dense. Key Lemma (Lower bound for Γ_{Ψ}): For v = t, enlarge K so that Spec $\bar{k}(t)[\Psi_{ij}, 1/\text{det}\Psi]$ is defined over K(t), then one has

 $\phi_{v}(G_{\mathcal{K}}) \subseteq \Gamma_{\Psi}(\mathbf{k}_{v}) \ (\subseteq \operatorname{Cent}_{GL_{r}(\mathbf{k}_{v})}(\mathcal{K})).$

Pink's theorem implies $\Gamma_{\Psi}(\mathbf{k}_{v}) = \text{Cent}_{GL_{r}(\mathbf{k}_{v})}(\mathcal{K})$ for v = t and hence

 $\Gamma_{\Psi} = \operatorname{Cent}_{GL_r/\mathbb{F}_q(t)}(\mathcal{K}).$

Corollary: For each prime v, we have the analogue of Mumford-Tate conjecture

 $\phi_{v}(G_{K}) \subseteq \Gamma_{\Psi}(\mathbf{k}_{v})$ is Zariski dense.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ − つく??

Pink 1997: $\phi_{\nu}(G_{\mathcal{K}}) \subseteq \operatorname{Cent}_{GL_{r}(\mathbf{k}_{\nu})}(\mathcal{K})$ is Zariski dense. Key Lemma (Lower bound for Γ_{Ψ}): For $\nu = t$, enlarge \mathcal{K} so that Spec $\overline{k}(t)[\Psi_{ij}, 1/\det \Psi]$ is defined over $\mathcal{K}(t)$, then one has

 $\phi_{\nu}(G_{\mathcal{K}}) \subseteq \Gamma_{\Psi}(\mathbf{k}_{\nu}) \ (\subseteq \operatorname{Cent}_{GL_{r}(\mathbf{k}_{\nu})}(\mathcal{K})).$

Pink's theorem implies $\Gamma_{\Psi}(\mathbf{k}_{v}) = \text{Cent}_{GL_{r}(\mathbf{k}_{v})}(\mathcal{K})$ for v = t and hence

 $\Gamma_{\Psi} = \operatorname{Cent}_{GL_r/\mathbb{F}_q(t)}(\mathcal{K}).$

Corollary: For each prime v, we have the analogue of Mumford-Tate conjecture

 $\phi_{\nu}(G_{\mathcal{K}}) \subseteq \Gamma_{\Psi}(\mathbf{k}_{\nu})$ is Zariski dense.

Pink 1997: $\phi_{\nu}(G_{\mathcal{K}}) \subseteq \operatorname{Cent}_{GL_{r}(\mathbf{k}_{\nu})}(\mathcal{K})$ is Zariski dense. Key Lemma (Lower bound for Γ_{Ψ}): For $\nu = t$, enlarge \mathcal{K} so that Spec $\overline{k}(t)[\Psi_{ij}, 1/\det \Psi]$ is defined over $\mathcal{K}(t)$, then one has

$$\phi_{\nu}(G_{\mathcal{K}}) \subseteq \Gamma_{\Psi}(\mathbf{k}_{\nu}) \ (\subseteq \operatorname{Cent}_{GL_{r}(\mathbf{k}_{\nu})}(\mathcal{K})).$$

Pink's theorem implies $\Gamma_{\Psi}(\mathbf{k}_{v}) = \text{Cent}_{GL_{r}(\mathbf{k}_{v})}(\mathcal{K})$ for v = t and hence

$$\Gamma_{\Psi} = \operatorname{Cent}_{GL_r/\mathbb{F}_q(t)}(\mathcal{K}).$$

Corollary: For each prime v, we have the analogue of Mumford-Tate conjecture

 $\phi_{v}(G_{K}) \subseteq \Gamma_{\Psi}(\mathbf{k}_{v})$ is Zariski dense.

Pink 1997: $\phi_{\nu}(G_{\mathcal{K}}) \subseteq \operatorname{Cent}_{GL_{r}(\mathbf{k}_{\nu})}(\mathcal{K})$ is Zariski dense. Key Lemma (Lower bound for Γ_{Ψ}): For $\nu = t$, enlarge \mathcal{K} so that Spec $\overline{k}(t)[\Psi_{ij}, 1/\det \Psi]$ is defined over $\mathcal{K}(t)$, then one has

$$\phi_{\nu}(G_{\mathcal{K}}) \subseteq \Gamma_{\Psi}(\mathbf{k}_{\nu}) \ (\subseteq \operatorname{Cent}_{GL_{r}(\mathbf{k}_{\nu})}(\mathcal{K})).$$

Pink's theorem implies $\Gamma_{\Psi}(\mathbf{k}_{v}) = \text{Cent}_{GL_{r}(\mathbf{k}_{v})}(\mathcal{K})$ for v = t and hence

$$\Gamma_{\Psi} = \operatorname{Cent}_{GL_r/\mathbb{F}_q(t)}(\mathcal{K}).$$

Corollary: For each prime v, we have the analogue of Mumford-Tate conjecture

$$\phi_{\nu}(G_{\mathcal{K}}) \subseteq \Gamma_{\Psi}(\mathbf{k}_{\nu})$$
 is Zariski dense.

For any $z \in \mathbf{H} := \mathbb{C}_{\infty} \setminus k_{\infty}$, we let $\Lambda_z := Az + A$. Its corresponding rank 2 Drinfeld $\mathbb{F}_q[t]$ -module is given by

$$\phi^{\Lambda_z}: t \mapsto \theta + g(z)\tau + \Delta(z)\tau^2.$$

Regarding g and Δ as functions on **H**, then

g is a Drinfeld modular form of weight q − 1, type 0;
 ∆ is a Drinfeld modular form of weight q² − 1, type 0.

Goss, Gekeler: Put $g_{new} := g/\tilde{\pi}^{q-1}$ and $\Delta_{new} := \Delta/\tilde{\pi}^{q^2-1}$, then

 $g_{new}, \Delta_{new} \in \bar{k}[[q_{\infty}(z)]], \text{ where } q_{\infty}(z) := 1/\exp_{\mathcal{C}}(\tilde{\pi}z).$

There is a modular form $h \in \bar{k}[[q_{\infty}]]$ (Poincaré series) of weight q + 1, type 1 for which $h^{q-1} = -\Delta_{new}$. Then graded ring generated by modular forms (graded by weights) is given by

For any $z \in \mathbf{H} := \mathbb{C}_{\infty} \setminus k_{\infty}$, we let $\Lambda_z := Az + A$. Its corresponding rank 2 Drinfeld $\mathbb{F}_q[t]$ -module is given by

$$\phi^{\Lambda_z}: t \mapsto \theta + g(z)\tau + \Delta(z)\tau^2.$$

Regarding g and Δ as functions on **H**, then

• g is a Drinfeld modular form of weight q - 1, type 0; • Δ is a Drinfeld modular form of weight $q^2 - 1$, type 0. • Goss, Gekeler: Put $g_{new} := g/\tilde{\pi}^{q-1}$ and $\Delta_{new} := \Delta/\tilde{\pi}^{q^2-1}$, then

 $g_{new}, \Delta_{new} \in \bar{k}[[q_{\infty}(z)]], \text{ where } q_{\infty}(z) := 1/\exp_{\mathcal{C}}(\tilde{\pi}z).$

There is a modular form $h \in \bar{k}[[q_{\infty}]]$ (Poincaré series) of weight q + 1, type 1 for which $h^{q-1} = -\Delta_{new}$. Then graded ring generated by modular forms (graded by weights) is given by

For any $z \in \mathbf{H} := \mathbb{C}_{\infty} \setminus k_{\infty}$, we let $\Lambda_z := Az + A$. Its corresponding rank 2 Drinfeld $\mathbb{F}_q[t]$ -module is given by

$$\phi^{\Lambda_z}: t \mapsto \theta + g(z)\tau + \Delta(z)\tau^2.$$

Regarding g and Δ as functions on **H**, then

g is a Drinfeld modular form of weight q − 1, type 0;
 a Drinfeld modular form of weight q² − 1, type 0.

Goss, Gekeler: Put $g_{new} := g/\tilde{\pi}^{q-1}$ and $\Delta_{new} := \Delta/\tilde{\pi}^{q-1}$, then

 $g_{new}, \Delta_{new} \in \bar{k}[[q_{\infty}(z)]], \text{ where } q_{\infty}(z) := 1/\exp_{\mathcal{C}}(\tilde{\pi}z).$

There is a modular form $h \in \bar{k}[[q_{\infty}]]$ (Poincaré series) of weight q + 1, type 1 for which $h^{q-1} = -\Delta_{new}$. Then graded ring generated by modular forms (graded by weights) is given by

For any $z \in \mathbf{H} := \mathbb{C}_{\infty} \setminus k_{\infty}$, we let $\Lambda_z := Az + A$. Its corresponding rank 2 Drinfeld $\mathbb{F}_q[t]$ -module is given by

$$\phi^{\Lambda_z}: t \mapsto \theta + g(z)\tau + \Delta(z)\tau^2.$$

Regarding g and Δ as functions on **H**, then

- **1** g is a Drinfeld modular form of weight q 1, type 0;
- 2 Δ is a Drinfeld modular form of weight $q^2 1$, type 0.

Goss, Gekeler: Put $g_{new} := g/\tilde{\pi}^{q-1}$ and $\Delta_{new} := \Delta/\tilde{\pi}^{q^2-1}$, then

 $g_{new}, \Delta_{new} \in \bar{k}[[q_{\infty}(z)]], \text{ where } q_{\infty}(z) := 1/\exp_{\mathcal{C}}(\tilde{\pi}z).$

There is a modular form $h \in \bar{k}[[q_{\infty}]]$ (Poincaré series) of weight q + 1, type 1 for which $h^{q-1} = -\Delta_{new}$. Then graded ring generated by modular forms (graded by weights) is given by

For any $z \in \mathbf{H} := \mathbb{C}_{\infty} \setminus k_{\infty}$, we let $\Lambda_z := Az + A$. Its corresponding rank 2 Drinfeld $\mathbb{F}_q[t]$ -module is given by

$$\phi^{\Lambda_z}: t \mapsto \theta + g(z)\tau + \Delta(z)\tau^2.$$

Regarding g and Δ as functions on **H**, then

- **1** g is a Drinfeld modular form of weight q 1, type 0;
- 2 Δ is a Drinfeld modular form of weight $q^2 1$, type 0.

Goss, Gekeler: Put $g_{new} := g/\tilde{\pi}^{q-1}$ and $\Delta_{new} := \Delta/\tilde{\pi}^{q^2-1}$, then

 $g_{new}, \Delta_{new} \in \bar{k}[[q_{\infty}(z)]], \text{ where } q_{\infty}(z) := 1/\exp_{\mathcal{C}}(\tilde{\pi}z).$

There is a modular form $h \in \bar{k}[[q_{\infty}]]$ (Poincaré series) of weight q + 1, type 1 for which $h^{q-1} = -\Delta_{new}$. Then graded ring generated by modular forms (graded by weights) is given by

For any $z \in \mathbf{H} := \mathbb{C}_{\infty} \setminus k_{\infty}$, we let $\Lambda_z := Az + A$. Its corresponding rank 2 Drinfeld $\mathbb{F}_q[t]$ -module is given by

$$\phi^{\Lambda_z}: t \mapsto \theta + g(z)\tau + \Delta(z)\tau^2.$$

Regarding g and Δ as functions on **H**, then

- **9** *g* is a Drinfeld modular form of weight q 1, type 0;
- **2** Δ is a Drinfeld modular form of weight $q^2 1$, type 0.

Goss, Gekeler: Put $g_{\textit{new}} := g/\tilde{\pi}^{q-1}$ and $\Delta_{\textit{new}} := \Delta/\tilde{\pi}^{q^2-1}$, then

$$g_{new}, \Delta_{new} \in \overline{k}[[q_{\infty}(z)]], \text{ where } q_{\infty}(z) := 1/\exp_{C}(\widetilde{\pi}z).$$

There is a modular form $h \in \bar{k}[[q_{\infty}]]$ (Poincaré series) of weight q + 1, type 1 for which $h^{q-1} = -\Delta_{new}$. Then graded ring generated by modular forms (graded by weights) is given by

$$\mathbb{C}_{\infty}[g_{new},h].$$

Drinfeld quasi-modular forms

Gekeler: Set $E := \frac{1}{\tilde{\pi}} \frac{\frac{d}{dz} \Delta(z)}{\Delta(z)} \in \bar{k}[[q_{\infty}]]$. Then *E* is called false Eisenstein series of weight 2 since for $\gamma \in GL_2(A)$,

$$E(\gamma z) = (cz + d)^2 (\det \gamma)^{-1} \left(E(z) - \frac{c}{\tilde{\pi}(cz + d)} \right)$$

Definition/Theorem (Bosser-Pellarin 2008): Any such function

$$f = \sum_{(q-1)i+(q+1)j+2e=\ell} a_{ije} g^i_{new} h^j E^e \in \mathbb{C}_\infty[g_{new}, h, E]$$

is called a Drinfeld quasi-modular form of weight ℓ . Definition: A quasi-modular form *f* is called arithmetic if

 $f \in \bar{k}[[q_{\infty}]]$

ADA E (E) (E) (E) (E)

Drinfeld quasi-modular forms

Gekeler: Set $E := \frac{1}{\tilde{\pi}} \frac{\frac{d}{dz} \Delta(z)}{\Delta(z)} \in \bar{k}[[q_{\infty}]]$. Then *E* is called false Eisenstein series of weight 2 since for $\gamma \in GL_2(A)$,

$$E(\gamma z) = (cz + d)^2 (\det \gamma)^{-1} \left(E(z) - \frac{c}{\tilde{\pi}(cz + d)} \right)$$

Definition/Theorem (Bosser-Pellarin 2008): Any such function

$$f = \sum_{(q-1)i+(q+1)j+2e=\ell} a_{ije} g^i_{new} h^j E^e \in \mathbb{C}_\infty[g_{new}, h, E]$$

is called a Drinfeld quasi-modular form of weight ℓ . Definition: A quasi-modular form *f* is called arithmetic if

 $f \in \bar{k}[[q_{\infty}]]$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Drinfeld quasi-modular forms

Gekeler: Set $E := \frac{1}{\tilde{\pi}} \frac{\frac{d}{dz} \Delta(z)}{\Delta(z)} \in \bar{k}[[q_{\infty}]]$. Then *E* is called false Eisenstein series of weight 2 since for $\gamma \in GL_2(A)$,

$$E(\gamma z) = (cz + d)^2 (\det \gamma)^{-1} \left(E(z) - \frac{c}{\tilde{\pi}(cz + d)} \right)$$

Definition/Theorem (Bosser-Pellarin 2008): Any such function

$$f = \sum_{(q-1)i+(q+1)j+2e=\ell} a_{ije} g^i_{new} h^j E^e \in \mathbb{C}_\infty[g_{new}, h, E]$$

is called a Drinfeld quasi-modular form of weight ℓ . Definition: A quasi-modular form *f* is called arithmetic if

$$f \in \bar{k}[[q_{\infty}]]$$

Recall that the set of isomorphism classes of rank 2 Drinfeld $\mathbb{F}_q[t]$ -modules can be identified with $GL_2(A) \setminus H$ and $GL_2(A) \setminus H$ is analytically isomorphic to \mathbb{C}_∞ via the *j*-invariant function

$$j(:=g^{q+1}/\Delta): \quad GL_2(A) \setminus \mathbf{H} \quad o \quad \mathbb{C}_{\infty}$$

 $z \quad \mapsto \quad j(z).$

Set

 $\boldsymbol{S} := \left\{ \alpha \in \boldsymbol{\mathsf{H}}; \ \boldsymbol{j}(\alpha) \in \boldsymbol{\bar{k}} \right\}$

Then for each $\alpha \in S$, there exists $\omega_{\alpha} \in \mathbb{C}_{\infty}$ so that the rank 2 Drinfeld $\mathbb{F}_q[t]$ -module ϕ^{Λ} is defined over \overline{k} , where $\Lambda := A\alpha\omega_{\alpha} + A\omega_{\alpha}$ (period lattice of ϕ^{Λ}). Note that

 $S = CM \sqcup NCM$,

CM := {α ∈ H; α is quadratic over k} (set of CM points)
 NCM := S\CM (set of non CM points).

Recall that the set of isomorphism classes of rank 2 Drinfeld $\mathbb{F}_q[t]$ -modules can be identified with $GL_2(A) \setminus H$ and $GL_2(A) \setminus H$ is analytically isomorphic to \mathbb{C}_∞ via the *j*-invariant function

$$j(:=g^{q+1}/\Delta): \quad GL_2(A) \setminus \mathbf{H} \quad o \quad \mathbb{C}_{\infty}$$

 $z \quad \mapsto \quad j(z).$

Set

$$S := \left\{ \alpha \in \mathbf{H}; \ \mathbf{j}(\alpha) \in \bar{\mathbf{k}} \right\}$$

Then for each $\alpha \in S$, there exists $\omega_{\alpha} \in \mathbb{C}_{\infty}$ so that the rank 2 Drinfeld $\mathbb{F}_q[t]$ -module ϕ^{Λ} is defined over \overline{k} , where $\Lambda := A\alpha\omega_{\alpha} + A\omega_{\alpha}$ (period lattice of ϕ^{Λ}). Note that

 $S = CM \sqcup NCM,$

CM := { α ∈ H; α is quadratic over k } (set of CM points)
 NCM := S\CM (set of non CM points).

Recall that the set of isomorphism classes of rank 2 Drinfeld $\mathbb{F}_q[t]$ -modules can be identified with $GL_2(A) \setminus H$ and $GL_2(A) \setminus H$ is analytically isomorphic to \mathbb{C}_∞ via the *j*-invariant function

$$j(:=g^{q+1}/\Delta): \quad GL_2(A) \setminus \mathbf{H} \quad o \quad \mathbb{C}_{\infty}$$

 $z \quad \mapsto \quad j(z).$

Set

$$S := \left\{ \alpha \in \mathbf{H}; \ \mathbf{j}(\alpha) \in \bar{\mathbf{k}} \right\}$$

Then for each $\alpha \in S$, there exists $\omega_{\alpha} \in \mathbb{C}_{\infty}$ so that the rank 2 Drinfeld $\mathbb{F}_q[t]$ -module ϕ^{Λ} is defined over \overline{k} , where $\Lambda := A\alpha\omega_{\alpha} + A\omega_{\alpha}$ (period lattice of ϕ^{Λ}). Note that

 $S = CM \sqcup NCM$,

OCM := { α ∈ H; α is quadratic over k } (set of CM points)
 NCM := S\CM (set of non CM points).

Recall that the set of isomorphism classes of rank 2 Drinfeld $\mathbb{F}_q[t]$ -modules can be identified with $GL_2(A) \setminus H$ and $GL_2(A) \setminus H$ is analytically isomorphic to \mathbb{C}_∞ via the *j*-invariant function

$$j(:=g^{q+1}/\Delta): \quad GL_2(A) \setminus \mathbf{H} \quad o \quad \mathbb{C}_{\infty}$$

 $z \quad \mapsto \quad j(z).$

Set

$$S := \left\{ \alpha \in \mathbf{H}; \ \mathbf{j}(\alpha) \in \bar{\mathbf{k}} \right\}$$

Then for each $\alpha \in S$, there exists $\omega_{\alpha} \in \mathbb{C}_{\infty}$ so that the rank 2 Drinfeld $\mathbb{F}_q[t]$ -module ϕ^{Λ} is defined over \overline{k} , where $\Lambda := A\alpha\omega_{\alpha} + A\omega_{\alpha}$ (period lattice of ϕ^{Λ}). Note that

 $S = CM \sqcup NCM$,

CM := {α ∈ H; α is quadratic over k} (set of CM points)
 NCM := S\CM (set of non CM points).

