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Wave Energy in the stratosphere (SPARC website; radiosondedata)

Annual average wave KE (red) and PE (blue) in the stratosphere
(12-19 km at poles; 18-25 km at equator; spike = Kelvin waves).
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Wave Interactions

Question:

Can we separate wave interactions

with goal of understanding their relative importance in
strongly stratified flows?

Method:

We derive a PDE subsystem including only 3-wave
interactions – the GGG model

then we compare GGG to full Boussinesq dynamics
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Overall Goal: detailed understanding of all wave and vortical
interactions in strongly stratified flows

Limitations of today’s work:

Dry dynamics

When rotation is included, only f-plane dynamics

Next simplified moisture models

PhD student QIANG DENG
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Dichotomous situation: theory/simulations of purely stratified flows

Which interactions determine the distribution of wave-mode
energy in the forward transfer range?

In periodic-box simulations,

wave-vortical-wave interactions

are important (Waite and Bartello, 2006)

Weak-turbulence theories keeping only

wave-wave-wave exact resonances

reproduce some observed oceanic spectra
(Lvov, Polzin & Tabak, 2004,
McComas & Bretherton, 1977)
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Here we delve deeper into wave-wave-wave interactions
(including near- and non-resonant)

Part I: Bu = O(1), N/f > 1, H/L < 1

Part II: Purely stratified flow with Fr ≪ 1
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The 3D rotating Boussinesq equations on anf -plane

Conservation laws for vertically stratified flow rotating about
the vertical ẑ-axis:

momentum :
Du

Dt
+ f ẑ × u = −∇P −Nθẑ + ν∇2

u

mass : ∇ · u = 0

energy :
Dθ

Dt
−Nw = κ∇2θ, θ =

g

Nρo
ρ′

————————————————————————–

D

Dt
=

∂

∂t
+ u · ∇ f = 2Ω, Ro =

U

fL

ρ = ρo − bz + ρ′, ρ′ ≪ ρo, |bz|, N2 =
gb

ρo
, F r =

U

NH
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Symbolically

The full equations:

0 | 00 ⊕ 0 + ⊕ 0 − ⊕ + + ⊕ + − ⊕ −− (1)

+ | 00 ⊕ 0 + ⊕ 0 − ⊕ + + ⊕ + −⊕ −− (2)

− | 00 ⊕ 0 + ⊕ 0 − ⊕ + + ⊕ + −⊕ −− (3)

where 0, +, - represent vortical and wave linear eigenmodes.

– p. 8/36



Restrictions of the sum:

QG (vortical mode interactions only):

0 |00

GGG (wave modes only):

+ | + + ⊕ + −⊕ −−

− | + + ