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Notation

1 A := Fq[θ];
2 k := Fq(θ), |θ|∞ = q;
3 k∞ := Fq((1/θ));

4 C∞ := k̂∞;
5 t : independent variable of θ;
6 T := {f ∈ C∞[[t ]]; f converges on |t |∞ ≤ 1};
7 ρ: a rank r Drinfeld Fq[t ]-module defined over k̄ ;
8 Λρ: the period lattice of ρ;
9 H1

DR(ρ): the DeRham cohomology of ρ;
10 Fδ: the quasi-periodic function of ρ associated to a given

biderivation δ
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DeRham Isomorphism

Recall the well-defined pairing:

H1
DR(ρ)× Λρ → C∞

([δ], λ) 7→
∫
λ δ := Fδ(λ).

Anderson, Gekeler: The above map is a perfect pairing. So we
have the isomorphism as comparison between the DeRham
and Betti cohomologies of the Drinfeld module ρ:

H1
DR(ρ)→ HomA(Λρ,C∞) =: HBetti(ρ).

For any basis {[δ1], . . . , [δr ]} of H1
DR(ρ) defined over k̄ , i.e.,

δi(Fq[t ]) ⊆ k̄ [τ ]τ , and any A-basis {λ1, . . . , λr} of Λρ, the r × r
matrix

Pρ = (

∫
λi

δj)

is called period matrix of the Drinfeld module ρ.
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Natural Relations among Entries of Period Matrix

Each endomorphism f of ρ induces a homomorphism

f ∗ : (δ 7→ f ∗δ (t 7→ δt f )) : HDR(ρ)→ HDR(ρ).

The quasi-periodic function of f ∗δ is given by Ff∗δ(z) = Fδ(b0x)
for f =

∑n
i=0 b0τ

i . Write f ∗δj =
∑r

`=1 c`δ` and b0λi =
∑r

`=1 d`λ`,
then evaluating z = λi ∈ Λρ we obtain

r∑
`=1

c`Fδ`(λi) =
r∑
`=1

d`Fδj (λ`).

If f /∈ ρ(Fq[t ]), then it is a nontrivial k̄ -linear relation among the
values ∫

λi

δj := Fδj (λi).
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Period Conjecture for Drinfeld modules

Yu 1997, Brownawell 2001

All the k̄ -linearly relations among the entries of the period
matrix Pρ are those induced from the endomorphisms of ρ. In
particular, dimk̄ k̄ -Span

{∫
λi
δj ; 1 ≤ i , j ≤ r

}
= r2/s, where

s := [End(ρ) : A].

Period Conjecture for Drinfeld modules (Brownawell-Yu)

All the k̄ -algebraic relations among the entries of the period
matrix Pρ are those induced from the endomorphisms of ρ. So

tr.degk̄ k̄(

∫
λi

δj) = r2/s.

Theorem 1 (Chang-Papanikolas 2009)

The period conjecture is true (also true for general A).
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Algebraic independence of Drinfeld logarithms

Yu 1997 (Analogue of Baker’s Theorem)

Let u1, . . . ,un ∈ C∞ satisfy expρ(ui) ∈ k̄ for all i . If u1, . . . ,un
are linear independent over End(ρ), then 1,u1, . . . ,un are
linearly independent over k̄ .

Theorem 2 (Chang-Papanikolas 2009)
Assumption as above. Then u1, . . . ,un are algebraically
independent over k̄ (also valid for general A).

Classical conjecture

Let u1, . . . ,un satisfy eui ∈ Q for all i . If u1, . . . ,un are linearly
independent over Q, then u1, . . . ,un are algebraically
independent over Q.
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Logarithms and Quasi-Periodic Functions

Yu 1997, Brownawell 2001

Fix a basis {[δ1], . . . , [δr ]} of H1
DR(ρ) defined over k̄ . Let

u1, . . . ,un ∈ C∞ satisfy expρ(ui) ∈ k̄ for all i . Suppose that
u1, . . . ,un are linearly independent over End(ρ), then the
following rn values

Fδ1(u1), . . . ,Fδ1(un)
...

Fδr (u1), . . . ,Fδr (un)

are linearly independent over k̄ .

