Algebraic relations among periods and logarithms for Drinfeld modules

BIRS Workshop on t-motives

Chieh-Yu Chang

(Joint work with Matt Papanikolas)

NCTS and National Central University
October 2 2009, Banff

Notation

(1) $A:=\mathbb{F}_{q}[\theta]$;
(2) $k:=\mathbb{F}_{q}(\theta),|\theta|_{\infty}=q$;
(3) $k_{\infty}:=\mathbb{F}_{q}((1 / \theta))$;
(a) $\mathbb{C}_{\infty}:=\widehat{\overline{k_{\infty}}}$.
(3) t : independent variable of θ;
(6) $\mathbb{T}:=\left\{f \in \mathbb{C}_{\infty}[[t]] ; f\right.$ converges on $\left.|t|_{\infty} \leq 1\right\}$;
(3) a rank r Drinfeld $\mathbb{F}_{a}[t]$-module defined over \bar{k}
(8) Λ_{ρ} : the period lattice of ρ;
(2) $H_{D R}^{1}(\rho)$: the DeRham cohomology of ρ;
(0) F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

Notation

(1) $A:=\mathbb{F}_{q}[\theta]$;
(2) $k:=\mathbb{F}_{q}(\theta),|\theta|_{\infty}=q$;
($k_{\infty}:=\mathbb{F}_{q}((1 / \theta))$;
(1) $\mathbb{C}_{\infty}:=\widehat{\widehat{k_{\infty}}}$;
(0) t : independent variable of θ;
(ㅇ) $\mathbb{T}:=\left\{f \in \mathbb{C}_{\infty}\left[[t] ; ;\right.\right.$ converges on $\left.|t|_{\infty} \leq 1\right\}$;
(3) a rank r Drinfeld $\mathbb{F}_{q}[t]$-module defined over \bar{k};
(3) Λ_{ρ} : the period lattice of ρ;

- $H_{D R}^{1}(\rho)$: the DeRham cohomology of p;
(1) F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

Notation

(1) $A:=\mathbb{F}_{q}[\theta]$;
(2) $k:=\mathbb{F}_{q}(\theta),|\theta|_{\infty}=q$;
(0) $k_{\infty}:=\mathbb{F}_{q}((1 / \theta))$;
(-) $\mathbb{C}_{\infty}:=\overline{k_{\infty}}$;
(0) t : independent variable of θ;
(3) $\mathbb{T}:=\left\{f \in \mathbb{C}_{\infty}[[t]] ; f\right.$ converges on $\left.|t| \infty \leq 1\right\}$;

- ρ : a rank r Drinfeld $\mathbb{F}_{q}[t]$-module defined over \bar{k};
(3) Λ_{ρ} : the period lattice of ρ;
(0. $H_{D R}^{1}(\rho)$: the DeRham cohomology of $\rho ;$
(c) F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

Notation

(1) $A:=\mathbb{F}_{q}[\theta]$;
(2) $k:=\mathbb{F}_{q}(\theta),|\theta|_{\infty}=q$;
(3) $k_{\infty}:=\mathbb{F}_{q}((1 / \theta))$;
(-1) $\mathbb{C}_{\infty}:=\widehat{\widehat{k_{\infty}}}$;
(3) t : independent variable of θ;
(0) $\mathbb{T}:=\left\{f \in \mathbb{C}_{\infty}[[t]] ; f\right.$ converges on $\left.|t|_{\infty} \leq 1\right\}$;
(3) ρ : a rank r Drinfeld $\mathbb{F}_{q}[t]$-module defined over \bar{k};
(\wedge_{ρ} : the period lattice of ρ;
(0. $H_{D R}^{1}(\rho)$: the DeRham cohomology of ρ;
(0) F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

Notation

(1) $A:=\mathbb{F}_{q}[\theta]$;
(2) $k:=\mathbb{F}_{q}(\theta),|\theta|_{\infty}=q$;
(3) $k_{\infty}:=\mathbb{F}_{q}((1 / \theta))$;
(1) $\mathbb{C}_{\infty}:=\widehat{\overline{k_{\infty}}}$;
(3) t : independent variable of θ;
(ㅇ) $\mathbb{T}:=\left\{f \in \mathbb{C}_{\infty}[[t]] ; f\right.$ converges on $\left.|t|_{\infty} \leq 1\right\}$;
(3) a rank r Drinfeld $\mathbb{F}_{q}[t]$-module defined over \bar{k};
(3) Λ_{ρ} : the period lattice of ρ;

- $H_{D R}^{1}(\rho)$: the DeRham cohomology of ρ;
(1) F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

Notation

(1) $A:=\mathbb{F}_{q}[\theta]$;
(2) $k:=\mathbb{F}_{q}(\theta),|\theta|_{\infty}=q$;
($k_{\infty}:=\mathbb{F}_{q}((1 / \theta))$;
(1) $\mathbb{C}_{\infty}:=\widehat{\widehat{k_{\infty}}}$;
(3) t : independent variable of θ;
(() $\mathbb{T}:=\left\{f \in \mathbb{C}_{\infty}[[t]] ; f\right.$ converges on $\left.|t|_{\infty} \leq 1\right\}$;
(O) ρ : a rank r Drinfeld $\mathbb{F}_{q}[t]$-module defined over \bar{k};
(3) Λ_{ρ} : the period lattice of ρ;
(- $H_{D R}^{1}(\rho)$: the DeRham cohomology of p;
(1) F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

Notation

(1) $A:=\mathbb{F}_{q}[\theta]$;
(2) $k:=\mathbb{F}_{q}(\theta),|\theta|_{\infty}=q$;
($k_{\infty}:=\mathbb{F}_{q}((1 / \theta))$;
(1) $\mathbb{C}_{\infty}:=\widehat{\widehat{k_{\infty}}}$;
(3) t : independent variable of θ;
(() $\mathbb{T}:=\left\{f \in \mathbb{C}_{\infty}[[t]] ; f\right.$ converges on $\left.|t|_{\infty} \leq 1\right\}$;
(C) ρ : a rank r Drinfeld $\mathbb{F}_{q}[t]$-module defined over \bar{k};
(\wedge_{p} : the period lattice of ρ;
(0) $H_{D R}^{1}(\rho)$: the DeRham cohomology of ρ;
(1) F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

Notation

(1) $A:=\mathbb{F}_{q}[\theta]$;
(2) $k:=\mathbb{F}_{q}(\theta),|\theta|_{\infty}=q$;
($k_{\infty}:=\mathbb{F}_{q}((1 / \theta))$;
(1) $\mathbb{C}_{\infty}:=\widehat{\widehat{k_{\infty}}}$;
(3) t : independent variable of θ;
(() $\mathbb{T}:=\left\{f \in \mathbb{C}_{\infty}[[t]] ; f\right.$ converges on $\left.|t|_{\infty} \leq 1\right\}$;
(3) ρ : a rank r Drinfeld $\mathbb{F}_{q}[t]$-module defined over \bar{k};
(3) Λ_{ρ} : the period lattice of ρ;

- $H_{D R}^{1}(\rho)$: the DeRham cohomology of ρ;
(0) F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

Notation

(1) $A:=\mathbb{F}_{q}[\theta]$;
(2) $k:=\mathbb{F}_{q}(\theta),|\theta|_{\infty}=q$;
($k_{\infty}:=\mathbb{F}_{q}((1 / \theta))$;
(1) $\mathbb{C}_{\infty}:=\widehat{\overline{k_{\infty}}}$;
(6) t : independent variable of θ;
(0) $\mathbb{T}:=\left\{f \in \mathbb{C}_{\infty}[[t]] ; f\right.$ converges on $\left.|t|_{\infty} \leq 1\right\}$;
(3) ρ : a rank r Drinfeld $\mathbb{F}_{q}[t]$-module defined over \bar{k};
(8) Λ_{ρ} : the period lattice of ρ;
(0) $H_{D R}^{1}(\rho)$: the DeRham cohomology of ρ;
(1) F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

Notation

(1) $A:=\mathbb{F}_{q}[\theta]$;
(2) $k:=\mathbb{F}_{q}(\theta),|\theta|_{\infty}=q$;
($k_{\infty}:=\mathbb{F}_{q}((1 / \theta))$;
(1) $\mathbb{C}_{\infty}:=\widehat{\overline{k_{\infty}}}$;
(6) t : independent variable of θ;
(0) $\mathbb{T}:=\left\{f \in \mathbb{C}_{\infty}[[t]] ; f\right.$ converges on $\left.|t|_{\infty} \leq 1\right\}$;
(3) ρ : a rank r Drinfeld $\mathbb{F}_{q}[t]$-module defined over \bar{k};
(8) Λ_{ρ} : the period lattice of ρ;
(0) $H_{D R}^{1}(\rho)$: the DeRham cohomology of ρ;
(1) F_{δ} : the quasi-periodic function of ρ associated to a given biderivation δ

DeRham Isomorphism

Recall the well－defined pairing：

$$
\begin{array}{ccc}
H_{D R}^{1}(\rho) \times \Lambda_{\rho} & \rightarrow & \mathbb{C}_{\infty} \\
([\delta], \lambda) & \mapsto \int_{\lambda} \delta:=F_{\delta}(\lambda) .
\end{array}
$$

Anderson，Gekeler：The above map is a perfect pairing．So we have the isomorphism as comparison between the DeRham and Betti cohomologies of the Drinfeld module ρ ：

$$
H_{D R}^{1}(\rho) \rightarrow \operatorname{Hom}_{A}\left(\Lambda_{\rho}, \mathbb{C}_{\infty}\right)=: H^{\text {Betti }}(\rho) .
$$

For any basis $\left\{\left[\delta_{1}\right], \ldots,\left[\delta_{r}\right]\right\}$ of $H_{D R}^{1}(\rho)$ defined over \bar{k} ，i．e．， $\delta_{i}\left(\mathbb{F}_{q}[t]\right) \subseteq \bar{k}[\tau] \tau$ ，and any A－basis $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ of Λ_{ρ} ，the $r \times r$ matrix

$$
P_{\rho}=\left(\int_{\lambda_{i}} \delta_{j}\right)
$$

is called period matrix of the Drinfeld module ρ ．

DeRham Isomorphism

Recall the well-defined pairing:

$$
\begin{array}{rlc}
H_{D R}^{1}(\rho) \times \Lambda_{\rho} & \rightarrow & \mathbb{C}_{\infty} \\
([\delta], \lambda) & \mapsto & \int_{\lambda} \delta:=F_{\delta}(\lambda) .
\end{array}
$$

Anderson, Gekeler: The above map is a perfect pairing. So we have the isomorphism as comparison between the DeRham and Betti cohomologies of the Drinfeld module ρ :

$$
H_{D R}^{1}(\rho) \rightarrow \operatorname{Hom}_{A}\left(\Lambda_{\rho}, \mathbb{C}_{\infty}\right)=: H^{\text {Betti }}(\rho)
$$

For any basis $\left\{\left[\delta_{1}\right], \ldots,\left[\delta_{r}\right]\right\}$ of $H_{D R}^{1}(\rho)$ defined over \bar{k}, i.e., $\delta_{i}\left(\mathbb{F}_{q}[t]\right) \subseteq \bar{k}[\tau] \tau$, and any A-basis $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ of Λ_{ρ}, the $r \times r$ matrix

is called period matrix of the Drinfeld module ρ.

DeRham Isomorphism

Recall the well-defined pairing:

$$
\begin{array}{ccc}
H_{D R}^{1}(\rho) \times \Lambda_{\rho} & \rightarrow & \mathbb{C}_{\infty} \\
([\delta], \lambda) & \mapsto & \int_{\lambda} \delta:=F_{\delta}(\lambda) .
\end{array}
$$

Anderson, Gekeler: The above map is a perfect pairing. So we have the isomorphism as comparison between the DeRham and Betti cohomologies of the Drinfeld module ρ :

$$
H_{D R}^{1}(\rho) \rightarrow \operatorname{Hom}_{A}\left(\Lambda_{\rho}, \mathbb{C}_{\infty}\right)=: H^{\text {Betti }}(\rho) .
$$

For any basis $\left\{\left[\delta_{1}\right], \ldots,\left[\delta_{r}\right]\right\}$ of $H_{D R}^{1}(\rho)$ defined over \bar{k}, i.e., $\delta_{i}\left(\mathbb{F}_{q}[t]\right) \subseteq \bar{k}[\tau] \tau$, and any A-basis $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ of Λ_{ρ}, the r matrix

DeRham Isomorphism

Recall the well-defined pairing:

$$
\begin{array}{ccc}
H_{D R}^{1}(\rho) \times \Lambda_{\rho} & \rightarrow & \mathbb{C}_{\infty} \\
([\delta], \lambda) & \mapsto & \int_{\lambda} \delta:=F_{\delta}(\lambda) .
\end{array}
$$

Anderson, Gekeler: The above map is a perfect pairing. So we have the isomorphism as comparison between the DeRham and Betti cohomologies of the Drinfeld module ρ :

$$
H_{D R}^{1}(\rho) \rightarrow \operatorname{Hom}_{A}\left(\Lambda_{\rho}, \mathbb{C}_{\infty}\right)=: H^{\text {Betti }}(\rho) .
$$

For any basis $\left\{\left[\delta_{1}\right], \ldots,\left[\delta_{r}\right]\right\}$ of $H_{D R}^{1}(\rho)$ defined over \bar{k}, i.e., $\delta_{i}\left(\mathbb{F}_{q}[t]\right) \subseteq \bar{k}[\tau] \tau$, and any A-basis $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ of Λ_{ρ}, the $r \times r$ matrix

$$
P_{\rho}=\left(\int_{\lambda_{i}} \delta_{j}\right)
$$

is called period matrix of the Drinfeld module ρ.

Natural Relations among Entries of Period Matrix

Each endomorphism f of ρ induces a homomorphism

$$
f^{*}:\left(\delta \mapsto f^{*} \delta(t \mapsto \delta t f)\right): H_{D R}(\rho) \rightarrow H_{D R}(\rho) .
$$

The quasi-periodic function of $f^{*} \delta$ is given by $F_{f^{*} \delta}(z)=F_{\delta}\left(b_{0} x\right)$ for $f=\sum_{i=0}^{n} b_{0} \tau^{i}$. Write $f^{*} \delta_{j}=\sum_{\ell=1}^{r} c_{\ell} \delta_{\ell}$ and $b_{0} \lambda_{i}=\sum_{\ell=1}^{r} d_{\ell} \lambda_{\ell}$, then evaluating $z=\lambda_{i} \in \Lambda_{\rho}$ we obtain

If $f \notin \rho\left(\mathbb{F}_{q}[t]\right)$, then it is a nontrivial \bar{k}-linear relation among the values

$$
\int_{\lambda_{i}} \delta_{j}:=F_{\delta_{j}}\left(\lambda_{i}\right) .
$$

Natural Relations among Entries of Period Matrix

Each endomorphism f of ρ induces a homomorphism

$$
f^{*}:\left(\delta \mapsto f^{*} \delta\left(t \mapsto \delta_{t} f\right)\right): H_{D R}(\rho) \rightarrow H_{D R}(\rho)
$$

The quasi-periodic function of $f^{*} \delta$ is given by $F_{f^{*} \delta}(z)=F_{\delta}\left(b_{0} x\right)$ for $f=\sum_{i=0}^{n} b_{0} \tau^{i}$.
then evaluating $z=\lambda_{i} \in \Lambda_{\rho}$ we obtain

If $f \notin \rho\left(\mathbb{F}_{q}[t]\right)$, then it is a nontrivial \bar{k}-linear relation among the values

Natural Relations among Entries of Period Matrix

Each endomorphism f of ρ induces a homomorphism

$$
f^{*}:\left(\delta \mapsto f^{*} \delta\left(t \mapsto \delta_{t} f\right)\right): H_{D R}(\rho) \rightarrow H_{D R}(\rho)
$$

The quasi-periodic function of $f^{*} \delta$ is given by $F_{f^{*} \delta}(z)=F_{\delta}\left(b_{0} x\right)$ for $f=\sum_{i=0}^{n} b_{0} \tau^{i}$. Write $f^{*} \delta_{j}=\sum_{\ell=1}^{r} c_{\ell} \delta_{\ell}$ and $b_{0} \lambda_{i}=\sum_{\ell=1}^{r} d_{\ell} \lambda_{\ell}$, then evaluating $z=\lambda_{i} \in \Lambda_{\rho}$ we obtain

$$
\sum_{\ell=1}^{r} c_{\ell} F_{\delta_{\ell}}\left(\lambda_{i}\right)=\sum_{\ell=1}^{r} d_{\ell} F_{\delta_{j}}\left(\lambda_{\ell}\right)
$$

If $f \notin \rho\left(\mathbb{F}_{q}[t]\right)$, then it is a nontrivial \bar{k}-linear relation among the values

$$
\int_{\lambda_{i}} \delta_{j}:=F_{\delta_{j}}\left(\lambda_{i}\right)
$$

Period Conjecture for Drinfeld modules

Yu 1997, Brownawell 2001

All the \bar{k}-linearly relations among the entries of the period matrix P_{ρ} are those induced from the endomorphisms of ρ. In particular, $\operatorname{dim}_{\bar{k}} \bar{k}$-Span $\left\{\int_{\lambda_{i}} \delta_{j} ; 1 \leq i, j \leq r\right\}=r^{2} / s$, where $s:=[\operatorname{End}(\rho): A]$.

Period Conjecture for Drinfeld modules (Brownawell-Yu)

All the \bar{k}-algebraic relations among the entries of the period matrix P_{ρ} are those induced from the endomorphisms of ρ. So

Theorem 1 (Chang-Papanikolas 2009)

The neriod coniecture is true (also true for general A)

Period Conjecture for Drinfeld modules

Yu 1997, Brownawell 2001

All the \bar{k}-linearly relations among the entries of the period matrix P_{ρ} are those induced from the endomorphisms of ρ. In particular, $\operatorname{dim}_{\bar{k}} \bar{k}$-Span $\left\{\int_{\lambda_{i}} \delta_{j} ; 1 \leq i, j \leq r\right\}=r^{2} / s$, where $s:=[\operatorname{End}(\rho): A]$.

Period Conjecture for Drinfeld modules (Brownawell-Yu)
All the \bar{k}-algebraic relations among the entries of the period matrix P_{ρ} are those induced from the endomorphisms of ρ. So

$$
\operatorname{tr} \cdot \operatorname{deg}_{\bar{k}} \bar{k}\left(\int_{\lambda_{i}} \delta_{j}\right)=r^{2} / \mathrm{s}
$$

Theorem 1 (Chang-Papanikolas 2009)

The period conjecture is true (also true for general A).

Period Conjecture for Drinfeld modules

Yu 1997, Brownawell 2001

All the \bar{k}-linearly relations among the entries of the period matrix P_{ρ} are those induced from the endomorphisms of ρ. In particular, $\operatorname{dim}_{\bar{k}} \bar{k}-\operatorname{Span}\left\{\int_{\lambda_{i}} \delta_{j} ; 1 \leq i, j \leq r\right\}=r^{2} / s$, where $s:=[\operatorname{End}(\rho): A]$.

Period Conjecture for Drinfeld modules (Brownawell-Yu)
All the \bar{k}-algebraic relations among the entries of the period matrix P_{ρ} are those induced from the endomorphisms of ρ. So

$$
{\operatorname{tr} \cdot \operatorname{deg}_{\bar{k}} \bar{k}\left(\int_{\lambda_{i}} \delta_{j}\right)=r^{2} / \mathrm{s}}
$$

Theorem 1 (Chang-Papanikolas 2009)

The period conjecture is true (also true for general A).

Algebraic independence of Drinfeld logarithms

Yu 1997 (Analogue of Baker's Theorem)

Let $u_{1}, \ldots, u_{n} \in \mathbb{C}_{\infty}$ satisfy $\exp _{\rho}\left(u_{i}\right) \in \bar{k}$ for all i. If u_{1}, \ldots, u_{n} are linear independent over End (ρ), then $1, u_{1}, \ldots, u_{n}$ are linearly independent over \bar{k}.

```
Theorem 2 (Chang-Papanikolas 2009)
Assumption as above. Then }\mp@subsup{u}{1}{},\ldots,\mp@subsup{u}{n}{}\mathrm{ are algebraically
independent over }\overline{k}\mathrm{ (also valid for general A),
```

Classical conjecture
\square
independent over \mathbb{Q}, then u_{1}, \ldots, u_{n} are algebraically independent over

Algebraic independence of Drinfeld logarithms

Yu 1997 (Analogue of Baker's Theorem)

Let $u_{1}, \ldots, u_{n} \in \mathbb{C}_{\infty}$ satisfy $\exp _{\rho}\left(u_{i}\right) \in \bar{k}$ for all i. If u_{1}, \ldots, u_{n} are linear independent over $\operatorname{End}(\rho)$, then $1, u_{1}, \ldots, u_{n}$ are linearly independent over \bar{k}.

Theorem 2 (Chang-Papanikolas 2009)

Assumption as above. Then u_{1}, \ldots, u_{n} are algebraically independent over \bar{k} (also valid for general A).

Algebraic independence of Drinfeld logarithms

Yu 1997 (Analogue of Baker's Theorem)

Let $u_{1}, \ldots, u_{n} \in \mathbb{C}_{\infty}$ satisfy $\exp _{\rho}\left(u_{i}\right) \in \bar{k}$ for all i. If u_{1}, \ldots, u_{n} are linear independent over End (ρ), then $1, u_{1}, \ldots, u_{n}$ are linearly independent over \bar{k}.

Theorem 2 (Chang-Papanikolas 2009)

Assumption as above. Then u_{1}, \ldots, u_{n} are algebraically independent over \bar{k} (also valid for general A).

Classical conjecture

Let u_{1}, \ldots, u_{n} satisfy $e^{u_{i}} \in \overline{\mathbb{Q}}$ for all i. If u_{1}, \ldots, u_{n} are linearly independent over \mathbb{Q}, then u_{1}, \ldots, u_{n} are algebraically independent over $\overline{\mathbb{Q}}$.

Logarithms and Quasi-Periodic Functions

Yu 1997, Brownawell 2001

Fix a basis $\left\{\left[\delta_{1}\right], \ldots,\left[\delta_{r}\right]\right\}$ of $H_{D R}^{1}(\rho)$ defined over \bar{k}. Let $u_{1}, \ldots, u_{n} \in \mathbb{C}_{\infty}$ satisfy $\exp _{\rho}\left(u_{i}\right) \in \bar{k}$ for all i. Suppose that u_{1}, \ldots, u_{n} are linearly independent over End (ρ), then the following $r n$ values

$$
\begin{gathered}
F_{\delta_{1}}\left(u_{1}\right), \ldots, F_{\delta_{1}}\left(u_{n}\right) \\
\vdots \\
F_{\delta_{r}}\left(u_{1}\right), \ldots, F_{\delta_{r}}\left(u_{n}\right)
\end{gathered}
$$

are linearly independent over \bar{k}.

Logarithms and Quasi-Periodic Functions

Yu 1997, Brownawell 2001

Fix a basis $\left\{\left[\delta_{1}\right], \ldots,\left[\delta_{r}\right]\right\}$ of $H_{D R}^{1}(\rho)$ defined over \bar{k}. Let $u_{1}, \ldots, u_{n} \in \mathbb{C}_{\infty}$ satisfy $\exp _{\rho}\left(u_{i}\right) \in \bar{k}$ for all i. Suppose that u_{1}, \ldots, u_{n} are linearly independent over End (ρ), then the following $r n$ values

$$
\begin{gathered}
F_{\delta_{1}}\left(u_{1}\right), \ldots, F_{\delta_{1}}\left(u_{n}\right) \\
\vdots \\
F_{\delta_{r}}\left(u_{1}\right), \ldots, F_{\delta_{r}}\left(u_{n}\right)
\end{gathered}
$$

are linearly independent over \bar{k}.

Theorem 3 (Chang-Papanikolas 2009)

Assumption as above. Suppose that the fraction field of End (ρ) is separable over k. Then the above $r n$ values are algebraically independent over \bar{k}.

Sketch of the proof of Period Conjecture

Step I: Solving difference equations
W.L.O.G, we may assume that ρ is given by
$\rho_{t}:=\theta+\kappa_{1} \tau+\ldots+\kappa_{r-1} \tau^{r-1}+\tau^{r}$. Let

then following Pellarin we use Anderson generating functions to create $\psi \in \mathrm{GL}_{r}(\mathbb{T})$ so that

$$
\Psi^{(-1)}=\Phi \Psi, \text { and } \bar{k}(\Psi(\theta))=\bar{k}\left(\int_{\lambda_{i}} \delta_{j}\right)
$$

Sketch of the proof of Period Conjecture

Step I: Solving difference equations
W.L.O.G, we may assume that ρ is given by
$\rho_{t}:=\theta+\kappa_{1} \tau+\ldots+\kappa_{r-1} \tau^{r-1}+\tau^{r}$. Let

$\in \operatorname{Mat}_{r}(\bar{k}[t])$,
then following Pellarin we use Anderson generating functions to create $\psi \in \mathrm{GL}_{r}(\mathbb{T})$ so that

$$
\Psi^{(-1)}=\Phi \Psi, \text { and } \bar{k}(\Psi(\theta))=\bar{k}\left(\int_{\lambda_{i}} \delta_{j}\right)
$$

Sketch of the proof of Period Conjecture

Step I: Solving difference equations
W.L.O.G, we may assume that ρ is given by

$$
\rho_{t}:=\theta+\kappa_{1} \tau+\ldots+\kappa_{r-1} \tau^{r-1}+\tau^{r} \text {. Let }
$$

$$
\Phi:=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
(t-\theta) & -\kappa_{1}^{1 / q} & -\kappa_{2}^{1 / q^{2}} & \cdots & -\kappa_{r-1}^{1 / q^{r-1}}
\end{array}\right] \in \operatorname{Mat}_{r}(\bar{k}[t])
$$

then following Pellarin we use Anderson generating functions to create $\psi \in \mathrm{GL}_{r}(\mathbb{T})$ so that

$$
\Psi^{(-1)}=\Phi \Psi, \text { and } \bar{k}(\Psi(\theta))=\bar{k}\left(\int_{\lambda_{i}} \delta_{j}\right)
$$

Sketch of the proof of Period Conjecture

Step I: Solving difference equations
W.L.O.G, we may assume that ρ is given by
$\rho_{t}:=\theta+\kappa_{1} \tau+\ldots+\kappa_{r-1} \tau^{r-1}+\tau^{r}$. Let

$$
\Phi:=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
(t-\theta) & -\kappa_{1}^{1 / q} & -\kappa_{2}^{1 / q^{2}} & \cdots & -\kappa_{r-1}^{1 / q^{r-1}}
\end{array}\right] \in \operatorname{Mat}_{r}(\bar{k}[t])
$$

then following Pellarin we use Anderson generating functions to create $\psi \in \mathrm{GL}_{r}(\mathbb{T})$ so that

$$
\Psi^{(-1)}=\Phi \Psi, \text { and } \bar{k}(\Psi(\theta))=\bar{k}\left(\int_{\lambda_{i}} \delta_{j}\right)
$$

By Papanikolas' theory, it suffices to prove dim $\Gamma_{\psi}=r_{\bar{s}}^{2} / s_{\bar{B}}$

Sketch of the proof of Period Conjecture

Let M be the rigid analytically trivial pre-t-motive defined by Φ. Anderson showed that there is a fully faithful functor
$\left\{\right.$ Drinfeld $\mathbb{F}_{q}[t]$-modules $/ \bar{k}$ up to isogeny $\} \rightarrow\{$ R.A.T. pre- t-motives $\}$, we have

$$
\operatorname{frac}(\operatorname{End}(\rho)) \cong \operatorname{End}_{\bar{k}(t)\left[\sigma, \sigma^{-1}\right]}(M)=: \mathcal{K}
$$

Note that $\left[\mathcal{K}: \mathbb{F}_{q}(t)\right]=s$.
Step II: Prove

and hence finish the proof of Period Conjecture.

Sketch of the proof of Period Conjecture

Let M be the rigid analytically trivial pre-t-motive defined by Φ. Anderson showed that there is a fully faithful functor
$\left\{\right.$ Drinfeld $\mathbb{F}_{q}[t]$-modules $/ \bar{k}$ up to isogeny $\} \rightarrow\{$ R.A.T. pre- t-motives $\}$, we have

$$
\operatorname{frac}(\operatorname{End}(\rho)) \cong \operatorname{End}_{\bar{k}(t)\left[\sigma, \sigma^{-1}\right]}(M)=: \mathcal{K}
$$

Note that $\left[\mathcal{K}: \mathbb{F}_{q}(t)\right]=s$.
and hence finish the proof of Period Conjecture.

Let M be the rigid analytically trivial pre- t-motive defined by Φ. Anderson showed that there is a fully faithful functor
$\left\{\right.$ Drinfeld $\mathbb{F}_{q}[t]$-modules $/ \bar{k}$ up to isogeny $\} \rightarrow\{$ R.A.T. pre- t-motives $\}$,
we have

$$
\operatorname{frac}(\operatorname{End}(\rho)) \cong \operatorname{End}_{\bar{k}(t)\left[\sigma, \sigma^{-1}\right]}(M)=: \mathcal{K}
$$

Note that $\left[\mathcal{K}: \mathbb{F}_{q}(t)\right]=s$.
Step II: Prove

$$
\Gamma_{\psi}=\operatorname{Cent}_{G L_{r / \mathbb{F q}(t)}}(\mathcal{K}) \cong \operatorname{Res}_{\mathcal{K} / \mathbb{F}_{q}(t)}\left(\operatorname{GL}_{\frac{r}{s} / \mathcal{K}}\right)
$$

and hence finish the proof of Period Conjecture.

Sketch of the proof of $\Gamma_{\psi} \cong \operatorname{Cent}_{G L_{/ / \bar{R}()}}(\mathcal{K})$

Let \mathcal{R}_{M} be the Tannakian subcategory generated by M. As \mathcal{R}_{M} is functorial in M, we have a natural upper bound for Γ_{ψ} :

$$
\Gamma_{\Psi} \subseteq \operatorname{Cent}_{G L_{r / \mathbb{F} q}(t)}(\mathcal{K}) .
$$

Question: How to obtain a lower bound for Γ_{ψ} ?
Answer: Connection to Galois representations.
Let K be a finite extension of k so that $E n d(\rho) \subseteq K[\tau]$. Given a
prime v in $\mathbb{F}_{q}[t]$, we let

Let $\mathbf{A}_{v}:=\mathbb{F}_{q}[t]_{v}$ and $\mathbf{k}_{v}:=\mathbb{F}_{q}(t)_{v}$, then we have the v-adic
Galois representation

Sketch of the proof of $\Gamma_{\psi} \cong \operatorname{Cent}_{G L_{/ / \bar{R}()}}(\mathcal{K})$

Let \mathcal{R}_{M} be the Tannakian subcategory generated by M. As \mathcal{R}_{M} is functorial in M, we have a natural upper bound for Γ_{ψ} :

$$
\Gamma_{\Psi} \subseteq \operatorname{Cent}_{G L_{r / \mathbb{F} q}(t)}(\mathcal{K}) .
$$

Question: How to obtain a lower bound for Γ_{ψ} ?
Answer: Connection to Galois representations.
Let K be a finite extension of k so that $E n d(\rho) \subseteq K[\tau]$. Given a
prime v in $\mathbb{F}_{q}[t]$, we let

Let $\mathbf{A}_{v}:=\mathbb{F}_{q}[t]_{v}$ and $\mathbf{k}_{v}:=\mathbb{F}_{q}(t)_{v}$, then we have the v-adic
Galois representation

Sketch of the proof of $\Gamma_{\psi} \cong \operatorname{Cent}_{G L_{/ / \bar{R}()}}(\mathcal{K})$

Let \mathcal{R}_{M} be the Tannakian subcategory generated by M. As \mathcal{R}_{M} is functorial in M, we have a natural upper bound for Γ_{ψ} :

$$
\Gamma_{\psi} \subseteq \operatorname{Cent}_{G L_{r / F_{G}(t)}}(\mathcal{K}) .
$$

