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Annual average wave KE (red) and PE (blue) in the stratosphere
(12-19 km at poles; 18-25 km at equator; spike = Kelvin waves).




Question:
Can we separate wave interactions

with goal of understanding their relative importance in
strongly stratified flows?

Method:

We derive a PDE subsystem including only 3-wave
Interactions — the GGG model

then we compare GGG to full Boussinesg dynamics




Overall Goal: detailed understanding of all wave and vortical
Interactions in strongly stratified flows

Limitations of today’s work:

s Dry dynamics
s When rotation is included, only f-plane dynamics

Next simplified moisture models

PhD student QIANG DENG




Dichotomous situation: theory/simulations of purely straified flows

Which interactions determine the distribution of wave-mode
energy Iin the forward transfer range?

s In periodic-box simulations,
wave-vortical-wave interactions

are important (Waite and Bartello, 2006)

» Weak-turbulence theories keeping only
wave-wave-wave exact resonances

reproduce some observed oceanic spectra
(Lvov, Polzin & Tabak, 2004,
McComas & Bretherton, 1977)
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Here we delve deeper into wave-wave-wave interactions
(including near- and non-resonant)

s Partl: Bu=0(1), N/f>1, H/L<1

s Part ll: Purely stratified flow with F'r <« 1




Conservation laws for vertically stratified flow rotating about
the vertical z-axis:
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The full equations:

0 |00 & 0+ 20— & ++ & +— & —— (1)
+ ]00 @ 0+ 20— & ++ O +-® —— (2
~ ] 00 ® 0+ 20— @ ++ O +-® ——  (3)

where 0O, +, - represent vortical and wave linear eigenmodes.




QG (vortical mode interactions only):

0 |00

GGG (wave modes only):

+ | ++ & +-0 — -

- | ++ & +-0 — -




PPG (add to QG interactions involving exactly 1 wave):

0 |00 & 0+ & 0— (ppgl)
+ | 00 (ppg2)
— ] 00 (ppg3)

Muraki, Snyder, Rotunno (1999), Mcintyre & Norton (2000)
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Introduce a velocity potential and streamfunction:

U =Xz — Yy +uz), v=yxy+vYs+v(2), — = horizontal avg

and physical variables:

06
q= V%Lw — %@ linear potential vorticity
N 0
R=—0+ — v geostrophic imbalance
f 0z

and an operator:

2
O = (V3 + ]";2827,) with Q=01 R=07!'R
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oz 5005

— fu(z) + 0. (uw) =0, + fu(z) + 0, (vw) = 0.
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Reduced PDEs (viscous terms not included), e.g.,

QG results from keeping interactions involving only ¢

0 B (o [P0
(a—l—UhV) —O, q = <Vh+N2822>¢(X7t)




The energy-conserving GGG model results from eliminating
all interactions involving g:

dqg

5 0
OfV2R
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OV?
8tw — fV%R + V%(u/ V) — 0,(V), - (0 - Vu'y)) = 0
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to eliminate interactions involving ¢ from the nonlinear terms.




Questions:

Can 3-wave Interactions (resonant, near-resonant and
non-resonant) support a forward transfer of energy with
power-law scaling of the wave energy?

What is the power-law scaling? How does it compare with
the family of solutions found by Lvov & Tabak? How does it
compare with observations?

Can we learn more about generation of VSHF?
Embid & Majda (1998), Smith & Waleffe (2002), Laval,
McWilliams & Dubrulle (2003), Waite & Bartello (2006)
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High-resolution simulations to determine wave-mode
spectral scaling:

IBM Blue Gene/P at Argonne National Laboratory, DOE
Innovative and Novel Computational Impact on Theory and
Experiment (INCITE).

S. Kurien (LANL), M. Taylor (Sandia) & R. Balakrishnan
(Argonne)
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H/L=1/3, Ro= Fr = 0.1, 162 x 4862, identical IG-mode forcing.
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3-wave (near-resonant) interactions are capable of forward
energy transfer resulting in a forced-dissipative steady state.

3-wave (near-resonant) interactions will be important for
determining wave-mode spectra under the influence of
unbalanced high-frequency forcing.
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RBE and GGG with IG-mode forcing: Under-resolved!
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RBE with all modes forced
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Calculations appear converged, but are wave modes
under-resolved? Scalings suspect...
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oV
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Reduced PDEs (viscous terms not included), e.g.,

Interactions among slow vortical modes (excluding waves):

OV
ot

IS conservation of vertical vorticity.
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Y + 0, (v'w) = 0, e + 0, (v'w) = 0, g =0




What can we learn about response to unbalanced,
high-frequency forcing?

Waite & Bartello (2006)

An additional issue: growth of the VSHF

(VSHF, V, W) vs. (VSHF, W, W)

Note: we never force VSHF directly

Sam Stechmann’s talk on convectively coupled gravity
waves Iin shear




Generation of VSHF in GGG: (VSHF &, 4):

Ot = —0xzw, O = —0,x W

In the full model we also have: (VSHF, 0O, &)

o = —0, 0w, O = —8z¢yw




GGG, Fr=0.05 unbalanced force full model, Fr = 0.05
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all modes; full model, Fr = 0.05
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Future work on waves in simplified moisture models

KM(2006), MMX (2008), MX (2009)
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qv, @ = MIXing ratios of water vapor and liquid water
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—p. 35/:




Keeping fast inertia-gravity waves can qualitatively and
guantitatively change flow dynamics (e.g. asymmetries,
shear flow growth)

3-wave interactions set up their own forced-dissipative
statistically steady state for Bu = O(1) (when they are
resolved!)

3-wave (near-resonant) interactions are generators of shear
Bu>1

Spectra ?
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