Theorem 3 (Chang-Papanikolas 2009)

Assumption as above. Suppose that the fraction field of End(ρ)
is separable over k . Then the above rn values are algebraically
independent over k̄ .
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Sketch of the proof of Period Conjecture

Step I: Solving difference equations
W.L.O.G, we may assume that ρ is given by
ρt := θ + κ1τ + . . .+ κr−1τ

r−1 + τ r . Let

Φ :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1

(t − θ) −κ1/q
1 −κ1/q2

2 · · · −κ1/qr−1

r−1

 ∈ Matr (k̄ [t ]),

then following Pellarin we use Anderson generating functions to
create Ψ ∈ GLr (T) so that

Ψ(−1) = ΦΨ, and k̄(Ψ(θ)) = k̄(

∫
λi

δj).

By Papanikolas’ theory, it suffices to prove dim ΓΨ = r2/s.
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Sketch of the proof of Period Conjecture

Let M be the rigid analytically trivial pre-t-motive defined by Φ.
Anderson showed that there is a fully faithful functor{

Drinfeld Fq[t ]-modules/k̄ up to isogeny
}
→ {R.A.T. pre-t-motives} ,

we have
frac(End(ρ)) ∼= Endk̄(t)[σ,σ−1](M) =: K

Note that [K : Fq(t)] = s.
Step II: Prove

ΓΨ = CentGLr/Fq (t)
(K) ∼= ResK/Fq(t)(GL r

s /K
)

and hence finish the proof of Period Conjecture.
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Sketch of the proof of ΓΨ
∼= CentGLr/Fq(t)(K)

Let RM be the Tannakian subcategory generated by M. As RM
is functorial in M, we have a natural upper bound for ΓΨ:

ΓΨ ⊆ CentGLr/Fq (t)
(K).

Question: How to obtain a lower bound for ΓΨ?
Answer: Connection to Galois representations.
Let K be a finite extension of k so that End(ρ) ⊆ K [τ ]. Given a
prime v in Fq[t ], we let

Tv (ρ) := lim
←
ρ[vn].

Let Av := Fq[t ]v and kv := Fq(t)v , then we have the v -adic
Galois representation

φv : GK := Gal(K sep/K )→ Aut(kv ⊗Av Tv (ρ)) = GLr (kv ).
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Sketch of the proof of ΓΨ
∼= CentGLr/Fq(t)(K)

Pink 1997: φv (GK ) ⊆ CentGLr (kv )(K) is Zariski dense.
Key Lemma (Lower bound for ΓΨ): For v = t , enlarge K so that
Spec k̄(t)[Ψij ,1/detΨ] is defined over K (t), then one has

φv (GK ) ⊆ ΓΨ(kv ) (⊆ CentGLr (kv )(K)).

Pink’s theorem implies ΓΨ(kv ) = CentGLr (kv )(K) for v = t and
hence

ΓΨ = CentGLr/Fq(t)(K).

Corollary: For each prime v , we have the analogue of
Mumford-Tate conjecture

φv (GK ) ⊆ ΓΨ(kv ) is Zariski dense.
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Drinfeld modular forms

For any z ∈ H := C∞ \ k∞, we let Λz := Az + A. Its
corresponding rank 2 Drinfeld Fq[t ]-module is given by

φΛz : t 7→ θ + g(z)τ + ∆(z)τ2.

Regarding g and ∆ as functions on H,then
1 g is a Drinfeld modular form of weight q − 1, type 0;
2 ∆ is a Drinfeld modular form of weight q2 − 1, type 0.

Goss, Gekeler: Put gnew := g/π̃q−1 and ∆new := ∆/π̃q2−1, then

gnew ,∆new ∈ k̄ [[q∞(z)]], where q∞(z) := 1/expC(π̃z).

There is a modular form h ∈ k̄ [[q∞]] (Poincaré series) of weight
q + 1, type 1 for which hq−1 = −∆new . Then graded ring
generated by modular forms (graded by weights) is given by

C∞[gnew ,h].
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Drinfeld quasi-modular forms

Gekeler: Set E := 1
π̃

d
dz ∆(z)

∆(z) ∈ k̄ [[q∞]]. Then E is called false
Eisenstein series of weight 2 since for γ ∈ GL2(A),

E(γz) = (cz + d)2(detγ)−1
(

E(z)− c
π̃(cz + d)

)
.

