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Objective of the Project

surface heat and moisture fluxes
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entrainment warming, drying
ql
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η

To investigate how dynamic processes effect cloud evolution in
intermediate timescales, i.e., waves or perturbations to the in-
terface and their interaction with the evolving flow; in part to
help understand how dynamic processes may contribute to cloud
organization



Objectives of the Talk

We present a derivation of the underlying equations from a more
formal point of view,with an aim of developing a consistent view
of the interplay between thermodynamic and dynamic aspects
of stratocumulus layers

To explore the mathematical properties of the solutions and their
relevance to observed processes.



Asymptotic Approach

Unified Approach to Meteorological Modelling Based on Multiple
Scale Asymptotics Techniques developed by Klein & Associates

1. Three-dimensional compressible flow equations

2. Identification of

• uniformly valid system scales

• non-dimensional parameters

• distinguished limits

ε → 0: Fr =
uref√
ghsc

∼ ε2, M =
uref
cref

∼ ε2,

Rohsc
=

uref
2Ωhsc

∼ ε−1; (hsc = pref/ρrefg)

3. Dimensionless Equations

4. Specialization of a Multiple scales Ansatz



Clouds Asymptotics

The moist thermodynamics introduce a number of other dimen-
sionless parameters that must also be tied to the distinguished
limit ε e.g.

Lv̺ref

pref
= 31.25 ≡ ε−1L∗∗

v ,
Rv

Rd
=

461.5

287.0
≡ R∗∗ε0,

Rd

cpd
=

γ − 1

γ
=

2

7
≡ Γ∗∗ε,

cl
cpd

=
4217

1007
≡ c∗∗p ε−1,

Klein and Majda (2006) found that these asymptotic limits al-
lowed for development of mesoscale deep convection models.
Equation of State

̺θe = p[1−Γ∗∗ε(1+ε−1c∗∗p qt)
−1](1 + qt)(1 + R∗∗qv)

[−1+Γε(1+ε−1c∗∗p qt)
−1]

(
qv

qvs

)−R∗∗Γ∗∗εqv(1+c∗∗p ε−1qt)
−1

exp

(
L∗∗

v Γ∗∗(1 + R∗∗qv)̺qv

(1 + c∗∗p ε−1qt)(1 + qt)p

)



Clouds Asymptotics

• Describe the thermodynamics in terms of equivalent potential
temperature θe and total water mixing ratio qt since θe has
the additional advantage of being weakly conserved also in
the presence of precipitation.

• Assume the leading order equations feel the effects of radiation
as a source term in the θe equation while precipitation acts
principally as a source (sink) for qt.



Clouds Asymptotics

Albrecht et al, JAS 1995



Clouds Asymptotics

• Resolve a shallow layer of fluid of depth of 500–600m (i.e

ε
3
2hsc).

• Horizontal length scales of approximately 500–600m and 70–
100 km (i.e ε−1hsc).

• We consider the time scales associated with the horizontal
advection i.e. ε−

3
2tref (5 hrs) and convective time scale tref

(20 min) associated with 500–600m scale and speeds of 0.2m/s

(ε
3
2uref).

Thus the new co-ordinate system: Xq = ε−1xq, ξ
q

= ε−
3
2xq,

η = ε−
3
2z, T = εt and τ = t.



Other Key Steps

1. Handling of the pressure gradient term

(a) Pressure above the boundary layer assuming drier tropos-
phere than boundary layer

(b) Integrate the vertical momentum balance using the equa-
tion of state and assume continuity in pressure at the top
of the boundary layer.

2. Depth averaged equation subject to free surface kinematic
boundary conditions on η = H and vanishing velocities at
lower boundary condition η = 0

3. Fast Scale Averaged Equations using spatio-temporal (τ , ξ)
sublinear growth conditions



Fast Scale Averaged Leading Order Equations - Summary

H(1) ∼ 200m; θ
(6)
e ∼ 0.5−1.5K; q

(6)
t ∼ 1−2g/kg; v

(1)
q

∼ 3m/s

∂H(1)

∂T
+ v

(0)
q

.∇XH(1) + H(0)∇X · v(1)
q

+ H(1)∇X · v(0)
q

= E
(6)

∂θ
(6)
e

∂T
+v

(0)
q
∇Xθ

(6)
e =

(w̺θe)
(11)
s

H(0)
+

[(̺θe)HE ](11)

H(0)
+

(H
〈
̺Sθe

〉
)(8)

H(0)

∂q
(6)
t

∂T
+v

(0)
q
∇Xq

(6)
t =

(w̺qt)
(11)
s

H(0)
+

[(̺qt)HE ](11)

H(0)
+

(H
〈
̺Sqt

〉
)(8)

H(0)



Fast Scale Averaged Leading Order Equations - Summary

∂v
(1)
q

∂T
+ v

(0)
q

.∇Xv
(1)
q

+ (Ω̂ × v(1))
q
− (w̺vq)

(6)
s

H(0)
=

1

H(0)

{
θ
(3)
e

[
H(0)∇XH(3) + H(1)∇XH(2) + H(2)∇XH(1)

]

−
(
−θ

(4)
e + q

(4)
t + R̃∗∗q(4)

v
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H(1)∇XH(1) + H(0)∇XH(2)

]

−
(
−θ

(5)
e + q
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t + R̃∗∗q(5)

v

)
H(0)∇XH(1) + ∇XΦ

}
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Φ =
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2(
−θe
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η2
c +

β1

3
η3
c +
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2
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t η2

c

)



Drizzle Parameterisation

• Let ̺Sqt = Re − Rp where Rp is the rate of production of
precipitation and Re is the rate of evaporation of precipitati-
on.