Question: How to obtain a lower bound for Γ_{ψ} ? Answer: Connection to Galois representations.
prime v in $\mathbb{F}_{q}[t]$, we let
$T_{v}(\rho):=\lim \rho\left[v^{n}\right]$.
Let $\mathbf{A}_{v}:=\mathbb{F}_{q}[t]_{v}$ and $\mathbf{k}_{v}:=\mathbb{F}_{q}(t)_{v}$, then we have the v-adic
Galois representation

Sketch of the proof of $\Gamma_{\psi} \cong \operatorname{Cent}_{G L_{\tau / E()}}(\mathcal{K})$

Let \mathcal{R}_{M} be the Tannakian subcategory generated by M. As \mathcal{R}_{M} is functorial in M, we have a natural upper bound for Γ_{ψ} :

$$
\Gamma_{\Psi} \subseteq \operatorname{Cent}_{G L_{r / \mathbb{F}_{q}(t)}}(\mathcal{K}) .
$$

Question: How to obtain a lower bound for Γ_{ψ} ? Answer: Connection to Galois representations. Let K be a finite extension of k so that $E n d(\rho) \subseteq K[\tau]$. Given a prime v in $\mathbb{F}_{q}[t]$, we let

$$
T_{v}(\rho):=\lim _{\check{ }} \rho\left[v^{n}\right] .
$$

Let $\mathbf{A}_{v}:=\mathbb{F}_{q}[t]_{v}$ and $\mathbf{k}_{v}:=\mathbb{F}_{q}(t)_{v}$, then we have the v-adic Galois representation

$$
\phi_{v}: G_{K}:=\operatorname{Gal}\left(K^{s e \rho} / K\right) \rightarrow \operatorname{Aut}\left(\mathbf{k}_{v} \otimes_{\mathbf{A}_{v}} T_{v}(\rho)\right)=\operatorname{GL}_{r}\left(\mathbf{k}_{v}\right) .
$$

Sketch of the proof of $\Gamma_{\psi} \cong \operatorname{Cent}_{G L_{/ \Gamma \Gamma_{G}()}}(\mathcal{K})$

Pink 1997: $\phi_{V}\left(G_{K}\right) \subseteq \operatorname{Cent}_{G L_{r}\left(\mathbf{k}_{V}\right)}(\mathcal{K})$ is Zariski dense.
Key Lemma (Lower bound for Γ_{ψ}): For $v=t$, enlarge K so that Spec $\bar{K}(t)\left[\Psi_{i j}, 1 / \operatorname{det} \Psi\right]$ is defined over $K(t)$, then one has

$$
\phi_{V}\left(G_{K}\right) \subseteq \Gamma_{\psi}\left(\mathbf{k}_{V}\right)\left(\subseteq \operatorname{Cent}_{G L_{r}\left(\mathbf{k}_{v}\right)}(\mathcal{K})\right) .
$$

Pink's theorem implies $\Gamma_{\psi}\left(\mathbf{k}_{V}\right)=\operatorname{Cent}_{G L_{r}\left(\mathbf{k}_{v}\right)}(\mathcal{K})$ for $v=t$ and hence

$$
\Gamma_{\psi}=\operatorname{Cent}_{G L_{r} / \mathbb{F}_{q}(t)}(\mathcal{K}) .
$$

Corollary: For each prime v, we have the analogue of Mumford-Tate conjecture

$$
\phi_{V}\left(G_{K}\right) \subseteq \Gamma_{\Psi}\left(\mathbf{k}_{V}\right) \text { is Zariski dense. }
$$

Sketch of the proof of $\Gamma_{\psi} \cong \operatorname{Cent}_{G L_{\tau / E()}}(\mathcal{K})$

Pink 1997: $\phi_{V}\left(G_{K}\right) \subseteq \operatorname{Cent}_{G_{L_{r}\left(\mathbf{k}_{V}\right)}}(\mathcal{K})$ is Zariski dense.
Key Lemma (Lower bound for Γ_{ψ}): For $v=t$, enlarge K so that Spec $\bar{k}(t)\left[\Psi_{i j}, 1 / \operatorname{det} \psi\right]$ is defined over $K(t)$, then one has

$$
\phi_{V}\left(G_{K}\right) \subseteq \Gamma_{\psi}\left(\mathbf{k}_{v}\right)\left(\subseteq \operatorname{Cent}_{G_{L}\left(\mathbf{k}_{v}\right)}(\mathcal{K})\right) .
$$

Pink's theorem implies $\Gamma_{\psi}\left(\mathbf{k}_{V}\right)=\operatorname{Cent}_{G_{L_{r}\left(\mathbf{k}_{V}\right)}}(\mathcal{K})$ for $v=t$ and hence

$$
\Gamma_{\psi}=\text { Cent }_{G L_{r} / E_{q}(t)}(\mathbb{K}) .
$$

Corollary: For each prime v, we have the analogue of Mumford-Tate conjecture

Sketch of the proof of $\Gamma_{\psi} \cong \operatorname{Cent}_{G L_{\tau / E()}}(\mathcal{K})$

Pink 1997: $\phi_{V}\left(G_{K}\right) \subseteq \operatorname{Cent}_{G_{L_{r}\left(\mathbf{k}_{V}\right)}}(\mathcal{K})$ is Zariski dense.
Key Lemma (Lower bound for Γ_{ψ}): For $v=t$, enlarge K so that Spec $\bar{k}(t)\left[\Psi_{i j}, 1 / \operatorname{det} \Psi\right]$ is defined over $K(t)$, then one has

$$
\phi_{v}\left(G_{K}\right) \subseteq \Gamma_{\psi}\left(\mathbf{k}_{v}\right)\left(\subseteq \operatorname{Cent}_{G L_{r}\left(\mathbf{k}_{v}\right)}(\mathcal{K})\right) .
$$

Pink's theorem implies $\Gamma_{\psi}\left(\mathbf{k}_{v}\right)=\operatorname{Cent}_{G_{L_{r}\left(\mathbf{k}_{v}\right)}}(\mathcal{K})$ for $v=t$ and hence

$$
\Gamma_{\psi}=\operatorname{Cent}_{G L_{r} / \mathbb{F}_{q}(t)}(\mathcal{K}) .
$$

Corollary: For each prime v, we have the analogue of Mumford-Tate conjecture

Sketch of the proof of $\Gamma_{\psi} \cong \operatorname{Cent}_{G L_{\tau / E()}}(\mathcal{K})$

Pink 1997: $\phi_{V}\left(G_{K}\right) \subseteq \operatorname{Cent}_{G L_{r}\left(\mathbf{k}_{V}\right)}(\mathcal{K})$ is Zariski dense.
Key Lemma (Lower bound for Γ_{ψ}): For $v=t$, enlarge K so that Spec $\bar{k}(t)\left[\Psi_{i j}, 1 / \operatorname{det} \Psi\right]$ is defined over $K(t)$, then one has

$$
\phi_{V}\left(G_{K}\right) \subseteq \Gamma_{\psi}\left(\mathbf{k}_{V}\right)\left(\subseteq \operatorname{Cent}_{G L_{r}\left(\mathbf{k}_{v}\right)}(\mathcal{K})\right)
$$

Pink's theorem implies $\Gamma_{\Psi}\left(\mathbf{k}_{v}\right)=\operatorname{Cent}_{G L_{r}\left(\mathbf{k}_{v}\right)}(\mathcal{K})$ for $v=t$ and hence

$$
\Gamma_{\psi}=\operatorname{Cent}_{G L_{r} / \mathbb{F}_{q}(t)}(\mathcal{K})
$$

Corollary: For each prime v, we have the analogue of Mumford-Tate conjecture

$$
\phi_{v}\left(G_{K}\right) \subseteq \Gamma_{\Psi}\left(\mathbf{k}_{V}\right) \text { is Zariski dense. }
$$

Drinfeld modular forms

For any $z \in \mathbf{H}:=\mathbb{C}_{\infty} \backslash k_{\infty}$, we let $\Lambda_{z}:=A z+A$. Its corresponding rank 2 Drinfeld $\mathbb{F}_{q}[t]$-module is given by

$$
\phi^{\Lambda_{z}}: t \mapsto \theta+g(z) \tau+\Delta(z) \tau^{2} .
$$

Regarding g and Δ as functions on H ,then

Goss, Gekeler: Put $g_{\text {new }}:=g / \tilde{\pi}^{q-1}$ and $\Delta_{\text {new }}:=\Delta / \tilde{\pi}^{q^{2}-1}$, then Gnew, $\Delta_{\text {new }} \in \bar{K}_{[r}\left[q_{\infty}(z)\right]$, where $q_{\infty}(z):=1 / \exp (\tilde{\pi} z)$

There is a modular form $h \in \bar{k}\left[\left[q_{\infty}\right]\right]$ (Poincaré series) of weight $q+1$, type 1 for which $h^{q-1}=-\Delta_{\text {new }}$. Then graded ring generated by modular forms (graded by weights) is given by

Drinfeld modular forms

For any $z \in \mathbf{H}:=\mathbb{C}_{\infty} \backslash k_{\infty}$, we let $\Lambda_{z}:=A z+A$. Its corresponding rank 2 Drinfeld $\mathbb{F}_{q}[t]$-module is given by

$$
\phi^{\Lambda_{z}}: t \mapsto \theta+g(z) \tau+\Delta(z) \tau^{2} .
$$

Regarding g and Δ as functions on \mathbf{H},then

Goss, Gekeler: Put $g_{\text {new }}:=g / \tilde{\pi}^{q-1}$ and $\Delta_{\text {new }}:=\Delta / \tilde{\pi}^{q^{2}-1}$, then Gnew, $\Delta_{\text {new }} \in \bar{K}_{r}\left[q_{\infty}(z)\right]$, where $q_{\infty}(z):=1 / \exp (\tilde{\pi} z)$

There is a modular form $h \in \bar{k}\left[\left[q_{\infty}\right]\right]$ (Poincaré series) of weight $q+1$, type 1 for which $h^{q-1}=-\Delta_{\text {new }}$. Then graded ring generated by modular forms (graded by weights) is given by

Drinfeld modular forms

For any $z \in \mathbf{H}:=\mathbb{C}_{\infty} \backslash k_{\infty}$, we let $\Lambda_{z}:=A z+A$. Its corresponding rank 2 Drinfeld $\mathbb{F}_{q}[t]$-module is given by

$$
\phi^{\Lambda_{z}}: t \mapsto \theta+g(z) \tau+\Delta(z) \tau^{2}
$$

Regarding g and Δ as functions on \mathbf{H},then
(1) g is a Drinfeld modular form of weight $q-1$, type 0 ;

$g_{\text {new }}, \Delta_{\text {new }} \in \bar{k}\left[\left[q_{\infty}(z)\right]\right]$, where $q_{\infty}(z):=1 / \exp _{C}(\tilde{\pi} z)$.
There is a modular form $h \in \bar{k}\left[\left[q{ }^{11}\right.\right.$ (Doincaré series) of weight $q+1$, type 1 for which $h^{q-1}=-\Delta_{\text {new }}$. Then graded ring generated by modular forms (graded by weights) is given by
\square