Definition/Theorem (Bosser-Pellarin 2008): Any such function

f =
∑

(q−1)i+(q+1)j+2e=`

aijeg i
newhjEe ∈ C∞[gnew ,h,E ]

is called a Drinfeld quasi-modular form of weight `.
Defintion: A quasi-modular form f is called arithmetic if

f ∈ k̄ [[q∞]]

.



Drinfeld quasi-modular forms

Gekeler: Set E := 1
π̃

d
dz ∆(z)

∆(z) ∈ k̄ [[q∞]]. Then E is called false
Eisenstein series of weight 2 since for γ ∈ GL2(A),

E(γz) = (cz + d)2(detγ)−1
(

E(z)− c
π̃(cz + d)

)
.

Definition/Theorem (Bosser-Pellarin 2008): Any such function

f =
∑

(q−1)i+(q+1)j+2e=`

aijeg i
newhjEe ∈ C∞[gnew ,h,E ]

is called a Drinfeld quasi-modular form of weight `.
Defintion: A quasi-modular form f is called arithmetic if

f ∈ k̄ [[q∞]]

.



Drinfeld quasi-modular forms

Gekeler: Set E := 1
π̃

d
dz ∆(z)

∆(z) ∈ k̄ [[q∞]]. Then E is called false
Eisenstein series of weight 2 since for γ ∈ GL2(A),

E(γz) = (cz + d)2(detγ)−1
(

E(z)− c
π̃(cz + d)

)
.

Definition/Theorem (Bosser-Pellarin 2008): Any such function

f =
∑

(q−1)i+(q+1)j+2e=`

aijeg i
newhjEe ∈ C∞[gnew ,h,E ]

is called a Drinfeld quasi-modular form of weight `.
Defintion: A quasi-modular form f is called arithmetic if

f ∈ k̄ [[q∞]]

.



The algebraic points on GL2(A)\H
Recall that the set of isomorphism classes of rank 2 Drinfeld
Fq[t ]-modules can be identified with GL2(A)\H and GL2(A)\H
is analytically isomorphic to C∞ via the j-invariant function

j(:= gq+1/∆) : GL2(A)\H → C∞
z 7→ j(z).

Set
S :=

{
α ∈ H; j(α) ∈ k̄

}
Then for each α ∈ S, there exists ωα ∈ C∞ so that the rank 2
Drinfeld Fq[t ]-module φΛ is defined over k̄ , where
Λ := Aαωα + Aωα (period lattice of φΛ). Note that

S = CM t NCM,

1 CM := {α ∈ H; α is quadratic over k} (set of CM points)
2 NCM := S\CM (set of non CM points).
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Transcendence results

Theorem 4 (Chang 2009)

Let f be an arithmetic quasi-modular form of nonzero weight.
Given any α ∈ S :=

{
α ∈ H; j(α) ∈ k̄

}
so that f (α) 6= 0, then

f (α) is transcendental over k .

Remark
1 Algebraic independence of f (α), α ∈ S (work in progress).
2 Similar question to f (α) in the classical case. The

transcendence of f (α) is only known for CM point α.

Question: Why is f (α) interesting?
Answer:

1 It has connection to periods and quasi-periods of rank 2
Drinfeld Fq[t ]-modules defined over k̄ ;

2 It has motivic interpretation.
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Special values of modular forms I

Given any α ∈ S, consider Λα = Aα + A. Then
φΛα

t = θ + g(α)τ + ∆(α)τ2. Choose any ε ∈ C× so that
∆(α)εq

2−1 = 1. Set Λ := ε−1Λα, then we have

φΛ
t = ε−1φΛ

t ε = θ + q+1
√

j(α)τ + τ2,

where j(α) := g(α)q+1/∆(α) ∈ k̄ . Note that the period lattice of
φΛ is Λ = Aα

ε + A1
ε . Set ωα = 1

ε , then

∆(α) = (
1
ε

)q2−1 = ωq2−1
α .