Recall that the set of isomorphism classes of rank 2 Drinfeld $\mathbb{F}_q[t]$ -modules can be identified with $GL_2(A) \setminus H$ and $GL_2(A) \setminus H$ is analytically isomorphic to \mathbb{C}_∞ via the *j*-invariant function

$$j(:=g^{q+1}/\Delta): \quad GL_2(A) \setminus \mathbf{H} \quad o \quad \mathbb{C}_{\infty}$$

 $z \quad \mapsto \quad j(z).$

Set

$$S := \left\{ \alpha \in \mathbf{H}; \ \mathbf{j}(\alpha) \in \bar{\mathbf{k}} \right\}$$

Then for each $\alpha \in S$, there exists $\omega_{\alpha} \in \mathbb{C}_{\infty}$ so that the rank 2 Drinfeld $\mathbb{F}_q[t]$ -module ϕ^{Λ} is defined over \overline{k} , where $\Lambda := A\alpha\omega_{\alpha} + A\omega_{\alpha}$ (period lattice of ϕ^{Λ}). Note that

 $S = CM \sqcup NCM$,

CM := {α ∈ H; α is quadratic over k} (set of CM points)
NCM := S\CM (set of non CM points).

Let *f* be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S := \{\alpha \in \mathbf{H}; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over *k*.

Remark

Algebraic independence of f(α), α ∈ S (work in progress).
 Similar question to f(α) in the classical case. The transcendence of f(α) is only known for CM point α.

- It has connection to periods and quasi-periods of rank 2 Drinfeld F_q[t]-modules defined over k;
- It has motivic interpretation.

Let *f* be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S := \{\alpha \in \mathbf{H}; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over *k*.

Remark

-) Algebraic independence of $f(lpha), \ lpha \in S$ (work in progress).
- Similar question to f(α) in the classical case. The transcendence of f(α) is only known for CM point α.

- It has connection to periods and quasi-periods of rank 2 Drinfeld F_q[t]-modules defined over k;
- It has motivic interpretation.

Let *f* be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S := \{\alpha \in \mathbf{H}; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over *k*.

Remark

1 Algebraic independence of $f(\alpha)$, $\alpha \in S$ (work in progress).

Similar question to f(α) in the classical case. The transcendence of f(α) is only known for CM point α.

- It has connection to periods and quasi-periods of rank 2 Drinfeld F_q[t]-modules defined over k;
- It has motivic interpretation.

Let *f* be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S := \{\alpha \in \mathbf{H}; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over *k*.

Remark

- **1** Algebraic independence of $f(\alpha)$, $\alpha \in S$ (work in progress).
- Similar question to f(α) in the classical case. The transcendence of f(α) is only known for CM point α.

- It has connection to periods and quasi-periods of rank 2 Drinfeld F_q[t]-modules defined over k;
- It has motivic interpretation.

Let *f* be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S := \{\alpha \in \mathbf{H}; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over *k*.

Remark

- **1** Algebraic independence of $f(\alpha)$, $\alpha \in S$ (work in progress).
- Similar question to f(α) in the classical case. The transcendence of f(α) is only known for CM point α.

- It has connection to periods and quasi-periods of rank 2 Drinfeld F_q[t]-modules defined over k;
- It has motivic interpretation.

Let *f* be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S := \{\alpha \in \mathbf{H}; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over *k*.

Remark

- **1** Algebraic independence of $f(\alpha)$, $\alpha \in S$ (work in progress).
- Similar question to f(α) in the classical case. The transcendence of f(α) is only known for CM point α.

Question: Why is $f(\alpha)$ interesting?

Answer:

- It has connection to periods and quasi-periods of rank 2 Drinfeld F_q[t]-modules defined over k;
- It has motivic interpretation.

Let *f* be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S := \{\alpha \in \mathbf{H}; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over *k*.

Remark

- **1** Algebraic independence of $f(\alpha)$, $\alpha \in S$ (work in progress).
- Similar question to f(α) in the classical case. The transcendence of f(α) is only known for CM point α.

Question: Why is $f(\alpha)$ interesting? Answer:

 It has connection to periods and quasi-periods of rank 2 Drinfeld F_q[t]-modules defined over k;

2 It has motivic interpretation.

Let *f* be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S := \{\alpha \in \mathbf{H}; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over *k*.

Remark

- **1** Algebraic independence of $f(\alpha)$, $\alpha \in S$ (work in progress).
- Similar question to f(α) in the classical case. The transcendence of f(α) is only known for CM point α.

- It has connection to periods and quasi-periods of rank 2 Drinfeld F_q[t]-modules defined over k;
- 2 It has motivic interpretation.

Given any $\alpha \in S$, consider $\Lambda_{\alpha} = A\alpha + A$. Then $\phi_t^{\Lambda_{\alpha}} = \theta + g(\alpha)\tau + \Delta(\alpha)\tau^2$. Choose any $\epsilon \in \mathbb{C}^{\times}$ so that $\Delta(\alpha)\epsilon^{q^2-1} = 1$. Set $\Lambda := \epsilon^{-1}\Lambda_{\alpha}$, then we have

$$\phi_t^{\Lambda} = \epsilon^{-1} \phi_t^{\Lambda} \epsilon = \theta + \sqrt[q+1]{j(\alpha)} \tau + \tau^2,$$

where $j(\alpha) := g(\alpha)^{q+1} / \Delta(\alpha) \in \bar{k}$. Note that the period lattice of ϕ^{Λ} is $\Lambda = A_{\epsilon}^{\underline{\alpha}} + A_{\overline{\epsilon}}^{\underline{1}}$. Set $\omega_{\alpha} = \frac{1}{\epsilon}$, then

$$\Delta(\alpha) = \left(\frac{1}{\epsilon}\right)^{q^2 - 1} = \omega_{\alpha}^{q^2 - 1}.$$

Since $\Delta_{new}(z) := \Delta(z) / \tilde{\pi}^{q^2-1}$, then

$$\Delta_{new}(\alpha) = (\omega_{\alpha}/\tilde{\pi})^{q^2-1}.$$

(日)