Drinfeld modular forms

For any $z \in \mathbf{H}:=\mathbb{C}_{\infty} \backslash k_{\infty}$, we let $\Lambda_{z}:=A z+A$. Its corresponding rank 2 Drinfeld $\mathbb{F}_{q}[t]$-module is given by

$$
\phi^{\Lambda_{z}}: t \mapsto \theta+g(z) \tau+\Delta(z) \tau^{2}
$$

Regarding g and Δ as functions on \mathbf{H},then
(1) g is a Drinfeld modular form of weight $q-1$, type 0 ;
(2) Δ is a Drinfeld modular form of weight $q^{2}-1$, type 0 .
$g_{\text {new }}, \Delta_{\text {new }} \in \bar{k}\left[\left[q_{\infty}(z)\right]\right]$, where $q_{\infty}(z):=1 / \exp _{C}(\tilde{\pi} z)$
There is a modular form $h \in \bar{k}\left[\left[q q_{\infty}^{11}\right.\right.$ (Poincaré series) of weight $q+1$, type 1 for which $h^{q-1}=-\Delta_{\text {new }}$. Then graded ring generated by modular forms (graded by weights) is given by
\square

Drinfeld modular forms

For any $z \in \mathbf{H}:=\mathbb{C}_{\infty} \backslash k_{\infty}$, we let $\Lambda_{z}:=A z+A$. Its corresponding rank 2 Drinfeld $\mathbb{F}_{q}[t]$-module is given by

$$
\phi^{\Lambda_{z}}: t \mapsto \theta+g(z) \tau+\Delta(z) \tau^{2}
$$

Regarding g and Δ as functions on \mathbf{H},then
(1) g is a Drinfeld modular form of weight $q-1$, type 0 ;
(2) Δ is a Drinfeld modular form of weight $q^{2}-1$, type 0 .
$g_{\text {new }}, \Delta_{\text {new }} \in \bar{k}\left[\left[q_{\infty}(z)\right]\right]$, where $q_{\infty}(z):=1 / \exp _{C}(\tilde{\pi} z)$
There is a modular form $h \in \bar{k}\left[\left[q q_{\infty}^{11}\right.\right.$ (Poincaré series) of weight $q+1$, type 1 for which $h^{q-1}=-\Delta_{\text {new }}$. Then graded ring generated by modular forms (graded by weights) is given by
\square

Drinfeld modular forms

For any $z \in \mathbf{H}:=\mathbb{C}_{\infty} \backslash k_{\infty}$, we let $\Lambda_{z}:=A z+A$. Its corresponding rank 2 Drinfeld $\mathbb{F}_{q}[t]$-module is given by

$$
\phi^{\Lambda_{z}}: t \mapsto \theta+g(z) \tau+\Delta(z) \tau^{2}
$$

Regarding g and Δ as functions on \mathbf{H},then
(1) g is a Drinfeld modular form of weight $q-1$, type 0 ;
(2) Δ is a Drinfeld modular form of weight $q^{2}-1$, type 0 .

Goss, Gekeler: Put $g_{\text {new }}:=g / \tilde{\pi}^{q-1}$ and $\Delta_{\text {new }}:=\Delta / \tilde{\pi}^{q^{2}-1}$, then

$$
g_{\text {new }}, \Delta_{\text {new }} \in \bar{k}\left[\left[q_{\infty}(z)\right]\right], \text { where } q_{\infty}(z):=1 / \exp _{C}(\tilde{\pi} z)
$$

There is a modular form $h \in \bar{k}\left[\left[q_{\infty}\right]\right]$ (Poincaré series) of weight $q+1$, type 1 for which $h^{q-1}=-\Delta_{\text {new }}$. Then graded ring generated by modular forms (graded by weights) is given by

$$
\mathbb{C}_{\infty}\left[g_{\text {new }}, h\right]
$$

Drinfeld quasi-modular forms

Gekeler: Set $E:=\frac{1}{\frac{d}{\pi} \frac{d}{d} \Delta(z)} \Delta \bar{k}\left[\left[q_{\infty}\right]\right]$. Then E is called false Eisenstein series of weight 2 since for $\gamma \in G L_{2}(A)$,

$$
E(\gamma z)=(c z+d)^{2}(\operatorname{det} \gamma)^{-1}\left(E(z)-\frac{c}{\tilde{\pi}(c z+d)}\right) .
$$

Definition/Theorem (Bosser-Pellarin 2008): Any such function

is called a Drinfeld quasi-modular form of weight ℓ.
Defintion: A quasi-modular form f is called arithmetic if

Drinfeld quasi-modular forms

Gekeler: Set $E:=\frac{\frac{d}{\pi} \frac{d}{\pi} \Delta(z)}{\Delta(z)} \in \bar{k}\left[\left[q_{\infty}\right]\right]$. Then E is called false Eisenstein series of weight 2 since for $\gamma \in G L_{2}(A)$,

$$
E(\gamma z)=(c z+d)^{2}(\operatorname{det} \gamma)^{-1}\left(E(z)-\frac{c}{\tilde{\pi}(c z+d)}\right) .
$$

Definition/Theorem (Bosser-Pellarin 2008): Any such function

$$
f=\sum_{(q-1) i+(q+1) j+2 e=\ell} a_{i j e} g_{\text {new }}^{i} h^{j} E^{e} \in \mathbb{C}_{\infty}\left[g_{\text {new }}, h, E\right]
$$

is called a Drinfeld quasi-modular form of weight ℓ.

Drinfeld quasi-modular forms

Gekeler: Set $E:=\frac{\frac{d}{\pi} \frac{d}{\pi} \Delta(z)}{\Delta(z)} \in \bar{k}\left[\left[q_{\infty}\right]\right]$. Then E is called false Eisenstein series of weight 2 since for $\gamma \in G L_{2}(A)$,

$$
E(\gamma z)=(c z+d)^{2}(\operatorname{det} \gamma)^{-1}\left(E(z)-\frac{c}{\tilde{\pi}(c z+d)}\right) .
$$

Definition/Theorem (Bosser-Pellarin 2008): Any such function

$$
f=\sum_{(q-1) i+(q+1) j+2 e=\ell} a_{i j e} g_{\text {new }}^{i} h^{i} E^{e} \in \mathbb{C}_{\infty}\left[g_{\text {new }}, h, E\right]
$$

is called a Drinfeld quasi-modular form of weight ℓ.
Defintion: A quasi-modular form f is called arithmetic if

$$
f \in \bar{k}\left[\left[q_{\infty}\right]\right]
$$

The algebraic points on $\mathrm{GL}_{2}(A) \backslash \mathbf{H}$

Recall that the set of isomorphism classes of rank 2 Drinfeld $\mathbb{F}_{q}[t]$-modules can be identified with $G L_{2}(A) \backslash \mathbf{H}$ and $G L_{2}(A) \backslash \mathbf{H}$ is analytically isomorphic to \mathbb{C}_{∞} via the j-invariant function

Set

Then for each $\alpha \in S$, there exists $\omega_{\alpha} \in \mathbb{C}_{\infty}$ so that the rank 2 Drinfeld $\mathbb{F}_{q}[t]$-module ϕ^{\wedge} is defined over \bar{k}, where $\Lambda:=A \omega_{\alpha}+A \omega_{\alpha}$ (period latitice of ϕ^{\wedge}). Note that

The algebraic points on $\mathrm{GL}_{2}(A) \backslash \mathbf{H}$

Recall that the set of isomorphism classes of rank 2 Drinfeld $\mathbb{F}_{q}[t]$-modules can be identified with $G L_{2}(A) \backslash \mathbf{H}$ and $G L_{2}(A) \backslash \mathbf{H}$ is analytically isomorphic to \mathbb{C}_{∞} via the j-invariant function

Set

$$
\boldsymbol{S}:=\{\alpha \in \mathbf{H} ; j(\alpha) \in \bar{k}\}
$$

Then for each $\alpha \in S$, there exists $\omega_{\alpha} \in \mathbb{C}_{\infty}$ so that the rank 2 Drinfeld $\mathbb{F}_{q}[t]$-module ϕ^{\wedge} is defined over \bar{k}, where $\Lambda:=\boldsymbol{A} \alpha \omega_{\alpha}+\boldsymbol{A} \omega_{\alpha}$ (period lattice of ϕ^{\wedge}).

The algebraic points on $\mathrm{GL}_{2}(A) \backslash \mathbf{H}$

Recall that the set of isomorphism classes of rank 2 Drinfeld $\mathbb{F}_{q}[t]$-modules can be identified with $G L_{2}(A) \backslash \mathbf{H}$ and $G L_{2}(A) \backslash \mathbf{H}$ is analytically isomorphic to \mathbb{C}_{∞} via the j-invariant function

Set

$$
\boldsymbol{S}:=\{\alpha \in \mathbf{H} ; j(\alpha) \in \bar{k}\}
$$

Then for each $\alpha \in S$, there exists $\omega_{\alpha} \in \mathbb{C}_{\infty}$ so that the rank 2 Drinfeld $\mathbb{F}_{q}[t]$-module ϕ^{\wedge} is defined over \bar{k}, where $\Lambda:=A \alpha \omega_{\alpha}+A \omega_{\alpha}$ (period lattice of ϕ^{\wedge}). Note that

$$
S=\mathrm{CM} \sqcup \mathrm{NCM},
$$

The algebraic points on $\mathrm{GL}_{2}(A) \backslash \mathbf{H}$

Recall that the set of isomorphism classes of rank 2 Drinfeld $\mathbb{F}_{q}[t]$-modules can be identified with $G L_{2}(A) \backslash \mathbf{H}$ and $G L_{2}(A) \backslash \mathbf{H}$ is analytically isomorphic to \mathbb{C}_{∞} via the j-invariant function

Set

$$
\boldsymbol{S}:=\{\alpha \in \mathbf{H} ; j(\alpha) \in \bar{k}\}
$$

Then for each $\alpha \in S$, there exists $\omega_{\alpha} \in \mathbb{C}_{\infty}$ so that the rank 2 Drinfeld $\mathbb{F}_{q}[t]$-module ϕ^{\wedge} is defined over \bar{k}, where $\Lambda:=A \alpha \omega_{\alpha}+A \omega_{\alpha}$ (period lattice of ϕ^{\wedge}). Note that

$$
S=\mathrm{CM} \sqcup \mathrm{NCM},
$$

(1) $\mathrm{CM}:=\{\alpha \in \mathbf{H} ; \alpha$ is quadratic over $k\}$ (set of CM points)

The algebraic points on $\mathrm{GL}_{2}(A) \backslash \mathbf{H}$

Recall that the set of isomorphism classes of rank 2 Drinfeld $\mathbb{F}_{q}[t]$-modules can be identified with $G L_{2}(A) \backslash \mathbf{H}$ and $G L_{2}(A) \backslash \mathbf{H}$ is analytically isomorphic to \mathbb{C}_{∞} via the j-invariant function

Set

$$
\boldsymbol{S}:=\{\alpha \in \mathbf{H} ; j(\alpha) \in \bar{k}\}
$$

Then for each $\alpha \in S$, there exists $\omega_{\alpha} \in \mathbb{C}_{\infty}$ so that the rank 2 Drinfeld $\mathbb{F}_{q}[t]$-module ϕ^{\wedge} is defined over \bar{k}, where $\Lambda:=A \alpha \omega_{\alpha}+A \omega_{\alpha}$ (period lattice of ϕ^{\wedge}). Note that

$$
S=\mathrm{CM} \sqcup \mathrm{NCM},
$$

(1) $\mathrm{CM}:=\{\alpha \in \mathbf{H} ; \alpha$ is quadratic over $k\}$ (set of CM points)
(2) $\mathrm{NCM}:=S \backslash \mathrm{CM}$ (set of non CM points).

Transcendence results

Theorem 4 (Chang 2009)

Let f be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S:=\{\alpha \in \mathbf{H} ; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over k.

Remark

Question: Why is $f(\alpha)$ interesting?
Answer:

Transcendence results

Theorem 4 (Chang 2009)

Let f be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S:=\{\alpha \in \mathbf{H} ; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over k.

Remark

(1) Algebraic independence of $f(\alpha), \alpha \in S$ (work in progress).
(2) Similar question to $f(\alpha)$ in the classical case. The transcendence of $f(\alpha)$ is only known for CM point α.

Question: Why is $f(\alpha)$ interesting?
Answer:

Transcendence results

Theorem 4 (Chang 2009)

Let f be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S:=\{\alpha \in \mathbf{H} ; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over k.

Remark

(1) Algebraic independence of $f(\alpha), \alpha \in S$ (work in progress).
(2) Similar question to $f(\alpha)$ in the classical case. The transcendence of $f(\alpha)$ is only known for CM point α.

Question: Why is $f(\alpha)$ interesting?
Answer:

Transcendence results

Theorem 4 (Chang 2009)

Let f be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S:=\{\alpha \in \mathbf{H} ; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over k.

Remark

(1) Algebraic independence of $f(\alpha), \alpha \in S$ (work in progress).
(2) Similar question to $f(\alpha)$ in the classical case. The transcendence of $f(\alpha)$ is only known for CM point α.

Question: Why is $f(\alpha)$ interesting?
Answer:

Transcendence results

Theorem 4 (Chang 2009)

Let f be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S:=\{\alpha \in \mathbf{H} ; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over k.

Remark

(1) Algebraic independence of $f(\alpha), \alpha \in S$ (work in progress).
(2) Similar question to $f(\alpha)$ in the classical case. The transcendence of $f(\alpha)$ is only known for CM point α.

Question: Why is $f(\alpha)$ interesting?
Answer:

Transcendence results

Theorem 4 (Chang 2009)

Let f be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S:=\{\alpha \in \mathbf{H} ; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over k.

Remark

(1) Algebraic independence of $f(\alpha), \alpha \in S$ (work in progress).
(2) Similar question to $f(\alpha)$ in the classical case. The transcendence of $f(\alpha)$ is only known for CM point α.

Question: Why is $f(\alpha)$ interesting?
Answer:

Transcendence results

Theorem 4 (Chang 2009)

Let f be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S:=\{\alpha \in \mathbf{H} ; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over k.

Remark

(1) Algebraic independence of $f(\alpha), \alpha \in S$ (work in progress).
(2) Similar question to $f(\alpha)$ in the classical case. The transcendence of $f(\alpha)$ is only known for CM point α.

Question: Why is $f(\alpha)$ interesting?
Answer:
(1) It has connection to periods and quasi-periods of rank 2 Drinfeld $\mathbb{F}_{q}[t]$-modules defined over \bar{k};
(2) It has motivic interpretation.

Transcendence results

Theorem 4 (Chang 2009)

Let f be an arithmetic quasi-modular form of nonzero weight. Given any $\alpha \in S:=\{\alpha \in \mathbf{H} ; j(\alpha) \in \bar{k}\}$ so that $f(\alpha) \neq 0$, then $f(\alpha)$ is transcendental over k.

Remark

(1) Algebraic independence of $f(\alpha), \alpha \in S$ (work in progress).
(2) Similar question to $f(\alpha)$ in the classical case. The transcendence of $f(\alpha)$ is only known for CM point α.

Question: Why is $f(\alpha)$ interesting? Answer:
(1) It has connection to periods and quasi-periods of rank 2 Drinfeld $\mathbb{F}_{q}[t]$-modules defined over \bar{k};
(2) It has motivic interpretation.

Special values of modular forms I

Given any $\alpha \in S$, consider $\Lambda_{\alpha}=A \alpha+A$. Then
$\phi_{t}^{\Lambda_{\alpha}}=\theta+g(\alpha) \tau+\Delta(\alpha) \tau^{2}$. Choose any $\in \in \mathbb{C}^{\times}$so that
$\Delta(\alpha) \epsilon^{q^{2}-1}=1$. Set $\Lambda:=\epsilon^{-1} \wedge_{\alpha}$, then we have
where $j(\alpha):=g(\alpha)^{q+1} / \Delta(\alpha) \in \bar{k}$. Note that the period lattice of ϕ^{\wedge} is $\Lambda=A \frac{\alpha}{\epsilon}+A \frac{1}{\epsilon}$. Set $\omega_{\alpha}=\frac{1}{\epsilon}$, then

Since $\Delta_{\text {new }}(z):=\Delta(z) / \tilde{\pi}^{q^{2}-1}$, then

Special values of modular forms I

Given any $\alpha \in S$, consider $\Lambda_{\alpha}=A \alpha+A$. Then
$\phi_{t}^{\Lambda_{\alpha}}=\theta+g(\alpha) \tau+\Delta(\alpha) \tau^{2}$. Choose any $\epsilon \in \mathbb{C}^{\times}$so that
$\Delta(\alpha) \epsilon^{q^{2}-1}=1$. Set $\Lambda:=\epsilon^{-1} \Lambda_{\alpha}$, then we have

$$
\phi_{t}^{\wedge}=\epsilon^{-1} \phi_{t}^{\wedge} \epsilon=\theta+\sqrt[q+1]{j(\alpha)} \tau+\tau^{2},
$$

where $j(\alpha):=g(\alpha)^{q+1} / \Delta(\alpha) \in \bar{k}$. Note that the period lattice of ϕ^{\wedge} is $\Lambda=A \frac{\alpha}{\epsilon}+A \frac{1}{\epsilon}$.

Since $\Delta_{\text {new }}(z):=\Delta(z) / \tilde{\pi}^{q^{2}-1}$, then

Special values of modular forms I

Given any $\alpha \in S$, consider $\Lambda_{\alpha}=A \alpha+A$. Then
$\phi_{t}^{\Lambda_{\alpha}}=\theta+g(\alpha) \tau+\Delta(\alpha) \tau^{2}$. Choose any $\epsilon \in \mathbb{C}^{\times}$so that
$\Delta(\alpha) \epsilon^{q^{2}-1}=1$. Set $\Lambda:=\epsilon^{-1} \Lambda_{\alpha}$, then we have

$$
\phi_{t}^{\wedge}=\epsilon^{-1} \phi_{t}^{\wedge} \epsilon=\theta+\sqrt[a+1]{j(\alpha)} \tau+\tau^{2}
$$

where $j(\alpha):=g(\alpha)^{q+1} / \Delta(\alpha) \in \bar{k}$. Note that the period lattice of ϕ^{Λ} is $\Lambda=A_{\epsilon}^{\alpha}+A_{\epsilon}^{1}$. Set $\omega_{\alpha}=\frac{1}{\epsilon}$, then

$$
\Delta(\alpha)=\left(\frac{1}{\epsilon}\right)^{q^{2}-1}=\omega_{\alpha}^{q^{2}-1}
$$

Since $\Delta_{\text {new }}(z):=\Delta(z) / \tilde{\pi}^{q^{2}-1}$, then

Given any $\alpha \in S$, consider $\Lambda_{\alpha}=A \alpha+A$. Then
$\phi_{t}^{\Lambda_{\alpha}}=\theta+g(\alpha) \tau+\Delta(\alpha) \tau^{2}$. Choose any $\epsilon \in \mathbb{C}^{\times}$so that
$\Delta(\alpha) \epsilon^{q^{2}-1}=1$. Set $\Lambda:=\epsilon^{-1} \Lambda_{\alpha}$, then we have

$$
\phi_{t}^{\wedge}=\epsilon^{-1} \phi_{t}^{\wedge} \epsilon=\theta+\sqrt[q+1]{j(\alpha)} \tau+\tau^{2}
$$

where $j(\alpha):=g(\alpha)^{q+1} / \Delta(\alpha) \in \bar{k}$. Note that the period lattice of ϕ^{Λ} is $\Lambda=\boldsymbol{A}_{\epsilon}^{\alpha}+\boldsymbol{A}_{\epsilon}^{1}$. Set $\omega_{\alpha}=\frac{1}{\epsilon}$, then

$$
\Delta(\alpha)=\left(\frac{1}{\epsilon}\right)^{q^{2}-1}=\omega_{\alpha}^{q^{2}-1}
$$

Since $\Delta_{\text {new }}(z):=\Delta(z) / \tilde{\pi}^{q^{2}-1}$, then

$$
\Delta_{\text {new }}(\alpha)=\left(\omega_{\alpha} / \tilde{\pi}\right)^{q^{2}-1}
$$

Special values of modular forms II

For any arithmetic modular form f of weight ℓ, consider
$f^{q^{2}-1} / \Delta_{\text {new }}^{\ell}$ which has weight zero. Since $f q^{2-1}$ and $\Delta_{\text {new }}^{\ell}$ are arithmetic, $f q^{2-1} / \Delta_{\text {new }}^{\ell}$ belongs to the function field $\bar{k}\left(G L_{2}(A) \backslash \mathbf{H}\right)=\bar{k}(j)$. For $x, y \in \mathbb{C}_{\infty}^{\times}$, we denote by $x \sim y$ if $x / y \in \bar{k}$. Since $j(\alpha) \in \bar{k}, f q^{2-1}(\alpha) / \Delta_{\text {new }}^{\ell}(\alpha) \in \bar{k}$ and hence

$$
f(\alpha) \sim\left(\frac{\omega_{\alpha}}{\tilde{\pi}}\right)^{\ell}
$$

Remark:

Special values of modular forms II

For any arithmetic modular form f of weight ℓ, consider $f q^{2}-1 / \Delta_{\text {new }}^{\ell}$ which has weight zero. Since $f q^{2-1}$ and $\Delta_{\text {new }}^{\ell}$ are arithmetic, $f q^{2-1} / \Delta_{\text {new }}^{\ell}$ belongs to the function field $\bar{k}\left(G L_{2}(A) \backslash \mathbf{H}\right)=\bar{k}(j)$.

Special values of modular forms II

For any arithmetic modular form f of weight ℓ, consider $f q^{2-1} / \Delta_{\text {new }}^{\ell}$ which has weight zero. Since $f^{q^{2}-1}$ and $\Delta_{\text {new }}^{\ell}$ are arithmetic, $f^{q^{2}-1} / \Delta_{\text {new }}^{\ell}$ belongs to the function field $\bar{k}\left(G L_{2}(A) \backslash \mathbf{H}\right)=\bar{k}(j)$. For $x, y \in \mathbb{C}_{\infty}^{\times}$, we denote by $x \sim y$ if $x / y \in \bar{k}$. Since $j(\alpha) \in \bar{k}, f q^{2}-1(\alpha) / \Delta_{\text {new }}^{\ell}(\alpha) \in \bar{k}$ and hence

$$
f(\alpha) \sim\left(\frac{\omega_{\alpha}}{\tilde{\pi}}\right)^{\ell} .
$$

For any arithmetic modular form f of weight ℓ, consider $f q^{2}-1 / \Delta_{\text {new }}^{\ell}$ which has weight zero. Since $f^{q^{2}-1}$ and $\Delta_{\text {new }}^{\ell}$ are arithmetic, $f q^{2-1} / \Delta_{\text {new }}^{\ell}$ belongs to the function field $\bar{k}\left(G L_{2}(A) \backslash \mathbf{H}\right)=\bar{k}(j)$. For $x, y \in \mathbb{C}_{\infty}^{\times}$, we denote by $x \sim y$ if $x / y \in \bar{k}$. Since $j(\alpha) \in \bar{k}, f q^{2}-1(\alpha) / \Delta_{\text {new }}^{\ell}(\alpha) \in \bar{k}$ and hence

$$
f(\alpha) \sim\left(\frac{\omega_{\alpha}}{\tilde{\pi}}\right)^{\ell}
$$

Remark:
(1) The above formula is still valid for any arithmetic modular forms for a congruence subgroup of $G L_{2}(A)$.
(2) The classical modular forms having algebraic Fourier coefficients have the same formula above.

For any arithmetic modular form f of weight ℓ, consider $f q^{2}-1 / \Delta_{\text {new }}^{\ell}$ which has weight zero. Since $f^{q^{2}-1}$ and $\Delta_{\text {new }}^{\ell}$ are arithmetic, $f^{q^{2}-1} / \Delta_{\text {new }}^{\ell}$ belongs to the function field $\bar{k}\left(G L_{2}(A) \backslash \mathbf{H}\right)=\bar{k}(j)$. For $x, y \in \mathbb{C}_{\infty}^{\times}$, we denote by $x \sim y$ if $x / y \in \bar{k}$. Since $j(\alpha) \in \bar{k}, f^{q^{2}-1}(\alpha) / \Delta_{\text {new }}^{\ell}(\alpha) \in \bar{k}$ and hence

$$
f(\alpha) \sim\left(\frac{\omega_{\alpha}}{\tilde{\pi}}\right)^{\ell}
$$

Remark:
(1) The above formula is still valid for any arithmetic modular forms for a congruence subgroup of $G L_{2}(A)$.
(2) The classical modular forms having algebraic Fourier coefficients have the same formula above.

Special values of $E(\alpha)$ I

Recall that the quasi-modular forms in question are lying in $\bar{k}\left[g_{\text {new }}, h, E\right]$, and $g_{\text {new }}, h$ are modular forms. So it suffices to investigate the value $E(\alpha)$. We claim that

$$
E(\alpha) \sim \frac{\omega_{\alpha} F_{\phi^{\wedge}, \tau}\left(\omega_{\alpha}\right)}{\tilde{\pi}^{2}}
$$

Classical case: Recall $G_{2}(z)=\sum_{m} \sum_{n}^{\prime} \frac{1}{(m z+n)^{2}}$ and

$$
E_{2}(z)=\frac{6}{\pi^{2}} G_{2}(z)
$$

For $\tau \in \mathbb{H}$, let $\Lambda_{\tau}:=\mathbb{Z} \tau+\mathbb{Z}$. Let E_{τ} be the elliptic curve associated to Λ_{τ} and set

$$
\eta_{2}:=\int_{0}^{1} \wp \wedge_{\tau}(z) d z
$$

Katz: $\eta_{2}=G_{2}(\tau)$.

Special values of $E(\alpha)$ I

Recall that the quasi-modular forms in question are lying in $\bar{k}\left[g_{\text {new }}, h, E\right]$, and $g_{\text {new }}, h$ are modular forms. So it suffices to investigate the value $E(\alpha)$. We claim that

$$
E(\alpha) \sim \frac{\omega_{\alpha} F_{\phi^{\wedge}, \tau}\left(\omega_{\alpha}\right)}{\tilde{\pi}^{2}}
$$

Classical case: Recall $G_{2}(z)=\sum_{m} \sum_{n}^{\prime} \frac{1}{(m z+n)^{2}}$ and

$$
E_{2}(z)=\frac{6}{\pi^{2}} G_{2}(z)
$$

For $\tau \in \mathbb{H}$, let $\Lambda_{\tau}:=\mathbb{Z} \tau+\mathbb{Z}$. Let E_{τ} be the elliptic curve associated to Λ_{τ} and set

$$
\eta_{2}:=\int_{0}^{1} \wp \wedge_{\tau}(z) d z
$$

Katz: $\eta_{2}=G_{2}(\tau)$.

Recall that the quasi-modular forms in question are lying in $\bar{k}\left[g_{\text {new }}, h, E\right]$, and $g_{\text {new }}, h$ are modular forms. So it suffices to investigate the value $E(\alpha)$. We claim that

$$
E(\alpha) \sim \frac{\omega_{\alpha} F_{\phi^{\wedge}, \tau}\left(\omega_{\alpha}\right)}{\tilde{\pi}^{2}}
$$

Classical case: Recall $G_{2}(z)=\sum_{m} \sum_{n}^{\prime} \frac{1}{(m z+n)^{2}}$ and

$$
E_{2}(z)=\frac{6}{\pi^{2}} G_{2}(z)
$$

For $\tau \in \mathbb{H}$, let $\Lambda_{\tau}:=\mathbb{Z} \tau+\mathbb{Z}$. Let E_{τ} be the elliptic curve associated to Λ_{τ} and set

$$
\eta_{2}:=\int_{0}^{1} \wp \wedge_{\tau}(z) d z
$$

Katz: $\eta_{2}=G_{2}(\tau)$.

Special values of $E(\alpha)$ II

Gekeler: For any $z \in \mathbf{H}$, let $\Lambda_{z}=A z+A$. Then

$$
F_{\phi^{\wedge z}, \tau}(1)=\frac{E(z)}{\tilde{\pi}^{q-1} h(z)} .
$$

For $\alpha \in S$, recall $\Lambda_{\alpha}=A \alpha+A$ and $\Lambda=A \alpha \omega_{\alpha}+A \omega_{\alpha}$. Since

$$
F_{\phi^{\wedge}, \tau}(z)=\omega_{\alpha}^{q} F_{\phi^{\wedge}, \tau}\left(\omega_{\alpha}^{-1} z\right) .
$$

Replacing z by ω_{α} and using Gekeler's formula, we have

Note that ϕ^{\wedge} is defined over \bar{k} and so our Theorem 1 implies $\omega_{\alpha} / \tilde{\pi}$ and $F_{\phi^{\wedge}, \tau}\left(\omega_{\alpha}\right) / \tilde{\pi}$ are algebraically independent over \bar{k}.
Therefore we obtain the transcendence of $f(\alpha)$ for nonzero weight quasi-modular form $f \in \bar{k}\left[g_{\text {new }}, h, E\right]$, since $f(\alpha)$ is

Special values of $E(\alpha)$ II

Gekeler: For any $z \in \mathbf{H}$, let $\Lambda_{z}=A z+A$. Then

$$
F_{\phi^{\wedge z}, \tau}(1)=\frac{E(z)}{\tilde{\pi}^{q-1} h(z)} .
$$

For $\alpha \in S$, recall $\Lambda_{\alpha}=A \alpha+A$ and $\Lambda=A \alpha \omega_{\alpha}+A \omega_{\alpha}$. Since

$$
\begin{aligned}
\phi_{t}^{\wedge} & =\omega_{\alpha} \phi_{t}^{\wedge_{\alpha}} \omega_{\alpha}^{-1} \\
F_{\phi^{\wedge}, \tau}(z) & =\omega_{\alpha}^{q} F_{\phi^{\wedge}, \tau}\left(\omega_{\alpha}^{-1} z\right) .
\end{aligned}
$$

Replacing z by ω_{α} and using Gekeler's formula, we have

Note that ϕ^{\wedge} is defined over \bar{k} and so our Theorem 1 implies $\omega_{\alpha} / \tilde{\pi}$ and $F_{\phi^{\wedge} . \tau}\left(\omega_{\alpha}\right) / \tilde{\pi}$ are algebraically independent over \bar{k}.
Therefore we obtain the transcendence of $f(\alpha)$ for nonzero weight quasi-modular form $f \in \bar{k}\left[g_{\text {new }}, h, E\right]$, since $f(\alpha)$ is

Special values of $E(\alpha)$ II

Gekeler: For any $z \in \mathbf{H}$, let $\Lambda_{z}=A z+A$. Then

$$
F_{\phi^{\wedge}, \tau}(1)=\frac{E(z)}{\tilde{\pi}^{q-1} h(z)}
$$

For $\alpha \in S$, recall $\Lambda_{\alpha}=A \alpha+A$ and $\Lambda=A \alpha \omega_{\alpha}+\boldsymbol{A} \omega_{\alpha}$. Since

$$
\begin{aligned}
\phi_{t}^{\wedge} & =\omega_{\alpha} \phi_{t}^{\wedge_{\alpha}} \omega_{\alpha}^{-1}, \\
F_{\phi^{\wedge}, \tau}(z) & =\omega_{\alpha}^{q} F_{\phi^{\wedge}, \tau}\left(\omega_{\alpha}^{-1} z\right) .
\end{aligned}
$$

Replacing z by ω_{α} and using Gekeler's formula, we have

$$
E(\alpha) \sim \frac{\omega_{\alpha} F_{\phi^{\wedge}, \tau}\left(\omega_{\alpha}\right)}{\tilde{\pi}^{2}}
$$

Note that ϕ^{\wedge} is defined over \bar{k} and so our Theorem 1 implies $\omega_{\alpha} / \tilde{\pi}$ and $F_{\phi^{\wedge}, \tau}\left(\omega_{\alpha}\right) / \tilde{\pi}$ are algebraically independent over \bar{k}.
Therefore we obtain the transcendence of $f(\alpha)$ for nonzero weight quasi-modular form $f \in \bar{k}\left[g_{\text {new }}, h, E\right]$, since $f(\alpha)$ is

