Drinfeld Modules and t-Modules A Very Brief Introduction

W. Dale Brownawell

Penn State University

BIRS Workshop on t-Motives
Semptember 28 - October 2, 2009

Outline

(1) Classical Forebears

(2) Analogues for Function Fields

Classical Forebears

Arithmetic objects from characteristic 0

- The multiplicative group and $\exp (z)$
- Elliptic curves and elliptic functions
- Abelian varieties

The multiplicative group

We have the usual exact sequence of abelian groups

$$
0 \rightarrow 2 \pi i \mathbb{Z} \rightarrow \mathbb{C} \xrightarrow{\exp } \mathbb{C}^{\times} \rightarrow 0
$$

where

$$
\exp (z)=\sum_{i=0}^{\infty} \frac{z^{i}}{i!} \in \mathbb{Q}[[z]]
$$

For any $n \in \mathbb{Z}$,

which is simply a restatement of the functional equation

$$
\exp (n z)=\exp (z)^{n}
$$

The multiplicative group

We have the usual exact sequence of abelian groups

$$
0 \rightarrow 2 \pi i \mathbb{Z} \rightarrow \mathbb{C} \xrightarrow{\exp } \mathbb{C}^{\times} \rightarrow 0
$$

where

$$
\exp (z)=\sum_{i=0}^{\infty} \frac{z^{i}}{i!} \in \mathbb{Q}[[z]]
$$

For any $n \in \mathbb{Z}$,

which is simply a restatement of the functional equation

$$
\exp (n z)=\exp (z)^{n}
$$

Roots of unity

Torsion in the multiplicative group

The n-th roots of unity are defined by

$$
\mu_{n}:=\left\{\zeta \in \mathbb{C}^{\times} \mid \zeta^{n}=1\right\}=\{\exp (2 \pi i a / n) \mid a \in \mathbb{Z}\}
$$

- $\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{n}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{\times}$.
- Kronecker-Weber Theorem: The cyclotomic fields $\mathbb{Q}\left(\mu_{n}\right)$ provide explicit class field theory for \mathbb{Q}.
- For $\zeta \in \mu_{n}$,

$$
\log (\zeta)=\frac{2 \pi i a}{n}, \quad 0 \leq a<n
$$

Elliptic curves over \mathbb{C}

Smooth projective algebraic curve of genus 1 .

$$
E: y^{2}=4 x^{3}+a x+b, \quad a, b \in \mathbb{C}
$$

$E(\mathbb{C})$ has the structure of an abelian group through the usual chord-tangent construction.

Weierstrass uniformization

There exist $\omega_{1}, \omega_{2} \in \mathbb{C}$, linearly independent over \mathbb{R}, so that if we consider the lattice

$$
\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}
$$

then the Weierstrass \wp-function is defined by

$$
\wp_{\Lambda}(z)=\frac{1}{z^{2}}+\sum_{\substack{\omega \in \Lambda \\ \omega \neq 0}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

The function $\wp(z)$ has double poles at each point in Λ and no other poles.

We obtain an exact sequence of abelian groups,

$$
0 \rightarrow \Lambda \rightarrow \mathbb{C} \xrightarrow{\exp _{E}} E(\mathbb{C}) \rightarrow 0
$$

where

$$
\exp _{E}(z)=\left(\wp(z), \wp^{\prime}(z)\right)
$$

with commutative diagram

where $[n] P$ is the n-th multiple of a point P on the elliptic curve E.

Periods of E

How do we find ω_{1} and ω_{2} ?

An elliptic curve E,

$$
E: y^{2}=4 x^{3}+a x+b, \quad a, b \in \mathbb{C}
$$

has the geometric structure of a torus in $\mathbb{P}^{2}(\mathbb{C})$. Let

$$
\gamma_{1}, \gamma_{2} \in H_{1}(E, \mathbb{Z})
$$

be generators of the homology of E.
Then we can choose

Periods of E

How do we find ω_{1} and ω_{2} ?