Given any $\alpha \in S$, consider $\Lambda_{\alpha} = A\alpha + A$. Then $\phi_t^{\Lambda_{\alpha}} = \theta + g(\alpha)\tau + \Delta(\alpha)\tau^2$. Choose any $\epsilon \in \mathbb{C}^{\times}$ so that $\Delta(\alpha)\epsilon^{q^2-1} = 1$. Set $\Lambda := \epsilon^{-1}\Lambda_{\alpha}$, then we have

$$\phi_t^{\Lambda} = \epsilon^{-1} \phi_t^{\Lambda} \epsilon = \theta + \sqrt[q+1]{j(\alpha)} \tau + \tau^2,$$

where $j(\alpha) := g(\alpha)^{q+1} / \Delta(\alpha) \in \bar{k}$. Note that the period lattice of ϕ^{Λ} is $\Lambda = A_{\bar{\epsilon}}^{\underline{\alpha}} + A_{\bar{\epsilon}}^{\underline{1}}$. Set $\omega_{\alpha} = \frac{1}{\epsilon}$, then

$$\Delta(\alpha) = \left(\frac{1}{\epsilon}\right)^{q^2 - 1} = \omega_{\alpha}^{q^2 - 1}.$$

Since $\Delta_{new}(z) := \Delta(z) / \tilde{\pi}^{q^2-1}$, then

$$\Delta_{new}(\alpha) = (\omega_{\alpha}/\tilde{\pi})^{q^2-1}.$$

(□) (同) (三) (三) (三) (○)

Given any $\alpha \in S$, consider $\Lambda_{\alpha} = A\alpha + A$. Then $\phi_t^{\Lambda_{\alpha}} = \theta + g(\alpha)\tau + \Delta(\alpha)\tau^2$. Choose any $\epsilon \in \mathbb{C}^{\times}$ so that $\Delta(\alpha)\epsilon^{q^2-1} = 1$. Set $\Lambda := \epsilon^{-1}\Lambda_{\alpha}$, then we have

$$\phi_t^{\Lambda} = \epsilon^{-1} \phi_t^{\Lambda} \epsilon = \theta + \sqrt[q+1]{j(\alpha)} \tau + \tau^2,$$

where $j(\alpha) := g(\alpha)^{q+1} / \Delta(\alpha) \in \overline{k}$. Note that the period lattice of ϕ^{Λ} is $\Lambda = A_{\overline{\epsilon}}^{\alpha} + A_{\overline{\epsilon}}^{1}$. Set $\omega_{\alpha} = \frac{1}{\epsilon}$, then

$$\Delta(\alpha) = (\frac{1}{\epsilon})^{q^2 - 1} = \omega_{\alpha}^{q^2 - 1}.$$

Since $\Delta_{new}(z) := \Delta(z) / \tilde{\pi}^{q^2-1}$, then

$$\Delta_{new}(\alpha) = (\omega_{\alpha}/\tilde{\pi})^{q^2-1}.$$

Given any $\alpha \in S$, consider $\Lambda_{\alpha} = A\alpha + A$. Then $\phi_t^{\Lambda_{\alpha}} = \theta + g(\alpha)\tau + \Delta(\alpha)\tau^2$. Choose any $\epsilon \in \mathbb{C}^{\times}$ so that $\Delta(\alpha)\epsilon^{q^2-1} = 1$. Set $\Lambda := \epsilon^{-1}\Lambda_{\alpha}$, then we have

$$\phi_t^{\Lambda} = \epsilon^{-1} \phi_t^{\Lambda} \epsilon = \theta + \sqrt[q+1]{j(\alpha)} \tau + \tau^2,$$

where $j(\alpha) := g(\alpha)^{q+1} / \Delta(\alpha) \in \overline{k}$. Note that the period lattice of ϕ^{Λ} is $\Lambda = A_{\overline{\epsilon}}^{\alpha} + A_{\overline{\epsilon}}^{1}$. Set $\omega_{\alpha} = \frac{1}{\epsilon}$, then

$$\Delta(\alpha) = \left(\frac{1}{\epsilon}\right)^{q^2 - 1} = \omega_{\alpha}^{q^2 - 1}.$$

Since $\Delta_{new}(z) := \Delta(z)/\tilde{\pi}^{q^2-1}$, then

$$\Delta_{new}(\alpha) = (\omega_{\alpha}/\tilde{\pi})^{q^2-1}.$$

For any arithmetic modular form *f* of weight ℓ , consider $f^{q^2-1}/\Delta_{new}^{\ell}$ which has weight zero. Since f^{q^2-1} and Δ_{new}^{ℓ} are arithmetic, $f^{q^2-1}/\Delta_{new}^{\ell}$ belongs to the function field $\bar{k}(GL_2(A)\backslash \mathbf{H}) = \bar{k}(j)$. For $x, y \in \mathbb{C}_{\infty}^{\times}$, we denote by $x \sim y$ if $x/y \in \bar{k}$. Since $j(\alpha) \in \bar{k}$, $f^{q^2-1}(\alpha)/\Delta_{new}^{\ell}(\alpha) \in \bar{k}$ and hence

$$f(\alpha) \sim (\frac{\omega_{\alpha}}{\tilde{\pi}})^{\ell}.$$

- The above formula is still valid for any arithmetic modular forms for a congruence subgroup of GL₂(A).
- The classical modular forms having algebraic Fourier coefficients have the same formula above.

For any arithmetic modular form *f* of weight ℓ , consider $f^{q^2-1}/\Delta_{new}^{\ell}$ which has weight zero. Since f^{q^2-1} and Δ_{new}^{ℓ} are arithmetic, $f^{q^2-1}/\Delta_{new}^{\ell}$ belongs to the function field $\bar{k}(GL_2(A)\backslash \mathbf{H}) = \bar{k}(j)$. For $x, y \in \mathbb{C}_{\infty}^{\times}$, we denote by $x \sim y$ if $x/y \in \bar{k}$. Since $j(\alpha) \in \bar{k}$, $f^{q^2-1}(\alpha)/\Delta_{new}^{\ell}(\alpha) \in \bar{k}$ and hence

$$f(\alpha) \sim (\frac{\omega_{\alpha}}{\tilde{\pi}})^{\ell}.$$

- The above formula is still valid for any arithmetic modular forms for a congruence subgroup of GL₂(A).
- The classical modular forms having algebraic Fourier coefficients have the same formula above.

For any arithmetic modular form *f* of weight ℓ , consider $f^{q^2-1}/\Delta_{new}^{\ell}$ which has weight zero. Since f^{q^2-1} and Δ_{new}^{ℓ} are arithmetic, $f^{q^2-1}/\Delta_{new}^{\ell}$ belongs to the function field $\bar{k}(GL_2(A)\backslash \mathbf{H}) = \bar{k}(j)$. For $x, y \in \mathbb{C}_{\infty}^{\times}$, we denote by $x \sim y$ if $x/y \in \bar{k}$. Since $j(\alpha) \in \bar{k}$, $f^{q^2-1}(\alpha)/\Delta_{new}^{\ell}(\alpha) \in \bar{k}$ and hence $f(\alpha) \sim (\frac{\omega_{\alpha}}{\tilde{\pi}})^{\ell}$.