Since ∆new (z) := ∆(z)/π̃q2−1, then

∆new (α) = (ωα/π̃)q2−1.
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Special values of modular forms II

For any arithmetic modular form f of weight `, consider
f q2−1/∆`

new which has weight zero. Since f q2−1 and ∆`
new are

arithmetic, f q2−1/∆`
new belongs to the function field

k̄(GL2(A)\H) = k̄(j). For x , y ∈ C×∞, we denote by x ∼ y if
x/y ∈ k̄ . Since j(α) ∈ k̄ , f q2−1(α)/∆`

new (α) ∈ k̄ and hence

f (α) ∼ (
ωα
π̃

)`.

Remark:
1 The above formula is still valid for any arithmetic modular

forms for a congruence subgroup of GL2(A).
2 The classical modular forms having algebraic Fourier

coefficients have the same formula above.
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Special values of E(α) I

Recall that the quasi-modular forms in question are lying in
k̄ [gnew ,h,E ], and gnew ,h are modular forms. So it suffices to
investigate the value E(α). We claim that

E(α) ∼
ωαFφΛ,τ (ωα)

π̃2 .

Classical case: Recall G2(z) =
∑

m
∑′

n
1

(mz+n)2 and

E2(z) =
6
π2 G2(z).

For τ ∈ H, let Λτ := Zτ + Z. Let Eτ be the elliptic curve
associated to Λτ and set

η2 :=

∫ 1

0
℘Λτ (z)dz.

Katz: η2 = G2(τ).
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Special values of E(α) II

Gekeler: For any z ∈ H, let Λz = Az + A. Then

FφΛz ,τ (1) =
E(z)

π̃q−1h(z)
.

For α ∈ S, recall Λα = Aα + A and Λ = Aαωα + Aωα. Since

φΛ
t = ωαφ

Λα
t ω−1

α ,

FφΛ,τ (z) = ωq
αFφΛα ,τ (ω−1

α z).

Replacing z by ωα and using Gekeler’s formula, we have

E(α) ∼
ωαFφΛ,τ (ωα)

π̃2 .

Note that φΛ is defined over k̄ and so our Theorem 1 implies
ωα/π̃ and FφΛ,τ (ωα)/π̃ are algebraically independent over k̄ .
Therefore we obtain the transcendence of f (α) for nonzero
weight quasi-modular form f ∈ k̄ [gnew ,h,E ], since f (α) is

homogeneous over k̄ in (ωα/π̃)q−1, (ωα/π̃)q+1 and
ωαF

φΛ,τ
(ωα)

π̃2 .
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Motivic interpretation of E(α)

Given α ∈ S, let κ := q+1
√

j(α) ∈ k̄ . Then φΛ
t = θ + κτ + τ2.

Define

Φα :=

(
−κ1/q(t − θ) (t − θ)

1 0

)
define a pre-t-motive Mα. Then we have:

1 Mα is rigid analytically trivial and the solution matrix for
Ψ

(−1)
α = ΦαΨα is given by certain generating functions in

terms of E and α (based on functions defined by Pellarin);
2 Kα := Endk̄(t)[σ,σ−1](Mα) ∼= Frac(End(φΛ)). That is,
Kα ∼= k(α) if α ∈ CM; Kα = Fq(t) if α ∈ NCM.

3 The motivic Galois ΓMα is either ResKα/Fq(t)(Gm/Kα) (if
α ∈CM) or GL2/Fq(t) (if α ∈NCM).
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Summary

Results for Drinfeld modules
1 Prove a period conjecture;
2 Establish an analogue of Mumford-Tate conjecture;
3 Algebraic independence of Drinfeld logarithms;
4 Tools: Papanikolas’ theory + Pink’s theorem on the size of

v -adic Galois image.

Result for arithmetic quasi-modular forms
1 Transcendence of values of positive weight at α ∈ S;
2 Tools: Gekeler’s formula+ Result of period conjecture for

rank equal to 2.

Transcendence Philosophy
No surprising algebraic relations among periods! All algebraic
relations should be explained motivically.
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