An elliptic curve E,

$$
E: y^{2}=4 x^{3}+a x+b, \quad a, b \in \mathbb{C}
$$

has the geometric structure of a torus in $\mathbb{P}^{2}(\mathbb{C})$. Let

$$
\gamma_{1}, \gamma_{2} \in H_{1}(E, \mathbb{Z})
$$

be generators of the homology of E.
Then we can choose

$$
\omega_{1}=\int_{\gamma_{1}} \frac{d x}{\sqrt{4 x^{3}+a x+b}}, \quad \omega_{2}=\int_{\gamma_{2}} \frac{d x}{\sqrt{4 x^{3}+a x+b}}
$$

Quasi-periods of E

- The differential $d x / y$ on E generates the space of holomorphic 1-forms on E (differentials of the first kind).
- The differential $x d x / y$ generates the space of differentials of the second kind (differentials with poles but residues of 0).

and η_{1}, η_{2} are called the quasi-periods of E.

Quasi-periods of E

- The differential $d x / y$ on E generates the space of holomorphic 1-forms on E (differentials of the first kind).
- The differential $x d x / y$ generates the space of differentials of the second kind (differentials with poles but residues of 0).
- We set

$$
\eta_{1}=\int_{\gamma_{1}} \frac{x d x}{\sqrt{4 x^{3}+a x+b}}, \quad \eta_{2}=\int_{\gamma_{2}} \frac{x d x}{\sqrt{4 x^{3}+a x+b}}
$$

and η_{1}, η_{2} are called the quasi-periods of E.

Quasi-Periods as Periods of Extensions

η_{1}, η_{2} arise as special values of the Weierstrass ζ-function because of the way ζ is involved in the exponential functions of extensions of E by \mathbb{G}_{a}.
For $c \in \mathbb{C}$, the function of two variables

$$
(z, t) \longmapsto\left(\wp(z), \wp^{\prime}(z), t+c \zeta(z)\right)
$$

is the exponential function of a group extension G of E by \mathbb{G}_{a} :

$$
0 \rightarrow \mathbb{G}_{a} \rightarrow G \rightarrow E \rightarrow 0
$$

Its periods are of the form $(\omega,-c \eta)$, since $\zeta(\omega / 2)=\eta / 2$.
When $c=0$, the extension splits: $G=E \times \mathbb{G}_{a}$.

Period matrix of E

- The period matrix of E is the matrix

$$
P=\left[\begin{array}{ll}
\omega_{1} & \eta_{1} \\
\omega_{2} & \eta_{2}
\end{array}\right]
$$

It provides a natural isomorphism

$$
H_{\text {sing }}^{1}(E, \mathbb{C}) \cong H_{\mathrm{DR}}^{1}(E, \mathbb{C})
$$

- Legendre Relation: From properties of elliptic functions, the determinant of P is

$$
\omega_{1} \eta_{2}-\omega_{2} \eta_{1}= \pm 2 \pi i
$$

Period matrix of E

- The period matrix of E is the matrix

$$
P=\left[\begin{array}{ll}
\omega_{1} & \eta_{1} \\
\omega_{2} & \eta_{2}
\end{array}\right]
$$

It provides a natural isomorphism

$$
H_{\text {sing }}^{1}(E, \mathbb{C}) \cong H_{\mathrm{DR}}^{1}(E, \mathbb{C})
$$

- Legendre Relation: From properties of elliptic functions, the determinant of P is

$$
\omega_{1} \eta_{2}-\omega_{2} \eta_{1}= \pm 2 \pi i
$$

Abelian varieties

Higher dimensional analogues of elliptic curves

- An abelian variety A over \mathbb{C} is a smooth projective variety that is also a group variety.
- Elliptic curves are abelian varieties of dimension 1.
- Much as for \mathbb{G}_{m} and elliptic curves, an abelian variety of dimension d has a uniformization,
where Λ is a discrete lattice of rank $2 d$.

Abelian varieties

Higher dimensional analogues of elliptic curves

- An abelian variety A over \mathbb{C} is a smooth projective variety that is also a group variety.
- Elliptic curves are abelian varieties of dimension 1.
- Much as for \mathbb{G}_{m} and elliptic curves, an abelian variety of dimension d has a uniformization,

$$
\mathbb{C}^{d} / \Lambda \cong A(\mathbb{C})
$$

where Λ is a discrete lattice of rank $2 d$.

The period matrix of an abelian variety

Let A be an abelian variety over \mathbb{C} of dimension d.

- As in the case of elliptic curves, there is a natural isomorphism,

$$
H_{\mathrm{sing}}^{1}(A, \mathbb{C}) \cong H_{\mathrm{DR}}^{1}(A, \mathbb{C})
$$

given by period integrals, whose defining matrix P is called the period matrix of A.

- We have

where $1 \leq i \leq 2 d, 1 \leq j \leq d$.
- The $\omega_{i j}$'s provide coordinates for the period lattice \wedge.
- The $\eta_{i j}$'s occur in periods of extensions of A by \mathbb{G}_{a}.

The period matrix of an abelian variety

Let A be an abelian variety over \mathbb{C} of dimension d.

- As in the case of elliptic curves, there is a natural isomorphism,

$$
H_{\text {sing }}^{1}(A, \mathbb{C}) \cong H_{\mathrm{DR}}^{1}(A, \mathbb{C}),
$$

given by period integrals, whose defining matrix P is called the period matrix of A.

- We have

$$
P=\left[\omega_{i j} \mid \eta_{i j}\right] \in \operatorname{Mat}_{2 d}(\mathbb{C}),
$$

where $1 \leq i \leq 2 d, 1 \leq j \leq d$.

- The $\omega_{i j}$'s provide coordinates for the period lattice \wedge.
- The $\eta_{i j}$'s occur in periods of extensions of A by \mathbb{G}_{a}.

Analogues for Function Fields

- Function field notation
- Drinfeld modules
- The Carlitz module
- Drinfeld modules
- t-modules (higher dimensional Drinfeld modules)
\& t-motives

Analogues for Function Fields

- Function field notation
- Drinfeld modules
- The Carlitz module
- Drinfeld modules
- t-modules (higher dimensional Drinfeld modules) \& t-motives

Function fields

Let p be a fixed prime; q a fixed power of p.

$$
\begin{array}{lll}
A:=\mathbb{F}_{q}[\theta] & \longleftrightarrow & \mathbb{Z} \\
k:=\mathbb{F}_{q}(\theta) & \longleftrightarrow & \mathbb{Q} \\
\bar{k} & \longleftrightarrow & \overline{\mathbb{Q}} \\
k_{\infty}:=\mathbb{F}_{q}((1 / \theta)) & \longleftrightarrow & \mathbb{R} \\
\mathbb{C}_{\infty}:=\widehat{k_{\infty}} & \longleftrightarrow \\
|f|_{\infty}=q^{\operatorname{deg} f} & \longleftrightarrow & \mathbb{C} \\
& \longleftrightarrow \cdot \mid
\end{array}
$$

Twisted polynomials

- Let $F: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ be the q-th power Frobenius map: $F(x)=x^{q}$.
- For a subfield $\mathbb{F}_{q} \subseteq K \subseteq \mathbb{C}_{\infty}$, the ring of twisted polynomials over K is

$$
K[F]=\text { polynomials in } F \text { with coefficients in } K,
$$ subject to the conditions

$$
F c=c^{q} F, \quad \forall c \in K
$$

- In this way,
$K[F] \cong\left\{\mathbb{F}_{q}\right.$-linear endomorphisms of $\left.K^{+}\right\}$.
For $x \in K$ and $\phi=a_{0}+a_{1} F+\cdots+a_{r} F^{r} \in K[F]$, we write

$$
\phi(x):=a_{0} x+a_{1} x^{a}+\cdots+a_{r} x^{a^{r}}
$$

Twisted polynomials

- Let $F: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ be the q-th power Frobenius map: $F(x)=x^{q}$.
- For a subfield $\mathbb{F}_{q} \subseteq K \subseteq \mathbb{C}_{\infty}$, the ring of twisted polynomials over K is

$$
K[F]=\text { polynomials in } F \text { with coefficients in } K
$$

subject to the conditions

$$
F c=c^{q} F, \quad \forall c \in K
$$

- In this way,

$$
K[F] \cong\left\{\mathbb{F}_{q} \text {-linear endomorphisms of } K^{+}\right\}
$$

For $x \in K$ and $\phi=a_{0}+a_{1} F+\cdots+a_{r} F^{r} \in K[F]$, we write

$$
\phi(x):=a_{0} x+a_{1} x^{q}+\cdots+a_{r} x^{q^{r}} .
$$

Drinfeld modules

Function field analogues of \mathbb{G}_{m} and elliptic curves
Let $\mathbb{F}_{q}[t]$ be a polynomial ring in t over \mathbb{F}_{q}.

Definition

A Drinfeld module over is an \mathbb{F}_{q}-algebra homomorphism,

$$
\rho: \mathbb{F}_{q}[t] \rightarrow \mathbb{C}_{\infty}[F]
$$

such that

$$
\rho(t)=\theta+a_{1} F+\cdots+a_{r} F^{r} .
$$

Drinfeld modules

Function field analogues of \mathbb{G}_{m} and elliptic curves
Let $\mathbb{F}_{q}[t]$ be a polynomial ring in t over \mathbb{F}_{q}.

Definition

A Drinfeld module over is an \mathbb{F}_{q}-algebra homomorphism,

$$
\rho: \mathbb{F}_{q}[t] \rightarrow \mathbb{C}_{\infty}[F]
$$

such that

$$
\rho(t)=\theta+a_{1} F+\cdots+a_{r} F^{r} .
$$

- ρ makes \mathbb{C}_{∞} into a $\mathbb{F}_{q}[t]$-module in the following way:

$$
f * x:=\rho(f)(x), \quad \forall f \in \mathbb{F}_{q}[t], x \in \mathbb{C}_{\infty}
$$

- If $a_{1}, \ldots, a_{r} \in K \subseteq \mathbb{C}_{\infty}$, we say ρ is defined over K.
- When $a_{r} \neq 0, r$ is called the rank of ρ.

The Carlitz module
 The analogue of \mathbb{G}_{m}

Define a particular Drinfeld module $C: \mathbb{F}_{q}[t] \rightarrow \mathbb{C}_{\infty}[F]$ by

$$
C(t):=\theta+F
$$

Thus, for any $x \in \mathbb{C}_{\infty}$,

$$
C(t)(x)=\theta x+x^{q}
$$

Carlitz exponential

Set

$$
\exp _{C}(z):=z+\sum_{i=1}^{\infty} \frac{z^{q^{i}}}{\left(\theta^{q^{i}}-\theta\right)\left(\theta q^{q^{i}}-\theta^{q}\right) \cdots\left(\theta^{q^{i}}-\theta^{q^{i-1}}\right)}
$$

- $\exp _{C}: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ is entire, surjective, and \mathbb{F}_{q}-linear.
- Functional equation:

$$
\begin{aligned}
\exp _{C}(\theta z) & =\theta \exp _{C}(z)+\exp _{C}(z)^{q} \\
\exp _{C}(f(\theta) z) & =C(f)\left(\exp _{C}(z)\right), \quad \forall f(t) \in \mathbb{F}_{q}[t]
\end{aligned}
$$

Carlitz uniformization and the Carlitz period

We have a commutative diagram of $\mathbb{F}_{q}[t]$-modules,

The kernel of $\exp _{C}(z)$ is

$$
\operatorname{ker}\left(\exp _{C}(z)\right)=\mathbb{F}_{q}[\theta] \pi_{q}
$$

Carlitz uniformization and the Carlitz period

We have a commutative diagram of $\mathbb{F}_{q}[t]$-modules,

The kernel of $\exp _{C}(z)$ is

$$
\operatorname{ker}\left(\exp _{C}(z)\right)=\mathbb{F}_{q}[\theta] \pi_{q}
$$

where

$$
\pi_{q}=\theta \sqrt[q-1]{-\theta} \prod_{i=1}^{\infty}\left(1-\theta^{1-q^{i}}\right)^{-1}
$$

Wade's result

Thus we have an exact sequence of $\mathbb{F}_{q}[t]$-modules,

$$
0 \rightarrow \mathbb{F}_{q}[\theta] \pi_{q} \rightarrow \mathbb{C}_{\infty} \xrightarrow{\exp _{C}} \mathbb{C}_{\infty} \rightarrow 0 .
$$

Theorem (Wade 1941)

The Carlitz period π_{σ} is transcendental over k.

Wade's result

Thus we have an exact sequence of $\mathbb{F}_{q}[t]$-modules,

$$
0 \rightarrow \mathbb{F}_{q}[\theta] \pi_{q} \rightarrow \mathbb{C}_{\infty} \xrightarrow{\exp _{C}} \mathbb{C}_{\infty} \rightarrow 0
$$

Theorem (Wade 1941)
The Carlitz period π_{q} is transcendental over \bar{k}.

Torsion for the Carlitz module

Theorem (Carlitz-Hayes)
Torsion of the Carlitz module provides explicit class field theory over $\mathbb{F}_{q}(\theta)$.

Drinfeld modules of rank r

- Suppose $\rho: \mathbb{F}_{q}[t] \rightarrow \bar{k}[F]$ is a rank r Drinfeld module defined over \bar{k} by

$$
\rho(t)=\theta+a_{1} F+\cdots+a_{r} F^{r} .
$$

- Then there is an unique, entire, \mathbb{F}_{q}-linear function

$$
\exp _{\rho}: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}
$$

so that

$$
\exp _{\rho}(f(\theta) z)=\rho(f)\left(\exp _{\rho}(z)\right), \quad \forall f \in \mathbb{F}_{q}[t]
$$

Periods of Drinfeld modules of rank r

- Furthermore, there are $\omega_{1}, \ldots, \omega_{r} \in \mathbb{C}_{\infty}$ so that

$$
\operatorname{ker}\left(\exp _{\rho}(z)\right)=\mathbb{F}_{q}[\theta] \omega_{1}+\cdots+\mathbb{F}_{q}[\theta] \omega_{r}=: \Lambda
$$

is a discrete $\mathbb{F}_{q}[\theta]$-submodule of \mathbb{C}_{∞} of rank r.

- Chicken vs. Egg:

- Again we have a uniformizing exact sequence of $\mathbb{F}_{q}[t]$-modules

Periods of Drinfeld modules of rank r

- Furthermore, there are $\omega_{1}, \ldots, \omega_{r} \in \mathbb{C}_{\infty}$ so that

$$
\operatorname{ker}\left(\exp _{\rho}(z)\right)=\mathbb{F}_{q}[\theta] \omega_{1}+\cdots+\mathbb{F}_{q}[\theta] \omega_{r}=: \Lambda
$$

is a discrete $\mathbb{F}_{q}[\theta]$-submodule of \mathbb{C}_{∞} of rank r.

- Chicken vs. Egg:

$$
\exp _{\rho}(z)=z \prod_{0 \neq \omega \in \Lambda}\left(1-\frac{z}{\omega}\right)
$$

- Again we have a uniformizing exact sequence of $\mathbb{F}_{q}[t]$-modules

$$
0 \rightarrow \Lambda \rightarrow \mathbb{C}_{\infty} \xrightarrow{\exp _{\rho}} \mathbb{C}_{\infty} \rightarrow 0
$$

Riemann-Legendre Relations

Quasi-periods: Quasi-periods $\eta_{1}, \ldots, \eta_{r} \in \mathbb{C}_{\infty}$ for ρ arise in periods of extensions of ρ by $\mathbb{G}_{\text {a }}$.

Legendre relation: When $r=2, \omega_{1} \eta_{2}-\omega_{2} \eta_{1}=\zeta \pi_{q}$ for some $\zeta \in \mathbb{F}_{q}^{\times}$.

t-modules (Anderson)

Higher dimensional Drinfeld modules

- A t-module A of dimension d is a pair $\left(A, \mathbb{G}_{a}^{d}\right)$ consisting of an \mathbb{F}_{q}-linear homomorphism,

$$
A: \mathbb{F}_{q}[t] \rightarrow \operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{C}_{\infty}^{d}\right) \cong \operatorname{Mat}_{d}\left(\mathbb{C}_{\infty}[F]\right)
$$

such that

$$
A(t)=\theta \operatorname{Id}+N+a_{0} F+\cdots a_{r} F^{r}
$$

where $N \in \operatorname{Mat}_{d}\left(\mathbb{C}_{\infty}\right)$ is nilpotent.

- Thus \mathbb{C}_{∞}^{d} is given the structure of an $\mathbb{F}_{q}[t]$-module via

$$
f * x:=A(f)(x), \quad \forall f \in \mathbb{F}_{q}[t], x \in \mathbb{C}_{\infty}^{d}
$$

Exponential functions of t-modules

- There is a unique entire $\exp _{A}: \mathbb{C}_{\infty}^{d} \rightarrow \mathbb{C}_{\infty}^{d}$ so that

$$
\exp _{A}((\theta \mathrm{Id}+N) z)=A(t)\left(\exp _{A}(z)\right)
$$

- If $\exp _{A}$ is surjective, we have an exact sequence

$$
0 \rightarrow \Lambda \rightarrow \mathbb{C}_{\infty}^{d} \xrightarrow{\exp _{A}} \mathbb{C}_{\infty}^{d} \rightarrow 0
$$

where Λ is a discrete $\mathbb{F}_{q}[t]$-submodule of \mathbb{C}_{∞}^{d}.

- Λ is called the period lattice of A.
- Quasi-periods are defined via periods of extensions by copies of the additive group.

Remarks on t-modules

- When $A(t) \in \bar{k}$, we say that the t-module is defined over \bar{k}.
- In that case, $\exp _{A}$ has coefficients from k.

Subtleties

- Suriectivity of exponential function not assured, but here posited.
- We do not have a product expansion for $\exp _{A}$ or indeed any series expansion in terms of Λ.
- Exponential function does not always completely determine t-module

Remarks on t-modules

- When $A(t) \in \bar{k}$, we say that the t-module is defined over \bar{k}.
- In that case, $\exp _{A}$ has coefficients from \bar{k}.

Subtleties

- Surjectivity of exponential function not assured, but here posited.
- We do not have a product expansion for $\exp _{A}$ or indeed any series expansion in terms of Λ.
- Exponential function does not always completely determine t-module

Remarks on t-modules

- When $A(t) \in \bar{k}$, we say that the t-module is defined over \bar{k}.
- In that case, $\exp _{A}$ has coefficients from \bar{k}.

Subtleties

- Surjectivity of exponential function not assured, but here posited.
- We do not have a product expansion for $\exp _{A}$ or indeed any series expansion in terms of Λ.
- Exponential function does not always completely determine t-module

Remarks on t-modules

- When $A(t) \in \bar{k}$, we say that the t-module is defined over \bar{k}.
- In that case, $\exp _{A}$ has coefficients from \bar{k}.