- The above formula is still valid for any arithmetic modular forms for a congruence subgroup of GL₂(A).
- The classical modular forms having algebraic Fourier coefficients have the same formula above.

For any arithmetic modular form *f* of weight ℓ , consider $f^{q^2-1}/\Delta_{new}^{\ell}$ which has weight zero. Since f^{q^2-1} and Δ_{new}^{ℓ} are arithmetic, $f^{q^2-1}/\Delta_{new}^{\ell}$ belongs to the function field $\bar{k}(GL_2(A)\backslash \mathbf{H}) = \bar{k}(j)$. For $x, y \in \mathbb{C}_{\infty}^{\times}$, we denote by $x \sim y$ if $x/y \in \bar{k}$. Since $j(\alpha) \in \bar{k}$, $f^{q^2-1}(\alpha)/\Delta_{new}^{\ell}(\alpha) \in \bar{k}$ and hence

$$f(\alpha) \sim (\frac{\omega_{\alpha}}{\tilde{\pi}})^{\ell}.$$

- The above formula is still valid for any arithmetic modular forms for a congruence subgroup of $GL_2(A)$.
- The classical modular forms having algebraic Fourier coefficients have the same formula above.

For any arithmetic modular form f of weight ℓ , consider $f^{q^2-1}/\Delta_{new}^{\ell}$ which has weight zero. Since f^{q^2-1} and Δ_{new}^{ℓ} are arithmetic, $f^{q^2-1}/\Delta_{new}^{\ell}$ belongs to the function field $\bar{k}(GL_2(A) \setminus \mathbf{H}) = \bar{k}(j)$. For $x, y \in \mathbb{C}_{\infty}^{\times}$, we denote by $x \sim y$ if $x/y \in \bar{k}$. Since $i(\alpha) \in \bar{k}$, $f^{q^2-1}(\alpha)/\Delta_{new}^{\ell}(\alpha) \in \bar{k}$ and hence $f(\alpha) \sim \left(\frac{\omega_{\alpha}}{\tilde{\pi}}\right)^{\ell}.$

- The above formula is still valid for any arithmetic modular forms for a congruence subgroup of $GL_2(A)$.
- The classical modular forms having algebraic Fourier coefficients have the same formula above.

Recall that the quasi-modular forms in question are lying in $\bar{k}[g_{new}, h, E]$, and g_{new}, h are modular forms. So it suffices to investigate the value $E(\alpha)$. We claim that

$$E(\alpha) \sim rac{\omega_{lpha} F_{\phi^{\Lambda}, au}(\omega_{lpha})}{ ilde{\pi}^2}$$

Classical case: Recall $G_2(z) = \sum_m \sum_n' \frac{1}{(mz+n)^2}$ and

$$E_2(z) = \frac{6}{\pi^2}G_2(z).$$

For $\tau \in \mathbb{H}$, let $\Lambda_{\tau} := \mathbb{Z}\tau + \mathbb{Z}$. Let E_{τ} be the elliptic curve associated to Λ_{τ} and set

$$\eta_2 := \int_0^1 \wp_{\Lambda_\tau}(z) dz.$$

Katz: $\eta_2 = G_2(\tau)$.

Recall that the quasi-modular forms in question are lying in $\bar{k}[g_{new}, h, E]$, and g_{new}, h are modular forms. So it suffices to investigate the value $E(\alpha)$. We claim that

$$E(\alpha) \sim rac{\omega_{lpha} F_{\phi^{\Lambda}, au}(\omega_{lpha})}{ ilde{\pi}^2}$$

Classical case: Recall $G_2(z) = \sum_m \sum_n' \frac{1}{(mz+n)^2}$ and

$$E_2(z) = rac{6}{\pi^2}G_2(z).$$

For $\tau \in \mathbb{H}$, let $\Lambda_{\tau} := \mathbb{Z}\tau + \mathbb{Z}$. Let E_{τ} be the elliptic curve associated to Λ_{τ} and set

$$\eta_2 := \int_0^1 \wp_{\Lambda_\tau}(z) dz.$$

Katz: $\eta_2 = G_2(\tau)$.

Recall that the quasi-modular forms in question are lying in $\bar{k}[g_{new}, h, E]$, and g_{new}, h are modular forms. So it suffices to investigate the value $E(\alpha)$. We claim that

$$E(\alpha) \sim rac{\omega_{lpha} F_{\phi^{\Lambda}, au}(\omega_{lpha})}{ ilde{\pi}^2}$$

Classical case: Recall $G_2(z) = \sum_m \sum_n' \frac{1}{(mz+n)^2}$ and

$$E_2(z) = rac{6}{\pi^2}G_2(z).$$

For $\tau \in \mathbb{H}$, let $\Lambda_{\tau} := \mathbb{Z}\tau + \mathbb{Z}$. Let E_{τ} be the elliptic curve associated to Λ_{τ} and set

$$\eta_2 := \int_0^1 \wp_{\Lambda_\tau}(z) dz.$$

Katz: $\eta_2 = G_2(\tau)$.

Gekeler: For any $z \in \mathbf{H}$, let $\Lambda_z = Az + A$. Then $F_{\phi^{\Lambda_z},\tau}(1) = \frac{E(z)}{\tilde{\pi}^{q-1}h(z)}.$

For $\alpha \in S$, recall $\Lambda_{\alpha} = A\alpha + A$ and $\Lambda = A\alpha\omega_{\alpha} + A\omega_{\alpha}$. Since $\phi_t^{\Lambda} = \omega_{\alpha}\phi_t^{\Lambda_{\alpha}}\omega_{\alpha}^{-1}$,

$$F_{\phi^{\Lambda},\tau}(z) = \omega^{q}_{\alpha} F_{\phi^{\Lambda_{\alpha}},\tau}(\omega^{-1}_{\alpha} z).$$

Replacing z by ω_{α} and using Gekeler's formula, we have

$$E(\alpha) \sim rac{\omega_{lpha} F_{\phi^{\Lambda}, au}(\omega_{lpha})}{ ilde{\pi}^2}.$$

Note that ϕ^{Λ} is defined over \bar{k} and so our Theorem 1 implies $\omega_{\alpha}/\tilde{\pi}$ and $F_{\phi^{\Lambda},\tau}(\omega_{\alpha})/\tilde{\pi}$ are algebraically independent over \bar{k} . Therefore we obtain the transcendence of $f(\alpha)$ for nonzero weight quasi-modular form $f \in \bar{k}[g_{new}, h, E]$, since $f(\alpha)$ is homogeneous over \bar{k} in $(\omega_{\alpha}/\tilde{\pi})^{q-1}$, $(\omega_{\alpha}/\tilde{\pi})^{q+1}$ and $\frac{\omega_{\alpha}F_{\phi^{\Lambda},\tau}(\omega_{\alpha})}{\tilde{\pi}^{2}}$.

