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e Introduction to wave-activity conservation laws.

e Application to the large-scale circulation of the atmosphere:
Eliassen-Palm flux.

e Application to subgrid-scale parameterization:

— Three-dimensional wave-activity conservation laws for
subgrid-scale energy and momentum

— Connection to resolved-scale energy and momentum
budgets

— Understanding the generation of subgrid-scale energy and
momentum.

e Conclusions



What is a wave-activity conservation law?

e A wave-activity conservation law is a relation of the form:
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where A is the wave-activity density and F is its flux.

— It is a quantity that is conserved in the absence of
forcing and dissipation.

e They are useful in the study of disturbances v’ (waves, eddies)
to some background flow U i.e. u= U+ v’ with A~ O(u'?).

— Their most general form follows from Hamiltonian
geophysical fluid dynamics.



What is a wave-activity conservation law?

e Each conservation law can be associated with a symmetry in
the background flow (spatial and temporal) according to
Noether's theorem.

— Temporal and spatial symmetries yield pseudoenergy
and pseudomomentum wave activities.

e Disturbance energy and enstrophy are not wave activities
because they are not conserved (there can be an exchange of
background and disturbance energy and enstrophy).

— Wave-activity conservation laws are very useful
concepts when working in a modal decomposition since
the individual modes are orthogonal in the appropriate

sense (Held 1985 JAS).



Hamiltonian formulation

e Procedure for deriving conservation laws begins by casting the

dynamics into the form
OH

3
where £ is the state vector, H is the Hamiltonian and J is a
skew-symmetric operator satisfying the Jacobi condition.
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e When cast in terms of Eulerian variables fluid dynamical
systems are non-canonical, i.e. there exists C such that

implying every invariant is only defined to within a Casimir
(Shepherd 1990 Rev. Geophys.).



Hamiltonian formulation

e Given a steady background flow X we have
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e We then define the quadratic pseudoenergy as

=X

AE = H(€) 4+ CE(€) — H(X) — C¥(X).

o If VX = 0 we define the pseudomomentum associated with
the momentum invariant M.:

AM = M(€) + cM(€) — M(X) — CM(X).



Application to large-scale circulations

e For the mid-latitude troposphere and middle atmosphere it is
relevant to consider: u =Tu(y,z,t) + o’ (where — is a zonal
average).

e The pseudomomentum wave-activity conservation law for the
quasi-geostrophic Boussinesq equations is
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flux divergence
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where @ and ¢’ are the background and disturbance potential
vorticities and D includes both sources and sinks S'.



Application to large-scale circulations

e Eliassen-Palm flux divergence drives the background
momentum (after taking the transformed Eulerian mean)
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Application to subgrid-scale parameterization

The solution to the equations of climate modelling requires
the parameterization of processes with length scales smaller
than the numerical discretization (subgrid-scale processes).

The resolved and subgrid-scales are typically assumed to obey
a scale separation in horizontal space and in time but are
coupled in the vertical.

— The resolved-scale flow is modelled by the hydrostatic
primitive equations and the subgrid-scale is modelled by
the anelastic or Boussinesq equations.

In the wave-activity framework, the resolved-scale flow is the
background and the subgrid-scale flow is the disturbance.



Application to subgrid-scale parameterization

e For the parameterization of subgrid-scales in climate models it
is relevant to consider

§= gr(z) —|—£5(X,y,2, t)

— The symmetries in the background flow imply three
wave-activity conservation laws: pseudoenergy and two
pseudomomenta associated with x and y symmetries.

e The dynamics of the resolved scale occur on longer spatial
and temporal scales and can be incorporated using multiple

scale asymptotics e.g. & = & (xr, z, tr) + &s(Xr, Xs, Z, tr, ts)

where x, = €2x;.

— Introduce average operator: £ = &,.



