
Using wave-activity conservation laws to
understand the generation of subgrid-scale energy

and momentum

T. A. Shaw

with T. G. Shepherd

University of Toronto

BIRS workshop

April 29, 2009



Outline

• Introduction to wave-activity conservation laws.

• Application to the large-scale circulation of the atmosphere:
Eliassen-Palm flux.

• Application to subgrid-scale parameterization:

→ Three-dimensional wave-activity conservation laws for
subgrid-scale energy and momentum

→ Connection to resolved-scale energy and momentum
budgets

→ Understanding the generation of subgrid-scale energy and
momentum.

• Conclusions



What is a wave-activity conservation law?

• A wave-activity conservation law is a relation of the form:

∂A

∂t
+∇ · F = 0

where A is the wave-activity density and F is its flux.

→ It is a quantity that is conserved in the absence of
forcing and dissipation.

• They are useful in the study of disturbances u′ (waves, eddies)
to some background flow U i.e. u = U + u′ with A ∼ O(u′2).

→ Their most general form follows from Hamiltonian
geophysical fluid dynamics.



What is a wave-activity conservation law?

• Each conservation law can be associated with a symmetry in
the background flow (spatial and temporal) according to
Noether’s theorem.

→ Temporal and spatial symmetries yield pseudoenergy
and pseudomomentum wave activities.

• Disturbance energy and enstrophy are not wave activities
because they are not conserved (there can be an exchange of
background and disturbance energy and enstrophy).

→ Wave-activity conservation laws are very useful
concepts when working in a modal decomposition since
the individual modes are orthogonal in the appropriate
sense (Held 1985 JAS).



Hamiltonian formulation

• Procedure for deriving conservation laws begins by casting the
dynamics into the form

ξt = J
δH
δξ

where ξ is the state vector, H is the Hamiltonian and J is a
skew-symmetric operator satisfying the Jacobi condition.

• When cast in terms of Eulerian variables fluid dynamical
systems are non-canonical, i.e. there exists C such that

0 = J
δC
δξ

implying every invariant is only defined to within a Casimir
(Shepherd 1990 Rev. Geophys.).



Hamiltonian formulation

• Given a steady background flow X we have

Xt = J
δH
δξ

∣∣∣∣
ξ=X

= 0 ⇒ δH
δξ

∣∣∣∣
ξ=X

= −δCE

δξ

∣∣∣∣
ξ=X

.

• We then define the quadratic pseudoenergy as

AE ≡ H(ξ) + CE(ξ)−H(X )− CE(X ).

• If ∇X = 0 we define the pseudomomentum associated with
the momentum invariant M:

AM ≡M(ξ) + CM(ξ)−M(X )− CM(X ).



Application to large-scale circulations

• For the mid-latitude troposphere and middle atmosphere it is
relevant to consider: u = u(y , z , t) + u′ (where is a zonal
average).

• The pseudomomentum wave-activity conservation law for the
quasi-geostrophic Boussinesq equations is

∂A

∂t
+∇ · F = D

where

A =
1

2Qy
q′2; F = −u′v ′ ĵ +

f0
N2

v ′b′ k̂; D =
1

Qy
S ′q′

where Q and q′ are the background and disturbance potential
vorticities and D includes both sources and sinks S ′.

Eliassen-Palm
flux divergence

�
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Application to large-scale circulations

• Eliassen-Palm flux divergence drives the background
momentum (after taking the transformed Eulerian mean)

∂u

∂t
− f0v

∗ = ∇ · F.

Flux convergences/
divergences drive
poleward/equatorward
motion.

Vallis (2006)

∇ · F < 0

∇ · F < 0



Application to subgrid-scale parameterization

• The solution to the equations of climate modelling requires
the parameterization of processes with length scales smaller
than the numerical discretization (subgrid-scale processes).

• The resolved and subgrid-scales are typically assumed to obey
a scale separation in horizontal space and in time but are
coupled in the vertical.

→ The resolved-scale flow is modelled by the hydrostatic
primitive equations and the subgrid-scale is modelled by
the anelastic or Boussinesq equations.

• In the wave-activity framework, the resolved-scale flow is the
background and the subgrid-scale flow is the disturbance.



Application to subgrid-scale parameterization

• For the parameterization of subgrid-scales in climate models it
is relevant to consider

ξ = ξr (z) + ξs(x , y , z , t)

→ The symmetries in the background flow imply three
wave-activity conservation laws: pseudoenergy and two
pseudomomenta associated with x and y symmetries.

• The dynamics of the resolved scale occur on longer spatial
and temporal scales and can be incorporated using multiple
scale asymptotics e.g. ξ = ξr (xr , z , tr ) + ξs(xr , xs , z , tr , ts)
where xr = ε2xs .

→ Introduce average operator: ξ = ξr .



Hamiltonian structure

• The subgrid-scales are assumed to be governed by the 3D
anelastic equations.

• The anelastic equations can be cast in the Hamiltonian
symplectic form with Hamiltonian and momentum invariants

H =

∫ (ρr

2
|v|2 + cpρrπrθ

)
dV , M =

∫
ρrv dV .