Gekeler: For any $z \in \mathbf{H}$, let $\Lambda_z = Az + A$. Then $F_{\phi^{\Lambda_z},\tau}(1) = \frac{E(z)}{\tilde{\pi}^{q-1}h(z)}.$

For $\alpha \in S$, recall $\Lambda_{\alpha} = A\alpha + A$ and $\Lambda = A\alpha\omega_{\alpha} + A\omega_{\alpha}$. Since $\phi_t^{\Lambda} = \omega_{\alpha}\phi_t^{\Lambda_{\alpha}}\omega_{\alpha}^{-1}$, $F_{\phi^{\Lambda},\tau}(z) = \omega_{\alpha}^{q}F_{\phi^{\Lambda_{\alpha}},\tau}(\omega_{\alpha}^{-1}z)$.

Replacing z by ω_{α} and using Gekeler's formula, we have

$$E(\alpha) \sim rac{\omega_{lpha} F_{\phi^{\Lambda}, au}(\omega_{lpha})}{ ilde{\pi}^2}.$$

Note that ϕ^{Λ} is defined over \bar{k} and so our Theorem 1 implies $\omega_{\alpha}/\tilde{\pi}$ and $F_{\phi^{\Lambda},\tau}(\omega_{\alpha})/\tilde{\pi}$ are algebraically independent over \bar{k} . Therefore we obtain the transcendence of $f(\alpha)$ for nonzero weight quasi-modular form $f \in \bar{k}[g_{new}, h, E]$, since $f(\alpha)$ is homogeneous over \bar{k} in $(\omega_{\alpha}/\tilde{\pi})^{q-1}$, $(\omega_{\alpha}/\tilde{\pi})^{q+1}$ and $\frac{\omega_{\alpha}F_{\phi^{\Lambda},\tau}(\omega_{\alpha})}{1+\tilde{\mu}\tilde{\pi}^{q+1}}$.

Gekeler: For any $z \in \mathbf{H}$, let $\Lambda_z = Az + A$. Then $F_{\phi^{\Lambda_z},\tau}(1) = \frac{E(z)}{\tilde{\pi}^{q-1}h(z)}.$

For $\alpha \in S$, recall $\Lambda_{\alpha} = A\alpha + A$ and $\Lambda = A\alpha\omega_{\alpha} + A\omega_{\alpha}$. Since $\phi_t^{\Lambda} = \omega_{\alpha}\phi_t^{\Lambda_{\alpha}}\omega_{\alpha}^{-1}$, $F_{\phi^{\Lambda}\tau}(z) = \omega_{\alpha}^{\alpha}F_{\phi^{\Lambda_{\alpha}}\tau}(\omega_{\alpha}^{-1}z)$.

Replacing z by ω_{α} and using Gekeler's formula, we have

$$E(\alpha) \sim rac{\omega_{lpha} F_{\phi^{\Lambda}, au}(\omega_{lpha})}{ ilde{\pi}^2}$$

Note that ϕ^{Λ} is defined over \bar{k} and so our Theorem 1 implies $\omega_{\alpha}/\tilde{\pi}$ and $F_{\phi^{\Lambda},\tau}(\omega_{\alpha})/\tilde{\pi}$ are algebraically independent over \bar{k} . Therefore we obtain the transcendence of $f(\alpha)$ for nonzero weight quasi-modular form $f \in \bar{k}[g_{new}, h, E]$, since $f(\alpha)$ is homogeneous over \bar{k} in $(\omega_{\alpha}/\tilde{\pi})^{q-1}$, $(\omega_{\alpha}/\tilde{\pi})^{q+1}$ and $\frac{\omega_{\alpha}F_{\phi^{\Lambda},\tau}(\omega_{\alpha})}{\tilde{\pi}^{2}}$.

Gekeler: For any $z \in \mathbf{H}$, let $\Lambda_z = Az + A$. Then $F_{\phi^{\Lambda_z},\tau}(1) = \frac{E(z)}{\tilde{\pi}^{q-1}h(z)}.$

For $\alpha \in S$, recall $\Lambda_{\alpha} = A\alpha + A$ and $\Lambda = A\alpha\omega_{\alpha} + A\omega_{\alpha}$. Since $\phi_t^{\Lambda} = \omega_{\alpha}\phi_t^{\Lambda_{\alpha}}\omega_{\alpha}^{-1}$, $F_{\phi\Lambda,\tau}(z) = \omega_{\alpha}^{\alpha}F_{\phi\Lambda_{\alpha},\tau}(\omega_{\alpha}^{-1}z)$.

Replacing z by ω_{α} and using Gekeler's formula, we have

$${\sf E}(lpha)\sim rac{\omega_lpha {\sf F}_{\phi^{\Lambda}, au}(\omega_lpha)}{ ilde{\pi}^2}.$$

Note that ϕ^{Λ} is defined over \bar{k} and so our Theorem 1 implies $\omega_{\alpha}/\tilde{\pi}$ and $F_{\phi^{\Lambda},\tau}(\omega_{\alpha})/\tilde{\pi}$ are algebraically independent over \bar{k} . Therefore we obtain the transcendence of $f(\alpha)$ for nonzero weight quasi-modular form $f \in \bar{k}[g_{new}, h, E]$, since $f(\alpha)$ is homogeneous over \bar{k} in $(\omega_{\alpha}/\tilde{\pi})^{q-1}$, $(\omega_{\alpha}/\tilde{\pi})^{q+1}$ and $\frac{\omega_{\alpha}F_{\phi^{\Lambda},\tau}(\omega_{\alpha})}{\tilde{\pi}^{2}}$.

$$\Phi_{lpha} := \left(egin{array}{cc} -\kappa^{1/q}(t- heta) & (t- heta) \ 1 & 0 \end{array}
ight)$$

define a pre-*t*-motive M_{α} . Then we have:

- M_{α} is rigid analytically trivial and the solution matrix for $\Psi_{\alpha}^{(-1)} = \Phi_{\alpha}\Psi_{\alpha}$ is given by certain generating functions in terms of *E* and α (based on functions defined by Pellarin);
- $\mathcal{K}_{\alpha} := \operatorname{End}_{\overline{k}(t)[\sigma,\sigma^{-1}]}(M_{\alpha}) \cong \operatorname{Frac}(End(\phi^{\Lambda}))$. That is, $\mathcal{K}_{\alpha} \cong k(\alpha)$ if $\alpha \in \operatorname{CM}$; $\mathcal{K}_{\alpha} = \mathbb{F}_{q}(t)$ if $\alpha \in \operatorname{NCM}$.
- The motivic Galois Γ_{M_α} is either Res_{K_α/F_q(t)}(G_{m/K_α}) (if α ∈CM) or GL_{2/F_q(t)} (if α ∈NCM).