Gekeler: For any $z \in \mathbf{H}$, let $\Lambda_{z}=A z+A$. Then

$$
F_{\phi^{\wedge}, \tau}(1)=\frac{E(z)}{\tilde{\pi}^{q-1} h(z)}
$$

For $\alpha \in S$, recall $\Lambda_{\alpha}=A \alpha+A$ and $\Lambda=A \alpha \omega_{\alpha}+A \omega_{\alpha}$. Since

$$
\begin{aligned}
\phi_{t}^{\wedge} & =\omega_{\alpha} \phi_{t}^{\wedge_{\alpha}} \omega_{\alpha}^{-1}, \\
F_{\phi^{\wedge}, \tau}(z) & =\omega_{\alpha}^{q} F_{\phi^{\wedge}, \tau}\left(\omega_{\alpha}^{-1} z\right) .
\end{aligned}
$$

Replacing z by ω_{α} and using Gekeler's formula, we have

$$
E(\alpha) \sim \frac{\omega_{\alpha} F_{\phi^{\wedge}, \tau}\left(\omega_{\alpha}\right)}{\tilde{\pi}^{2}}
$$

Note that ϕ^{Λ} is defined over \bar{k} and so our Theorem 1 implies $\omega_{\alpha} / \tilde{\pi}$ and $F_{\phi^{\wedge}, \tau}\left(\omega_{\alpha}\right) / \tilde{\pi}$ are algebraically independent over \bar{k}. Therefore we obtain the transcendence of $f(\alpha)$ for nonzero weight quasi-modular form $f \in \bar{k}\left[g_{\text {new }}, h, E\right]$, since $f(\alpha)$ is homogeneous over \bar{k} in $\left(\omega_{\alpha} / \tilde{\pi}\right)^{q-1},\left(\omega_{\alpha} / \tilde{\pi}\right)^{q+1}$ and $\frac{\omega_{\alpha} F_{\phi^{\wedge}, \tau}\left(\omega_{\alpha}\right)}{\tilde{\pi}^{2} \equiv}$.

Motivic interpretation of $E(\alpha)$

Given $\alpha \in S$, let $\kappa:=\sqrt[q+1]{j(\alpha)} \in \bar{k}$. Then $\phi_{t}^{\wedge}=\theta+\kappa \tau+\tau^{2}$. Define

$$
\Phi_{\alpha}:=\left(\begin{array}{cc}
-k^{1 / q}(t-\theta) & (t-\theta) \\
1 & 0
\end{array}\right)
$$

define a pre- t-motive M_{α}. Then we have:

Motivic interpretation of $E(\alpha)$

Given $\alpha \in S$, let $\kappa:=\sqrt[q+1]{j(\alpha)} \in \bar{k}$. Then $\phi_{t}^{\Lambda}=\theta+\kappa \tau+\tau^{2}$. Define

$$
\Phi_{\alpha}:=\left(\begin{array}{cc}
-\kappa^{1 / q}(t-\theta) & (t-\theta) \\
1 & 0
\end{array}\right)
$$

define a pre- t-motive M_{α}. Then we have:

Motivic interpretation of $E(\alpha)$

Given $\alpha \in S$, let $\kappa:=\sqrt[a+1]{j(\alpha)} \in \bar{k}$. Then $\phi_{t}^{\wedge}=\theta+\kappa \tau+\tau^{2}$. Define

$$
\Phi_{\alpha}:=\left(\begin{array}{cc}
-\kappa^{1 / q}(t-\theta) & (t-\theta) \\
1 & 0
\end{array}\right)
$$

define a pre-t-motive M_{α}. Then we have:
(1) M_{α} is rigid analytically trivial and the solution matrix for $\Psi_{\alpha}^{(-1)}=\Phi_{\alpha} \Psi_{\alpha}$ is given by certain generating functions in terms of E and α (based on functions defined by Pellarin);
(3) The motivic Galois $\Gamma_{M_{\alpha}}$ is either $\operatorname{Res}_{\mathcal{K}_{\alpha} / \mathbb{F}_{q}(t)}\left(\mathbb{G}_{m / \mathcal{K}_{\alpha}}\right)$ (if $\alpha \in \mathrm{CM}$) or $\mathrm{GL}_{2 / \mathbb{F}_{q}(t)}$ (if $\alpha \in \mathrm{NCM}$).

Motivic interpretation of $E(\alpha)$

Given $\alpha \in S$, let $\kappa:=\sqrt[a+1]{j(\alpha)} \in \bar{k}$. Then $\phi_{t}^{\wedge}=\theta+\kappa \tau+\tau^{2}$. Define

$$
\Phi_{\alpha}:=\left(\begin{array}{cc}
-\kappa^{1 / q}(t-\theta) & (t-\theta) \\
1 & 0
\end{array}\right)
$$

define a pre- t-motive M_{α}. Then we have:
(1) M_{α} is rigid analytically trivial and the solution matrix for $\Psi_{\alpha}^{(-1)}=\Phi_{\alpha} \Psi_{\alpha}$ is given by certain generating functions in terms of E and α (based on functions defined by Pellarin);
(2) $\mathcal{K}_{\alpha}:=\operatorname{End}_{\bar{k}(t)\left[\sigma, \sigma^{-1}\right]}\left(M_{\alpha}\right) \cong \operatorname{Frac}\left(\operatorname{End}\left(\phi^{\wedge}\right)\right)$. That is, $\mathcal{K}_{\alpha} \cong k(\alpha)$ if $\alpha \in \mathrm{CM} ; \mathcal{K}_{\alpha}=\mathbb{F}_{q}(t)$ if $\alpha \in \mathrm{NCM}$.

Motivic interpretation of $E(\alpha)$

Given $\alpha \in S$, let $\kappa:=\sqrt[q+1]{j(\alpha)} \in \bar{k}$. Then $\phi_{t}^{\Lambda}=\theta+\kappa \tau+\tau^{2}$. Define

$$
\Phi_{\alpha}:=\left(\begin{array}{cc}
-\kappa^{1 / q}(t-\theta) & (t-\theta) \\
1 & 0
\end{array}\right)
$$

define a pre-t-motive M_{α}. Then we have:
(1) M_{α} is rigid analytically trivial and the solution matrix for $\Psi_{\alpha}^{(-1)}=\Phi_{\alpha} \Psi_{\alpha}$ is given by certain generating functions in terms of E and α (based on functions defined by Pellarin);
(2) $\mathcal{K}_{\alpha}:=\operatorname{End}_{\bar{k}(t)\left[\sigma, \sigma^{-1}\right]}\left(M_{\alpha}\right) \cong \operatorname{Frac}\left(\operatorname{End}\left(\phi^{\wedge}\right)\right)$. That is, $\mathcal{K}_{\alpha} \cong k(\alpha)$ if $\alpha \in \mathrm{CM} ; \mathcal{K}_{\alpha}=\mathbb{F}_{q}(t)$ if $\alpha \in \mathrm{NCM}$.
(3) The motivic Galois $\Gamma_{M_{\alpha}}$ is either $\operatorname{Res}_{\mathcal{K}_{\alpha} / \mathbb{F}_{q}(t)}\left(\mathbb{G}_{m / \mathcal{K}_{\alpha}}\right)$ (if $\alpha \in \mathrm{CM}$) or $\mathrm{GL}_{2 / \mathbb{F}_{q}(t)}$ (if $\alpha \in \mathrm{NCM}$).

Summary

Results for Drinfeld modules
(1) Prove a period conjecture;
(2) Establish an analogue of Mumford-Tate conjecture;
(3) Alaebraic independence of Drinfeld logarithms:
(4) Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

Transcendence Philosophy

No surprising algebraic relatio

Summary

Results for Drinfeld modules
(1) Prove a period conjecture;
© Establish an analogue of Mumford-Tate conjecture;
(Algebraic independence of Drinfeld logarithms;

- Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

Transcendence Philosophy

No surprising algebraic relations among periods!

Summary

Results for Drinfeld modules
(1) Prove a period conjecture;
(2) Establish an analogue of Mumford-Tate conjecture;
(3) Algebraic independence of Drinfeld logarithms;
(4) Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

Transcendence Philosophy

No surprising alaebraic relatio ns among periods!

Summary

Results for Drinfeld modules
(1) Prove a period conjecture;
(2) Establish an analogue of Mumford-Tate conjecture;
(3) Algebraic independence of Drinfeld logarithms;
(Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

Transcendence Philosophy

No surprising alaebraic relations among periods.

Summary

Results for Drinfeld modules
(1) Prove a period conjecture;
(2) Establish an analogue of Mumford-Tate conjecture;
(3) Algebraic independence of Drinfeld logarithms;
(4) Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms

Transcendence Philosophy
No surprising algebraic relatio s among periods.

Summary

Results for Drinfeld modules

(1) Prove a period conjecture;
(2) Establish an analogue of Mumford-Tate conjecture;
(3) Algebraic independence of Drinfeld logarithms;
(4) Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms
(1) Transcendence of values of positive weight at $\alpha \in S$;
(2) Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy
No surprising algebraic relations among periods!

Summary

Results for Drinfeld modules

(1) Prove a period conjecture;
(2) Establish an analogue of Mumford-Tate conjecture;
(3) Algebraic independence of Drinfeld logarithms;
(4) Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms
(1) Transcendence of values of positive weight at $\alpha \in S$;
(2) Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy
No surprising algebraic relations among periods!

Summary

Results for Drinfeld modules

(1) Prove a period conjecture;
(2) Establish an analogue of Mumford-Tate conjecture;
(3) Algebraic independence of Drinfeld logarithms;
(4) Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms
(1) Transcendence of values of positive weight at $\alpha \in S$;
(2) Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy
No surprising algebraic relations among periods!

Summary

Results for Drinfeld modules

(1) Prove a period conjecture;
(2) Establish an analogue of Mumford-Tate conjecture;
(3) Algebraic independence of Drinfeld logarithms;
(4) Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms
(1) Transcendence of values of positive weight at $\alpha \in S$;
(2) Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy

No surprising algebraic relations among periods! All algebraic
relations should be explained motivical

Summary

Results for Drinfeld modules

(1) Prove a period conjecture;
(2) Establish an analogue of Mumford-Tate conjecture;
(3) Algebraic independence of Drinfeld logarithms;
(4) Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms
(1) Transcendence of values of positive weight at $\alpha \in S$;
(2) Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy

No surprising algebraic relations among periods! All algebraic
relations should be explained motivical

Summary

Results for Drinfeld modules

(1) Prove a period conjecture;
(2) Establish an analogue of Mumford-Tate conjecture;
(3) Algebraic independence of Drinfeld logarithms;
(4) Tools: Papanikolas' theory + Pink's theorem on the size of v-adic Galois image.

Result for arithmetic quasi-modular forms
(1) Transcendence of values of positive weight at $\alpha \in S$;
(2) Tools: Gekeler's formula+ Result of period conjecture for rank equal to 2.

Transcendence Philosophy

No surprising algebraic relations among periods! All algebraic relations should be explained motivically.

