## Boundary layer dynamics in a simple model for convectively coupled gravity waves

Michael L. Waite Boualem Khouider

University of Victoria

With thanks to: Andy Majda, Norm McFarlane, Adam Monahan, Bjorn Stevens

## Convectively coupled Kelvin waves



(CLAUS brightness temperature from Kiladis et al. 2009)

- Eastward propagation
- Wavelength:  $\lambda \sim O(1000)$  km
- ▶ Phase speed: *c* ~ 10-20 m/s

# Vertical structure and downdrafts



(B) < (B)
</p>

# Outline

### 1. Background

Khouider-Majda multicloud model

### 2. Multicloud model with boundary layer dynamics

Boundary layer equations Coupling to free troposphere Free troposphere equations

#### 3. Waves and stability

Basic state Moist basic state instabilities Dry basic state instabilities

### 4. Conclusions

- (E) (E)

# Outline

### 1. Background Khouider–Majda multicloud model

 Multicloud model with boundary layer dynamic Boundary layer equations Coupling to free troposphere

Free troposphere equations

### 3. Waves and stability

Basic state Moist basic state instabilities Dry basic state instabilities

### 4. Conclusions

## Idealized models for convectively coupled waves



- ▶ *n* = 1: Deep: e.g. Emanuel (1987), Yano *et al.* (1995)
- ▶ n = 2: Deep + stratiform: Mapes (2000), Majda & Shefter (2001)
- ▶ *n* = 2: Deep + stratiform + congestus: Khouider & Majda (2006, 2008)

# Khouider-Majda multicloud model structure



- Free troposphere:  $0 \le z \le H$
- Boundary layer:  $-h \le z < 0$
- H = 16 km
- *h* = 500 m

$$q = \frac{1}{H} \int_{0}^{H} (q_{v} - \overline{q}_{v}) dz \qquad \qquad \frac{\partial u_{j}}{\partial t} = \nabla \theta_{j} + \dots \\ (\cdot)_{b} = \frac{1}{h} \int_{-h}^{0} (\cdot) dz \qquad \qquad \frac{\partial \theta_{1}}{\partial t} = \nabla \cdot u_{1} + H_{d} + \xi_{s} H_{s} + \xi_{c} H_{c} + \dots \\ \frac{\partial \theta_{1}}{\partial t} = \nabla \cdot u_{2} - H_{s} + H_{c} + \dots$$

## Boundary layer

Boundary layer in Khouider & Majda (2006, 2008) is purely thermodynamical:

$$\frac{\partial \theta_{\mathsf{eb}}}{\partial t} = \mathsf{S} - \mathsf{D},$$

- S is moistening by surface fluxes
- *D* is drying by *convective* downdrafts:  $D \propto m_0 (1 + \mu(H_s H_c))^+$
- > No environmental downdrafts because w = 0 at the top of the boundary layer.
- Environmental downdrafts require boundary layer dynamics.

# Outline

. Background Khouider–Majda multicloud model

# 2. Multicloud model with boundary layer dynamics

Boundary layer equations Coupling to free troposphere Free troposphere equations

#### 3. Waves and stability

Basic state Moist basic state instabilities Dry basic state instabilities

### 4. Conclusions

3 1 4 3

## Boundary layer equations

- Derive bulk equations following Stevens (TCFD 2006).
- ▶ Average Reynolds equations over  $-h \le z \le 0$  to get equations for  $u_b$ ,  $\theta_b$ ,  $\theta_{eb}$ .
- Assume constant h
- Write turbulent fluxes as:

$$\flat \langle w' \boldsymbol{u}' \rangle_s = -c \, U \, \boldsymbol{u}_b$$

$$\blacktriangleright \langle w'\phi'\rangle_s = \frac{h}{\tau_e}(\phi_s - \phi_b)$$

$$\langle w' \boldsymbol{u}' \rangle_t = \frac{h}{\tau_T} (\boldsymbol{u}_b - \boldsymbol{u}_t)$$
$$\langle w' \phi' \rangle_t = M_u (\phi_b - \phi_t) - M_d (\phi_m - \phi_t)$$

- Subscripts denote reference levels:
  - s: surface z = -h
  - t: top of boundary layer  $z \rightarrow 0^+$

< ロ > < 同 > < 回 > < 回 >

m: mid-troposphere

(Following Raymond 1995)

)

## Boundary layer equations

$$\begin{aligned} \frac{\partial \boldsymbol{u}_{b}}{\partial t} + \boldsymbol{u}_{b} \cdot \boldsymbol{\nabla} \boldsymbol{u}_{b} &= -\boldsymbol{\nabla} \boldsymbol{p}_{b} - c \frac{U}{h} \boldsymbol{u}_{b} - \frac{1}{h} \left( \frac{h}{\tau_{T}} + h \boldsymbol{\nabla} \cdot \boldsymbol{u}_{b} \right) \Delta_{t} \boldsymbol{u} \\ \frac{\partial \theta_{b}}{\partial t} + \boldsymbol{u}_{b} \cdot \boldsymbol{\nabla} \theta_{b} &= -\mathbf{Q}_{Rb} + \frac{\Delta_{s} \theta}{\tau_{e}} - \frac{M_{d}}{h} \Delta_{m} \theta - \frac{1}{h} \left( M_{u} - M_{d} + h \boldsymbol{\nabla} \cdot \boldsymbol{u}_{b} \right) \Delta_{t} \theta \\ \frac{\partial \theta_{eb}}{\partial t} + \boldsymbol{u}_{b} \cdot \boldsymbol{\nabla} \theta_{eb} &= -\mathbf{Q}_{Rb} + \frac{\Delta_{s} \theta_{e}}{\tau_{e}} - \frac{M_{d}}{h} \Delta_{m} \theta_{e} - \frac{1}{h} \left( M_{u} - M_{d} + h \boldsymbol{\nabla} \cdot \boldsymbol{u}_{b} \right) \Delta_{t} \theta_{e} \end{aligned}$$

- surface, downdrafts, entrainment, fluxes (e.g. Stevens 2006)
- ► Downward differences:  $\Delta_s \phi \equiv \phi_s \phi_b$ ,  $\Delta_t \phi \equiv \phi_b \phi_t$ ,  $\Delta_m \phi \equiv \phi_b \phi_m$
- Redefine entrainment velocities:

$$E_{u} \equiv \left(\frac{h}{\tau_{T}} + h\boldsymbol{\nabla}\cdot\boldsymbol{u}_{b}\right)^{+} \quad E \equiv (M_{u} - M_{d} + h\boldsymbol{\nabla}\cdot\boldsymbol{u}_{b})^{+}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

# Continuity of w

- ► Discontinuity of *w* at interface between boundary layer and free troposphere:
- ▶ Introduce barotropic  $\boldsymbol{u}_0$  in troposphere with  $\nabla \cdot \boldsymbol{u}_0 \equiv -\delta \nabla \cdot \boldsymbol{u}_b$ , where  $\delta \equiv h/H$



## Pressure

- Need expressions for  $p_b$  and  $p_0$ .
- Assume BL pressure is

• linear in z: 
$$p_b = \frac{1}{2}(p_s + p_t) = \frac{1}{2}(p_s + p_0 - \sqrt{2}(\theta_1 - \theta_2))$$

• and hydrostatic: 
$$p_s = p_0 - \sqrt{2}(\theta_1 + \theta_2) - \pi \delta \theta_b$$

• Divergence of  $u_b$  and  $u_0$  equations yield diagnostic equation for  $p_b$ :

$$-(1+\delta)\nabla^2 p_b = \nabla^2 \left(\sqrt{2}\left(\theta_1 + \theta_2\right) + \frac{\pi}{2}\,\delta\,\theta_b\right) + c\frac{U}{H}\,\boldsymbol{\nabla}\cdot\,\boldsymbol{u}_b + \mathsf{NL},$$

For linear waves, get

$$p_b \approx -\sqrt{2}(\theta_1 + \theta_2) - \frac{\pi}{2} \,\delta\,\theta_b$$

## Downdrafts

- Need expressions for  $M_u$  and  $M_d$ .
- ▶ Parameterize *M<sub>d</sub>* with convective and environmental contributions:

 $M_d \equiv (D_c + h \nabla \cdot \boldsymbol{u}_b)^+$ , where  $D_c \equiv m_0 (1 + \mu (H_s - H_c))^+$ 

▶ Note: neglecting  $\nabla \cdot u_b$  in  $M_d$  leads to catastrophic short-wave instability! Recall

 $\boldsymbol{E} \equiv (\boldsymbol{M}_u - \boldsymbol{M}_d + h\boldsymbol{\nabla} \boldsymbol{\cdot} \boldsymbol{u}_b)^+$ 

► Assume  $M_u \propto D_c$  (Raymond 1995). Define  $\alpha_m \equiv D_c/M_u$ . Use  $\alpha_m = 0.2$ .

イロン イヨン イヨン ・ ヨン

## Free troposphere equations

$$\frac{\partial \boldsymbol{u}_0}{\partial t} + \boldsymbol{u}_0 \cdot \boldsymbol{\nabla} \boldsymbol{u}_0 = -\boldsymbol{\nabla} \boldsymbol{p}_0 - \boldsymbol{\nabla} \cdot \boldsymbol{u}_0 \left(\boldsymbol{u}_0 - \boldsymbol{u}_b\right) + \frac{\boldsymbol{E}_u}{H} \Delta_t \boldsymbol{u}$$
$$\frac{\partial \boldsymbol{u}_j}{\partial t} + \boldsymbol{u}_0 \cdot \boldsymbol{\nabla} \boldsymbol{u}_j + \boldsymbol{u}_j \cdot \boldsymbol{\nabla} \boldsymbol{u}_0 = \boldsymbol{\nabla} \theta_j + \frac{\sqrt{2}\,\delta}{\tau_T} \Delta_t \boldsymbol{u}$$

