A PV Dynamics for Rotating Shallow Water on the Sphere

- \triangleright search for a balance dynamics on the full sphere
- ▷ potential vorticity inversion & advection
- \triangleright ray theory for short scale waves

- ▷ David J Muraki & Andrea Blazenko, Simon Fraser University
- ▷ Chris Snyder, NCAR

Midlatitude Balanced Dynamics _

Rotating Shallow Water (rSW), β -Scaled

- $\,\triangleright\,\,$ winds, $\vec{u}\,$ & height field, $H=1+\epsilon\,\eta$
- $\triangleright \quad \text{longitude-latitude} \ \underline{\text{local}} \ \text{coordinates,} \ (\lambda, \phi) \approx (\lambda_0, \phi_0)$

$$\epsilon^{2} \frac{D\vec{u}}{Dt} + (1 + \beta(\phi - \phi_{0}))(\hat{r}_{0} \times \vec{u}) \sim -\epsilon \nabla \eta$$

$$\epsilon \frac{D\eta}{Dt} + (1 + \epsilon \eta) (\nabla \cdot \vec{u}) = 0$$

 \triangleright dimensionless parameters: Rossby number & Coriolis- β

$$\epsilon = \frac{\sqrt{gH_0}}{2\Omega\sin\phi_0 r} \ll 1 \quad ; \quad \beta = \cot\phi_0$$

 \triangleright restrict to short deformation scales: $\lambda - \lambda_0, \phi - \phi_0 \sim O(\epsilon)$

Quasigeostrophy (QG)

- ▷ *balanced* dynamics: slow Rossby waves & NO fast gravity waves
 - $\triangleright \ \ {\rm geostrophy:} \ \hat{r}_0 \times \vec{u} \sim \epsilon \, \nabla \eta \quad \to \quad {\rm non-divergent \ winds}$
 - \triangleright limit as $\epsilon \to 0$, geostrophic degeneracy
 - ▷ advection & inversion of potential vorticity (PV)
- \triangleright geometrical obstacle: Rossby number singular at Equator, $\epsilon
 ightarrow \infty$

rSW on the Full Sphere ____

Spherical Coordinates

 \triangleright longitude-latitude global coordinates, (λ, ϕ)

$$\epsilon^{2} \left\{ \frac{Du}{Dt} + v\hat{\lambda} \cdot \frac{D\hat{\phi}}{Dt} \right\} - v \sin \phi = -\epsilon \frac{1}{\cos \phi} \eta_{\lambda}$$
$$\epsilon^{2} \left\{ \frac{Dv}{Dt} + u\hat{\phi} \cdot \frac{D\hat{\lambda}}{Dt} \right\} + u \sin \phi = -\epsilon \eta_{\phi}$$
$$\epsilon \frac{D\eta}{Dt} + \{1 + \epsilon \eta\} \frac{u_{\lambda} + (v \cos \phi)_{\phi}}{\cos \phi} = 0$$

▷ Lamb parameter

$$\epsilon = \frac{\sqrt{gH_0}}{2\Omega r} \ll 1$$

Balanced Dynamics

- ▷ *PV Inversion on a Hemisphere*, McIntyre/Norton 1999
 - ▷ landmark for PV as prognostic variable
 - ▷ non-divergent winds (at leading-order)
 - ▷ dynamical oddity: mirror symmetry across Equator
- \triangleright on midlatitude scales, limit as $\epsilon \to 0$ is now inconsistent!

A Case for Global Balanced Dynamics -

Grose & Hoskins (1979)

- \triangleright rSW flow past mountain at $30^\circ {\rm N}$
 - $\triangleright\;$ steady, super-rotation zonal wind
- ▷ steady waves by rayleigh-damped perturbations
 - \triangleright perturbation vorticity after 17 days (with damping) & $\epsilon \approx 0.33$

- ▷ waves propagate smoothly across Equator
- ▷ nearly non-divergent flow

A Case for Global Balanced Dynamics.

Grose & Hoskins (1979)

- \triangleright rSW flow past mountain at 30° N
 - ▷ steady, super-rotation zonal wind
- ▷ steady waves by rayleigh-damped perturbations
 - \triangleright perturbation height after 17 days (with damping) & $\epsilon \approx 0.33$

essentially zero height disturbance at Equator

ho non-divergent balance relations, with streamfunction ψ

$$u = -\epsilon \psi_{\phi}$$
 ; $v = \epsilon \frac{1}{\cos \phi} \psi_{\lambda}$; $\eta = \psi \sin \phi$

 \triangleright non-divergent balance relations, with streamfunction ψ

$$u = -\epsilon \psi_{\phi}$$
 ; $v = \epsilon \frac{1}{\cos \phi} \psi_{\lambda}$; $\eta = \psi \sin \phi$

Geostrophic Degeneracy Restored

- \triangleright on midlatitude scales, limit as $\epsilon \to 0$ is consistently degenerate
- ▷ non-divergent balance relations
- \triangleright β -effect displaced: meridional advection of planetary PV

Potential Vorticity

▷ total PV is advected quantity: DQ/Dt = 0

$$Q = \sin \phi + \epsilon q = \frac{\sin \phi + \epsilon^2 \hat{r} \cdot (\nabla \times \vec{u})}{1 + \epsilon \eta}$$

PV Dynamics on the Sphere (sPV) ____

Inversion, Streamfunction & Advection

 \triangleright PV-streamfunction relation ($b(\lambda, \phi)$ = topography):

$$\epsilon^2 \nabla^2 \psi - (\sin^2 \phi) \psi = q - b \sin \phi$$

 \triangleright balance relations for non-divergent winds:

$$u = -\epsilon \psi_{\phi}$$
; $v = \epsilon \frac{1}{\cos \phi} \psi_{\lambda}$; $\eta = \psi \sin \phi$