• Take Rp = Co(̺ql)
αp but neglect evaporative cooling of the

subcloud layer and evaporation in the drizzle part of the cloud.

• 〈
Sqt

(8)
〉

H(0) = D∗∗
〈
q
(6)
l

〉αp
H(0)

where D∗∗ is a constant of order 1 representing the precipi-
tation conversion rate.



Radiation Parameterisation

• Assume that the long wave radiative cooling is assumed to
be the primary forcing mechanisms and hence the short wave
radiation neglected.

• Use the exponential formulation to compute long wave radia-
tion

• The depth averaged source terms are given by
〈
Sθe

(8)
〉

H(0) = ∆F (1)
〈
q
(6)
l

〉
H(0)

where ∆F (1) is a measure of difference of the radiative flux
at the cloud top and cloud bottom.



Entrainment Rates

Assume [(̺θe)HE ](11) = [E∆(̺θe)H ](11) = α(H
〈
̺Sθe

〉
)(8)

where α is an order one parameter and can be interpreted as non
dimensional entrainment rate efficiency.

α > 1 ⇒ shear driven entrainment overwhelms that due to
radiative cooling

α = 1 ⇒ balance between entrainment warming and radiative
cooling



Entrainment Rates

1. The temperature inversion is strong

E(8) = α

〈
S

(8)
θe

〉
H(0)

∆(̺θe)
(3)
H

= α
∆F (1)

〈
q
(6)
l

〉
H(0)

∆(̺θe)
(3)
H

∼ 0.5cm/s

2. The temperature inversion is moderate

E(7) = α

〈
S

(8)
θe

〉
H(0)

∆(̺θe)
(4)
H

= α
∆F (1)

〈
q
(6)
l

〉
H(0)

∆(̺θe)
(4)
H

∼ 1cm/s

3. The temperature inversion is weak

E(6) = α

〈
S

(8)
θe

〉
H(0)

∆(̺θe)
(5)
H

= α
∆F (1)

〈
q
(6)
l

〉
H(0)

∆(̺θe)
(5)
H

∼ 3cm/s



Cloud Base Height ηc

• Assume that the cloud base appears where the saturation
mixing ratio matches the total mixing ratio in the sub-cloud
layer

• The saturated water vapour mixing ratio, qvs is obtained from

qvs =

δ4e∗∗s exp

(
A∗∗
δ3

[
1 − ̺

p
(1+R∗∗qv)

(1+qt)

])

R∗∗p − δ4R∗∗e∗∗s exp

(
A∗∗
δ3

[
1 − ̺

p
(1+R∗∗qv)

(1+qt)

]).

•
q
(6)
vs = q

(6)
s + β1η ⇒ ηc =

1

β1

(
q
(6)
t − q

(6)
s

)

where

q
(6)
s =

A∗∗

2
q
(4)
vs

[
2
(
θ
(5)
e − q

(5)
v

)
+ A∗∗

(
θ
(4)
e − q

(4)
v

)2
]

β1 = −A∗∗Γ∗∗q(4)
vs with q

(4)
vs =

e∗∗s
R∗∗ exp

(
A∗∗θ(3)

e

)



Liquid water Asymptotics ql

(Austin et al, JAS 1995)

The liquid water mixing ratio is given by

ql =

{
qt − qvs if qt > qvs,

0 otherwise



Liquid water Asymptotics ql

Thus 〈
q
(6)
l

〉
H(0) =

β1

2
(H(0) − ηc)

2

This result is consistent with Albrecht et al (1990) observations
of shallow stratocumulus clouds.



Surface Fluxes Parameterisation

Momentum Fluxes

(̺vqw)s = −CD̺s |vq|vq

Assume CD = 10−3 ∼ δ5C∗∗
D ,

(̺uw)
(5)
s = −C∗∗

D |vq|(0) v
(0)
q

and
(̺uw)

(6)
s = −C∗∗

D

(
|vq|(0) v

(1)
q

+ |vq|(1) v
(0)
q

)

where |vq|(0) =

√
u(0)2 + v(0)2 and |vq|(1) = u(0)v(1)+u(1)v(0)

√
u(0)2+v(0)2

.

Equivalent Potential Temperature Flux

(̺wθe)s = −Cθe
̺s|vq|(θe − θ̃e)

(̺wθe)
(11)
s = −C∗∗

θe
|vq|(0)

(
θ
(6)
e − θ̃

(6)
e

)



Surface Fluxes Parameterisation

Total Moisture Flux

(̺wqt)s = −Cqt̺s|vq|(qt − q̃s)

(̺wqt)
(10)
s = −C∗∗

qt
|vq|(0)

(
q
(5)
t − q̃

(5)
s

)
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qt

|vq|(0)
(
q
(5)
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(5)
s

)
+ [(̺qt)HE ](10) + (H

〈
̺Sqt

〉
)(7) = 0

(̺wqt)
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s = −C∗∗
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[
|vq|(0)

(
q
(6)
t − q̃

(6)
s

)
+ |vq|(1)

(
q
(5)
t − q̃

(5)
s

)]



Evolution of θe

∂θ
(6)
e

∂T
+ v

(0)
q
∇Xθ
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e − β1

2H(0)
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(
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θe
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θ
(6)
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(6)
e

)
= 0



Cloud Top Jumps

(Price et al, QJRMS 1999)



Strong Temperature Jump at the Inversion Layer

∇XH(1) = 0 ⇒ ∇X · v(1)
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= 0.

θ
(3)
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+
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Moderate Temperature Jump at the Inversion Layer
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Moderate Temperature Jump at the Inversion Layer

(−θ
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Weak Temperature and Weak Moisture Jump at the Inversion Layer
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Concluding Remarks