Hamiltonian structure

e The subgrid-scales are assumed to be governed by the 3D
anelastic equations.

e The anelastic equations can be cast in the Hamiltonian
symplectic form with Hamiltonian and momentum invariants

= [ (GNP + copmo) av. M= [ pvav.

e Conservation of 6 and g (the potential vorticity) lead to
Casimir invariants which are functions of # and g quantities.

— The functional form of the Casimir invariants is
central to the derivation of the wave activities.



Wave-activity conservation laws for the subgrid-scale

e The pseudoenergy and pseudomomentum densities for

three-dimensional anelastic disturbances to a veering
background flow are
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with vertical fluxes:

F(i) = Cpprgfﬂ—SwS + Prur - UsWs, F.(AZ/;XJ = PrusWs

(Shaw & Shepherd 2008 JFM).



Averaged wave-activity conservation laws

e The averaged wave-activity conservation laws
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e The source/sink terms D¢ and DM~ include diabatic heating
(S7) and dissipation (Sy) and satisfy the following constraint:

ﬁ = Vs Sv + prgessg/(afefz) +u- DMX'y



Hamiltonian constraints

e Noether's theorem requires that A = cAM where c is the
phase speed in the direction of symmetry.

— Generalized first Eliassen-Palm theorem.

e The relationship holds for the horizontally averaged vertical
fluxes, F(i) = cF(/;/)‘, as well as the source/sink terms, and
helps constrain the parameterization of subgrid-scale energy

and momentum fluxes.

— Cannot tune the energy flux without a compensation
in the momentum flux.

e Accounts for the non-local conservation of energy and
momentum.



Contribution to the resolved scale

e To understand how the subgrid-scale wave-activity fluxes
couple to the resolved-scale energy and momentum we use the
theory of multiple scale asymptotics.

— Systematic way to understand the interaction across scales
when each scale is modeled by a different set of equations.

e Klein (2000 ZAMM), Majda & Klein (2003 JAS) have shown
how the theory can be used to systematically derive balanced
models in midlatitudes and the tropics.

e We use the freedom of multiple scale asymptotics to couple
the dynamical equations of interest i.e. the hydrostatic
primitive equations and the anelastic equations.



Contribution to resolved-scale energy and momentum

e The resolved-scale horizontal momentum equation:
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and total energy equation: :a% (2)
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e Connection between resolved-scale and subgrid-scale represent

generalized non-acceleration theorems (Shaw & Shepherd
2009 JAS).




Generation /Dissipation

e Regions of divergence/convergence of subgrid-scale fluxes can
be thought of as source/sink regions for subgrid-scale energy
and momentum.

— Many types of subgrid-scale momentum transfers: gravity
wave drag, convective momentum transport, boundary layer
transport.

— All parameterizations close the quadratic terms differently.

e The wave-activity source/sink terms provide a way to
understand the generation and dissipation of subgrid-scale
energy and momentum.



Generation of gravity waves

e Climate models require the parameterization of the transfer of
momentum by small-scale gravity waves to obtain a
reasonable modelled climate.

— Gravity waves are important for both the quasi-biennial
oscillation and the upper atmospheric circulation.

Deseasoned monthly mean Equatorial Zonal Wind, 9-48 Month Bandpass
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eastward westward contour: 6m/s Baldwin et al. (2001)

e Vertically propagating gravity waves are generated by
convection, orography, flow over fronts, instability, etc.



Generation of gravity waves

o GWD parameterizations require as input the momentum flux
as a function of wave phase speed and the horizontal and
vertical wave numbers, all of which are poorly constrained by
observations.

e The spectrum of waves is launched into the troposphere from
a specific altitude (usually the tropopause) and is typically
independent of latitude.

e Most parameterization do not account for changes in the
wave-generation region (i.e. the troposphere).

— There exists a few parameterizations which try to couple
the wave spectrum to the modelled convection, however
they assume weak shear (WKB) conditions.



Generation of gravity waves

e We can distinguish between generation due to mechanical
processes and generation due to diabatic processes.

i) Mechanical generation (flow over convective complexes,
fronts, shear-flow instability):
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— In the source region, the momentum flux convergence is
single-signed.
— The phase speed ¢ must lie within the range of u,.

The dual requirements of energy and momentum conservation
constrain the source spectrum.



Generation of gravity waves

e If we assume hydrostatic waves (a common assumption in
GWD parameterizations) then we have

N
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with m the vertical wave number.

e If ¢ spans the range of available |u,| = [0, uy,,, ] this also
restricts the vertical wave number:

|m| >

Imax
If N =0.02s7! and u,,, =30 ms~! this implies |m| > 1.5
-1
m .

— Provides a more systematic choice for the small-m limit.



Generation of gravity waves

ii) Diabatic generation (S; # 0):

In this case we have two relationships to exploit:
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— Relationships follow from pseudomomentum wave-activity
conservation law and the relationship between pseudoenergy

and pseudomomentum source/sink terms.

Momentum flux at any level is equal to
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Generation of gravity waves

ii) Diabatic processes (cont'd):

If ws(y)Sg is non-negligible then we can regress it onto 0sS; and
obtain:

Celemali (). -7
< (u, —c) | == ) —a| -2 3DMxdz=0
/o g {( ) |:9rz pr/ . 0
else if W, 54 i negligible then we have:

il 6, Pr ur, g | "
Il —o) L (=) —=|DMidz=0
/0 g {(U C)Grz (pr)z HJ ‘

— In this case c is constrained by the stratification and the
vertical wind shear.




Generation /Dissipation

e Wave-activity conservation laws provide constraints on ¢ for
the generation of gravity wave momentum flux by mechanical
and diabatic sources.

— Relationships exists even without a phase speed.
e Constraints can be validated using cloud resolving model
simulations and then used in GWD parameterizations.

— Work in progress.



Application to other parameterizations

Convective momentum transport is another important source
of subgrid-scale momentum transfer in climate models.

Wave-activity conservation laws could provide useful
relationships in this case as well.

Current CMT parameterizations (Schneider & Lindzen 1976
JGR, Kershaw et al. 1997 QJRMS) only account for

pseudomomentum changes.
— They do not account for the pseudoenergy changes nor the
relationships between the two.

Exploring the wave-activity constraints for CMT is work in
progress.



Conclusions

o Wave-activity conservation laws provide a way to understand
the exchange of energy and momentum between a
background flow and a disturbance.

e The Eliassen-Palm wave-activity flux is a classic example and
has been crucial to theoretical analysis of large-scale
circulations.

e Wave-activity conservation laws can also be applied to the
problem of subgrid-scale parameterization in climate
modelling using a shear-stratified background flow.

— Provides a concise understanding of the exchange of energy
and momentum between the resolved and subgrid-scales.



Conclusions

e Wave-activity conservation laws can be used to understand
the generation of subgrid-scale energy.

e In the context of the generation of gravity waves we can
distinguish between generation by mechanical and diabatic
sources.

— Mechanical generation restricts the phase speed according
to the background wind.

— Wind shear and stratification affect the phase speed in the
presence of a diabatic source.

e The conservation laws could potentially be used to understand
regions of momentum flux convergence/divergence due to
convective momentum transport.



Hamiltonian Constraints

e According to Noether's theorem the pseudoenergy and
x-pseudomomentum are related to time and space symmetries
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which for a disturbance propagating in the X direction with
phase speed c i.e. & + c&x = 0 implies
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assuming the symplectic operator J is non-singular.



CMT parameterizations

e According to Gregory et al. (1997 QJRMS) and Schneider &
Lindzen (1976), cumulus momentum transport is expressed as
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where u and d refer to up and downdraft averaged quantities.

e The in-cloud velocities are calculated from the momentum
equation
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e These CMT parameterizations close the pseudomomentum
but do not account for the pseudoenergy.

— Enthalpy tendency = D¢ —u - D”.