 \triangleright distubance PV advection:

$$\epsilon \left\{ \frac{\partial q}{\partial t} + \frac{u}{\cos \phi} \frac{\partial q}{\partial \lambda} + v \frac{\partial q}{\partial \phi} \right\} + v \cos \phi = 0$$

Mountain Waves, Disturbance PV (t = 4)

sPV on the Sphere: Computations -

Mountain Waves, Disturbance Height (t = 8)

Mountain Waves, Disturbance PV (t = 8)

sPV on the Sphere: Comparison with rSW_

Disturbance Height: sPV (colour) & rSW (contour)

Midlatitude Synoptic-Scale Truncation

- ▷ leading-order balance assumptions
 - \triangleright on deformation scales $\Rightarrow \partial/\partial\lambda, \partial/\partial\phi = O(\epsilon)$
 - \triangleright at midlatitudes $\Rightarrow \sin \phi \neq 0$
- ▷ there is NO expectation of asymptotic validity at the Equator
 - \triangleright sPV is not *globally* accurate, but is well-posed
 - ▷ PV inversion & velocity-streamfunction relationship are non-singular

Q: So, Why are Equatorial Crossings Faithfully Represented?

sPV Rossby Waves.

Rotating Waves, $\psi(\lambda-ct,\phi)$

- ▷ ODE eigenfunction, Schubert (2008) → exact nonlinear sPV solutions ($\epsilon \approx 0.337$) $\epsilon^2 \nabla^2 \psi - (\sin^2 \phi) \psi + (1/c) \psi = 0$; $\psi(\pm \pi/2) = 0$
- ▷ compare to modes for rSW on sphere (Margules, Hough, Longuet-Higgins, . . .)
- \triangleright only longest planetary waves have O(1) wavespeed errors

Rotating Waves, $\psi(\lambda - ct, \phi)$

- ▷ compare to modes for rSW on sphere (Margules, Hough, Longuet-Higgins, . . .)
- \triangleright only longest planetary waves have O(1) wavespeed errors

Wavepacket Limit of Short-Scale Waves: $\epsilon = \frac{1}{2} \epsilon_{gh} \& \frac{1}{4} \epsilon_{gh}$

Ray Theory _____

Geometrical Optics Limit as $\epsilon \to 0$

- $\triangleright \quad (\mathsf{flow}) = (\mathsf{steady, zonal} \ \bar{U}(\phi)) + (\mathsf{wave amplitude}) \ e^{iS(\lambda,\phi,t)/\boldsymbol{\epsilon}}$
- \triangleright phase $S(\lambda, \phi, t)$ satisfies ϵ -independent Hamilton-Jacobi PDE

$$\left(S_t + \frac{\bar{U}(\phi)}{\cos\phi}S_\lambda\right) \left(\frac{S_\lambda^2}{\cos^2\phi} + S_\phi^2 + \sin^2\phi\right) - S_\lambda = 0$$

▷ midlatitude replacements

$$S_t \to -\omega \; ; \; \frac{S_\lambda}{\cos \phi} \to k \; ; \; S_\phi \to l \; ; \; \sin \phi \to \tilde{f} \; ; \; \cos \phi \to \tilde{\beta}$$

▷ midlatitude Rossby wave dispersion

$$\omega = \bar{U}k - \frac{\tilde{\beta}k}{k^2 + l^2 + \tilde{f}^2}$$

Q: So, Why are Equatorial Crossings Faithfully Represented?

Ray Theory _____

Geometrical Optics Limit as $\epsilon \to 0$

- \triangleright (flow) = (steady, zonal) + (wave amplitude) $e^{iS(\lambda,\phi,t)/\epsilon}$
- \triangleright phase $S(\lambda, \phi, t)$ satisfies Hamilton-Jacobi PDE

$$\left(S_t + \frac{\bar{U}(\phi)}{\cos\phi}S_\lambda\right) \left(\frac{S_\lambda^2}{\cos^2\phi} + S_\phi^2 + \sin^2\phi\right) - S_\lambda = 0$$

 \triangleright midlatitude replacements, $ar{U} =$ zonal flow

$$S_t \to -\omega \; ; \; \frac{S_\lambda}{\cos \phi} \to k \; ; \; S_\phi \to l \; ; \; \sin \phi \to \tilde{f} \; ; \; \cos \phi \to \tilde{\beta}$$

▷ midlatitude Rossby wave dispersion

$$\omega = \bar{U}k - \frac{\tilde{\beta}k}{k^2 + l^2 + \tilde{f}^2}$$

A: Both sPV & rSW have the same global ray theory!

20-24 April 2009 _

NCEP Operational Analysis

- ▷ 250mB wind vectors (5-day average) thanks to Mel Shapiro, NCAR
- ▷ Rossby wave flow in Equatorial Pacific

20-24 April 2009 _

NCEP Operational Analysis

- ▷ 250mB meridional wind anomaly (5-day average)
- ▷ Rossby wave flow in Equatorial Pacific

20-24 April 2009 _

NCEP Operational Analysis

- ▷ 250mB geopotential height anomaly (5-day average)
- ▷ Rossby wave flow in Equatorial Pacific

In Closing ____

PV Dynamics for the rSW Sphere

- ▷ local asymptotic validity in midlatitudes
- ▷ accurate for global Rossby waves at scales smaller than planetary
- ▷ recreates Grose & Hoskins (1979) equatorial wave crossing
- \triangleright shares identical (linear) ray theory with rSW
 - ▷ rSW ray theory is degenerate theory, but globally valid
- \triangleright sPV includes <u>nonlinear</u> PV advection