$$\frac{\partial \theta_1}{\partial t} + \boldsymbol{u}_0 \cdot \boldsymbol{\nabla} \theta_1 + \sqrt{2} \, \boldsymbol{\nabla} \cdot \boldsymbol{u}_0 - \boldsymbol{\nabla} \cdot \boldsymbol{u}_1 = H_d + \xi_s H_s + \xi_c H_c - Q_{R1}$$
$$\frac{\partial \theta_2}{\partial t} + \boldsymbol{u}_0 \cdot \boldsymbol{\nabla} \theta_2 + \frac{\sqrt{2}}{4} \, \boldsymbol{\nabla} \cdot \boldsymbol{u}_0 - \frac{1}{4} \, \boldsymbol{\nabla} \cdot \boldsymbol{u}_2 = -H_s + H_c - Q_{R2}$$

$$\frac{\partial \boldsymbol{q}}{\partial t} + \boldsymbol{u}_0 \cdot \boldsymbol{\nabla} \boldsymbol{q} + \boldsymbol{\nabla} \cdot \left( \left( \boldsymbol{u}_1 + \tilde{\lambda} \boldsymbol{u}_2 \right) \tilde{\boldsymbol{Q}} - \boldsymbol{u}_0 \tilde{\boldsymbol{Q}}_0 \right) = -\boldsymbol{P} + \frac{\boldsymbol{E}}{H} \Delta_t \theta_{\boldsymbol{\theta}} + \frac{1}{H} \left( \boldsymbol{M}_d - \boldsymbol{h} \boldsymbol{\nabla} \cdot \boldsymbol{u}_b \right) \Delta_m \theta_{\boldsymbol{\theta}}$$

- Note: we've neglected:
  - Baroclinic–baroclinic advection
  - Barotropic vertical advection of baroclinic modes
  - Heating of  $\theta_1$  and  $\theta_2$  by boundary layer (but included in *q* equation for conservation)

# Outline

### 1. Background

Khouider-Majda multicloud model

#### Multicloud model with boundary layer dynamic Boundary layer equations Coupling to free troposphere Free troposphere equations

### 3. Waves and stability

Basic state Moist basic state instabilities Dry basic state instabilities

### 4. Conclusions

## Basic state

- Let  $f = 0, v = 0, \partial_y = 0$
- Linearize around basic state in radiative-convective equilibrium (RCE).
- ► RCE is determined by specifying Q<sub>R1</sub> and profiles of θ<sub>e</sub>, θ. Solve for heating/cooling and some parameters.
- Regime characterized by  $\overline{\theta}_{eb} \overline{\theta}_{em}$ 
  - Moist troposphere:  $\overline{\theta}_{eb} \overline{\theta}_{em} = 11 \text{ K}$
  - Dry troposphere:  $\overline{\theta}_{eb} \overline{\theta}_{em} = 19 \text{ K}$
- RCE fixes values for parameters Q<sub>Rb</sub> and \(\tau\_e\). Typical values:
  - ▶ Q<sub>Rb</sub> ≈ 5 K/day
  - ho  $\tau_{\rm e} pprox 7~{\rm h}$
  - $\overline{M}_d \approx 0.5$  cm/s

. . . . . . . .

## Moist basic state: moist gravity wave stability



## Moist basic state: moist gravity wave structure

Most unstable wave: k = 14,  $\lambda = 1818$  km, c = +15.0 m/s



## Moist basic state: moist gravity wave budget



ヘロト ヘヨト ヘヨト

## Moist basic state: fast moist gravity wave stability



## Moist basic state: fast moist gravity wave structure

 $k = 400, \lambda = 100$  km, c = +26.2 m/s



## Moist basic state: fast moist gravity wave budget



## Moist basic state: environmental downdrafts



э

Image: Image:

## Dry basic state: congestus mode stability



## Dry basic state: congestus mode structure

Most unstable wave: k = 39,  $\lambda = 1026$  km, c = 0 m/s



< 口 > < 🗗

# Dry basic state: congestus mode budget



# Outline

### 1. Background

Khouider-Majda multicloud model

## 2. Multicloud model with boundary layer dynamics

Boundary layer equations Coupling to free troposphere Free troposphere equations

### 3. Waves and stability

Basic state Moist basic state instabilities Dry basic state instabilities

### 4. Conclusions

## Conclusions

Boundary layer dynamics in the multicloud model:

- Enhance instability of synoptic-scale moist gravity waves;
- Destabilize fast mesoscale gravity waves;
- Focus congestus instability at synoptic scales.

Details: Waite & Khouider 2009, J. Atmos. Sci. (in press)