Subtleties

- Surjectivity of exponential function not assured, but here posited.
- We do not have a product expansion for $\exp _{A}$ or indeed any series expansion in terms of Λ.
- Exponential function does not always completely determine t-module

Easiest examples of t-modules

- Direct sums of t-modules, in particular Drinfeld modules
- Extensions of t-modules by \mathbb{G}_{a} (De Rham cohomology controls how much new stuff can be obtained this way.)
- Tensor products of t-modules

Easiest examples of t-modules

- Direct sums of t-modules, in particular Drinfeld modules
- Extensions of t-modules by \mathbb{G}_{a} (De Rham cohomology controls how much new stuff can be obtained this way.)
- Tensor products of t-modules

Easiest examples of t-modules

- Direct sums of t-modules, in particular Drinfeld modules
- Extensions of t-modules by \mathbb{G}_{a} (De Rham cohomology controls how much new stuff can be obtained this way.)
- Tensor products of t-modules

A morphism Θ between two t-modules $\left(A_{1}, \mathbb{G}_{a}^{d_{1}}\right)$ and $\left(A_{2}, \mathbb{G}_{a}^{d_{2}}\right)$ is a matrix of twisted polynomials $\Theta \in$ Mat $_{d_{2} \times d_{1}}\left(\mathbb{C}_{\infty}[F]\right)$ such that

$$
\Theta A_{1}(t)=A_{2}(t) \Theta
$$

An isogeny is a morphism when $d_{1}=d_{2}$ and the kernel of Θ is finite.

t-Motives (Anderson)

Let $\mathbb{C}_{\infty}[t, F]:=\mathbb{C}_{\infty}[F][t]$, the ring of polynomials in the commuting variable t over the non-commuting ring $\mathbb{C}_{\infty}[F]$. A t-motive M is a left $\mathbb{C}_{\infty}[t, F]$-module which is free and finitely generated as a $\mathbb{C}_{\infty}[F]$-module and for which there is an $\ell \in \mathbb{N}$ with

$$
(t-\theta)^{\ell}(M / F M)=\{0\}
$$

Morphisms are morphisms of left $\mathbb{C}_{\infty}[t, F]$-modules.

Motives from Modules

Every t-module $\left(A, \mathbb{G}_{a}^{d}\right)$ gives rise to a unique t-motive over \mathbb{C}_{∞}, viz.

$$
M:=\operatorname{Hom}_{\mathbb{C}_{\infty}}^{q}\left(\mathbb{G}_{a}^{d}, \mathbb{G}_{a}\right)
$$

the module of \mathbb{F}_{q}-linear morphisms of algebraic groups. The action of $\mathbb{C}_{\infty}[t, F]$ is given by

$$
\left(c t^{i}, m\right) \mapsto c \circ m \circ A\left(t^{i}\right)
$$

Projections on the d coordinates give a $\mathbb{C}_{\infty}[F]$-basis for M, $d=\operatorname{rank}_{\mathbb{C}_{\infty}[F]} M$, and ℓ need not be taken greater than d.

Modules from Motives

A t-motive M has a $\mathbb{C}_{\infty}[F]$-basis m_{1}, \ldots, m_{d} which we can use to express the t-action via a matrix $A(t) \in \mathrm{Mat}_{d}\left(\mathbb{C}_{\infty}[F]\right)$.
This is compatible with the above because, if we represent arbitrary $m \in M$ as

$$
m=\left(k_{1}, \ldots, k_{d}\right)\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{d}
\end{array}\right)=\mathbf{k}\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{d}
\end{array}\right)
$$

gives according to the commutativity of t with elements of $\mathbb{C}_{\infty}[F]$, that, with $a \in L[F]$,

$$
a t \cdot \mathbf{k}\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{d}
\end{array}\right)=\mathbf{a k} \cdot t\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{d}
\end{array}\right)=\operatorname{ak} A(t)\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{d}
\end{array}\right)
$$

Theorem (Anderson)

The above correspondence between t-modules and t-motives gives an anti-equivalence of categories.