• Conservation of θ and q (the potential vorticity) lead to
Casimir invariants which are functions of θ and q quantities.

→ The functional form of the Casimir invariants is
central to the derivation of the wave activities.



Wave-activity conservation laws for the subgrid-scale

• The pseudoenergy and pseudomomentum densities for
three-dimensional anelastic disturbances to a veering
background flow are

AE =
ρr

2
|vs |2 +

ρr

2

[
g

θrθrz

− ρrur

(θrz )
2
·
(

urz

ρr

)
z

]
(θs)

2 − ρrur

θrz

· ω⊥s θs

AMx,y = −1

2

ρ2
r

(θrz )
2

(
urz

ρr

)
z

(θs)
2 − ρr

θrz

ω⊥s θs

with vertical fluxes:

F E(z) = cpρrθrπsws + ρrur · usws , F
Mx,y

(z) = ρrusws

(Shaw & Shepherd 2008 JFM).



Averaged wave-activity conservation laws

• The averaged wave-activity conservation laws

∂F E(z)

∂z
=

∂

∂z

(
ρrθr

κ
πsws + ρrusws · u

)
= DE

∂F
Mx,y

(z)

∂z
=

∂

∂z
(ρrusws) = DMx,y .

• The source/sink terms DE and DMx,y include diabatic heating
(S s

θ ) and dissipation (Sv) and satisfy the following constraint:

DE = vs · Sv + ρrgθsS s
θ/(θrθrz ) + ur ·DMx,y



Hamiltonian constraints

• Noether’s theorem requires that AE = cAM where c is the
phase speed in the direction of symmetry.

→ Generalized first Eliassen-Palm theorem.

• The relationship holds for the horizontally averaged vertical
fluxes, F E(z) = cFM(z) , as well as the source/sink terms, and
helps constrain the parameterization of subgrid-scale energy
and momentum fluxes.

→ Cannot tune the energy flux without a compensation
in the momentum flux.

• Accounts for the non-local conservation of energy and
momentum.



Contribution to the resolved scale

• To understand how the subgrid-scale wave-activity fluxes
couple to the resolved-scale energy and momentum we use the
theory of multiple scale asymptotics.

→ Systematic way to understand the interaction across scales
when each scale is modeled by a different set of equations.

• Klein (2000 ZAMM), Majda & Klein (2003 JAS) have shown
how the theory can be used to systematically derive balanced
models in midlatitudes and the tropics.

• We use the freedom of multiple scale asymptotics to couple
the dynamical equations of interest i.e. the hydrostatic
primitive equations and the anelastic equations.



Contribution to resolved-scale energy and momentum

• The resolved-scale horizontal momentum equation:

∂

∂tr
(ρrur ) +∇r · (ρrvr ◦ ur ) + ez × ρrur +

1

M2
∇H

p pr = − ∂

∂z
(ρrusws)

and total energy equation:

∂

∂tr

[
ρr

(
Kr +

1

M2

1

κγ
Tr + Φr

)]
+∇r ·

[
ρrvr

(
Kr +

1

M2

1

κ
Tr + Φr

)]
= S r

θ −
∂

∂z

(
ρrTr

κθr
θsws

)
+

∂

∂z
(vs · (ds)z)−

∂

∂z

(
ρrur · usws +

ρrθr

κ
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)
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= ∂
∂z F

Mx,y

(z)

= ∂
∂z F E(z)

• Connection between resolved-scale and subgrid-scale represent
generalized non-acceleration theorems (Shaw & Shepherd
2009 JAS).



Generation/Dissipation

• Regions of divergence/convergence of subgrid-scale fluxes can
be thought of as source/sink regions for subgrid-scale energy
and momentum.

→ Many types of subgrid-scale momentum transfers: gravity
wave drag, convective momentum transport, boundary layer
transport.

→ All parameterizations close the quadratic terms differently.

• The wave-activity source/sink terms provide a way to
understand the generation and dissipation of subgrid-scale
energy and momentum.



Generation of gravity waves

• Climate models require the parameterization of the transfer of
momentum by small-scale gravity waves to obtain a
reasonable modelled climate.

→ Gravity waves are important for both the quasi-biennial
oscillation and the upper atmospheric circulation.

Baldwin et al. (2001)

Deseasoned monthly mean

eastward westward contour: 6m/s

• Vertically propagating gravity waves are generated by
convection, orography, flow over fronts, instability, etc.



Generation of gravity waves

• GWD parameterizations require as input the momentum flux
as a function of wave phase speed and the horizontal and
vertical wave numbers, all of which are poorly constrained by
observations.

• The spectrum of waves is launched into the troposphere from
a specific altitude (usually the tropopause) and is typically
independent of latitude.

• Most parameterization do not account for changes in the
wave-generation region (i.e. the troposphere).

→ There exists a few parameterizations which try to couple
the wave spectrum to the modelled convection, however
they assume weak shear (WKB) conditions.



Generation of gravity waves

• We can distinguish between generation due to mechanical
processes and generation due to diabatic processes.

i) Mechanical generation (flow over convective complexes,
fronts, shear-flow instability):∫ zT

0
(ur − c)DMx dz = 0

→ In the source region, the momentum flux convergence is
single-signed.

→ The phase speed c must lie within the range of ur .

The dual requirements of energy and momentum conservation
constrain the source spectrum.



Generation of gravity waves

• If we assume hydrostatic waves (a common assumption in
GWD parameterizations) then we have

m =
N

c − ur

with m the vertical wave number.

• If c spans the range of available |ur | = [0, urmax ] this also
restricts the vertical wave number:

|m| > N

urmax

If N = 0.02 s−1 and urmax = 30 ms−1 this implies |m| > 1.5
m−1.

→ Provides a more systematic choice for the small-m limit.



Generation of gravity waves

ii) Diabatic generation (S s
θ 6= 0):

In this case we have two relationships to exploit:

∂

∂z
(ρrusws) = DMx = − ρr

θrz

[
ρr

θrz

(
urz

ρr

)
z

θsS s
θ − ωs(y)

S s
θ

]
(ur − c)DMx = − gρr

θrθrz

θsS s
θ

→ Relationships follow from pseudomomentum wave-activity
conservation law and the relationship between pseudoenergy
and pseudomomentum source/sink terms.

Momentum flux at any level is equal to

ρrusws = −
∫ z

0

ρr

θrz

[
ρr

θrz

(
urz

ρr

)
z

θsQs
θ − ωs(y)

S s
θ

]
dz .



Generation of gravity waves

ii) Diabatic processes (cont’d):

If ωs(y)
S s

θ is non-negligible then we can regress it onto θsS s
θ and

obtain:∫ zT

0

θr

g

{
(ur − c)

[
ρr

θrz

(
urz

ρr

)
z

− α

]
− g

θr

}
DMx dz = 0

else if ωs(y)
S s

θ is negligible then we have:∫ zT

0

θr

g

[
(ur − c)

ρr

θrz

(
urz

ρr

)
z

− g

θr

]
DMx dz = 0

→ In this case c is constrained by the stratification and the
vertical wind shear.



Generation/Dissipation

• Wave-activity conservation laws provide constraints on c for
the generation of gravity wave momentum flux by mechanical
and diabatic sources.

→ Relationships exists even without a phase speed.

• Constraints can be validated using cloud resolving model
simulations and then used in GWD parameterizations.

→ Work in progress.



Application to other parameterizations

• Convective momentum transport is another important source
of subgrid-scale momentum transfer in climate models.

• Wave-activity conservation laws could provide useful
relationships in this case as well.

• Current CMT parameterizations (Schneider & Lindzen 1976
JGR, Kershaw et al. 1997 QJRMS) only account for
pseudomomentum changes.

→ They do not account for the pseudoenergy changes nor the
relationships between the two.

• Exploring the wave-activity constraints for CMT is work in
progress.



Conclusions

• Wave-activity conservation laws provide a way to understand
the exchange of energy and momentum between a
background flow and a disturbance.

• The Eliassen-Palm wave-activity flux is a classic example and
has been crucial to theoretical analysis of large-scale
circulations.

• Wave-activity conservation laws can also be applied to the
problem of subgrid-scale parameterization in climate
modelling using a shear-stratified background flow.

→ Provides a concise understanding of the exchange of energy
and momentum between the resolved and subgrid-scales.



Conclusions

• Wave-activity conservation laws can be used to understand
the generation of subgrid-scale energy.

• In the context of the generation of gravity waves we can
distinguish between generation by mechanical and diabatic
sources.

→ Mechanical generation restricts the phase speed according
to the background wind.

→ Wind shear and stratification affect the phase speed in the
presence of a diabatic source.

• The conservation laws could potentially be used to understand
regions of momentum flux convergence/divergence due to
convective momentum transport.



Hamiltonian Constraints

• According to Noether’s theorem the pseudoenergy and
x-pseudomomentum are related to time and space symmetries

ξt = J
δAE

δξ
, −ξx = J

δAPx

δξ

which for a disturbance propagating in the x̂ direction with
phase speed c i.e. ξt + cξx = 0 implies

AE = cAPx

assuming the symplectic operator J is non-singular.



CMT parameterizations

• According to Gregory et al. (1997 QJRMS) and Schneider &
Lindzen (1976), cumulus momentum transport is expressed as

Fc = −
∂

∂z
(ρ0u′w ′) ≈

∂

∂z
[Mu(uu − u) + Md (ud − u)]

where u and d refer to up and downdraft averaged quantities.

• The in-cloud velocities are calculated from the momentum
equation

∂

∂z
(Muuu) = Euu− Duuu + Pu

G with Pu
G = −CuMu

∂u

∂z
∂

∂z
(Mdud ) = Edu + Pd

G with Pd
G = −CdMd

∂u

∂z

• These CMT parameterizations close the pseudomomentum
but do not account for the pseudoenergy.

→ Enthalpy tendency = DE − u ·DP .