Motivic interpretation of $E(\alpha)$

Given $\alpha \in S$, let $\kappa := \sqrt[q+1]{j(\alpha)} \in \overline{k}$. Then $\phi_t^{\Lambda} = \theta + \kappa \tau + \tau^2$. Define

$$\Phi_{lpha} := \left(egin{array}{cc} -\kappa^{1/q}(t- heta) & (t- heta) \ 1 & 0 \end{array}
ight)$$

define a pre-*t*-motive M_{α} . Then we have:

*M*_α is rigid analytically trivial and the solution matrix for Ψ⁽⁻¹⁾_α = Φ_αΨ_α is given by certain generating functions in terms of *E* and α (based on functions defined by Pellarin);
 *K*_α := End_{k(t)[σ,σ⁻¹]}(*M*_α) ≃ Frac(*End*(φ^Λ)). That is, *K*_α ≃ *k*(α) if α ∈ CM; *K*_α = F_q(t) if α ∈ NCM.
 The motivic Galois Γ_{M_α} is either Res_{Kα/Fq(t)}(G_{m/Kα}) (if α ∈ CM) or Gl_α = w (if α ∈ NCM)

$$\Phi_lpha := \left(egin{array}{cc} -\kappa^{1/q}(t- heta) & (t- heta) \ 1 & 0 \end{array}
ight)$$

define a pre-*t*-motive M_{α} . Then we have:

- M_{α} is rigid analytically trivial and the solution matrix for $\Psi_{\alpha}^{(-1)} = \Phi_{\alpha}\Psi_{\alpha}$ is given by certain generating functions in terms of *E* and α (based on functions defined by Pellarin);
- ② $\mathcal{K}_{\alpha} := \operatorname{End}_{\bar{k}(t)[\sigma,\sigma^{-1}]}(M_{\alpha}) \cong \operatorname{Frac}(End(\phi^{\Lambda}))$. That is, $\mathcal{K}_{\alpha} \cong k(\alpha)$ if $\alpha \in \operatorname{CM}$; $\mathcal{K}_{\alpha} = \mathbb{F}_{q}(t)$ if $\alpha \in \operatorname{NCM}$.
- Solution 3 The motivic Galois Γ_{Mα} is either Res_{Kα/Fq(t)}(G_{m/Kα}) (if α ∈CM) or GL_{2/Fq(t)} (if α ∈NCM).

$$\Phi_lpha := \left(egin{array}{cc} -\kappa^{1/q}(t- heta) & (t- heta) \ 1 & 0 \end{array}
ight)$$

define a pre-*t*-motive M_{α} . Then we have:

• M_{α} is rigid analytically trivial and the solution matrix for $\Psi_{\alpha}^{(-1)} = \Phi_{\alpha}\Psi_{\alpha}$ is given by certain generating functions in terms of *E* and α (based on functions defined by Pellarin);

Solution 3 The motivic Galois Γ_{Mα} is either Res_{Kα/Fq(t)}(G_{m/Kα}) (if α ∈CM) or GL_{2/Fq(t)} (if α ∈NCM).

$$\Phi_lpha := \left(egin{array}{cc} -\kappa^{1/q}(t- heta) & (t- heta) \ 1 & 0 \end{array}
ight)$$

define a pre-*t*-motive M_{α} . Then we have:

• M_{α} is rigid analytically trivial and the solution matrix for $\Psi_{\alpha}^{(-1)} = \Phi_{\alpha}\Psi_{\alpha}$ is given by certain generating functions in terms of *E* and α (based on functions defined by Pellarin);

Some state in the motivic Galois Γ_{Mα} is either Res_{Kα/Fq(t)}(G_{m/Kα}) (if α ∈ CM) or GL_{2/Fq(t)} (if α ∈ NCM).

Results for Drinfeld modules

- Prove a period conjecture;
- Istablish an analogue of Mumford-Tate conjecture;
- Igebraic independence of Drinfeld logarithms;
- Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

-] Transcendence of values of positive weight at $lpha\in S;$
- Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy

Results for Drinfeld modules

- Prove a period conjecture;
- Establish an analogue of Mumford-Tate conjecture;
- Igebraic independence of Drinfeld logarithms;
- Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

-) Transcendence of values of positive weight at $lpha\in S;$
- Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy

Results for Drinfeld modules

- Prove a period conjecture;
- Establish an analogue of Mumford-Tate conjecture;
- Algebraic independence of Drinfeld logarithms;
- Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

-) Transcendence of values of positive weight at $lpha\in S;$
- Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy

Results for Drinfeld modules

- Prove a period conjecture;
- Establish an analogue of Mumford-Tate conjecture;
- Algebraic independence of Drinfeld logarithms;
 - Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

-) Transcendence of values of positive weight at $lpha\in S;$
- Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy

- Prove a period conjecture;
- Establish an analogue of Mumford-Tate conjecture;
- Algebraic independence of Drinfeld logarithms;
- Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

-) Transcendence of values of positive weight at $lpha\in S$
- Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy

- Prove a period conjecture;
- Establish an analogue of Mumford-Tate conjecture;
- Algebraic independence of Drinfeld logarithms;
- Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

-) Transcendence of values of positive weight at $lpha\in {m S};$
- Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy

- Prove a period conjecture;
- Establish an analogue of Mumford-Tate conjecture;
- Algebraic independence of Drinfeld logarithms;
- Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

- Transcendence of values of positive weight at $\alpha \in S$;
 - Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy

- Prove a period conjecture;
- Establish an analogue of Mumford-Tate conjecture;
- Algebraic independence of Drinfeld logarithms;
- Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

- Transcendence of values of positive weight at $\alpha \in S$;
- Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy

- Prove a period conjecture;
- Stablish an analogue of Mumford-Tate conjecture;
- Algebraic independence of Drinfeld logarithms;
- Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

- Transcendence of values of positive weight at $\alpha \in S$;
- Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy

- Prove a period conjecture;
- Stablish an analogue of Mumford-Tate conjecture;
- Algebraic independence of Drinfeld logarithms;
- Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

- Transcendence of values of positive weight at $\alpha \in S$;
- Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy

- Prove a period conjecture;
- Stablish an analogue of Mumford-Tate conjecture;
- Algebraic independence of Drinfeld logarithms;
- Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

- Transcendence of values of positive weight at $\alpha \in S$;
- Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy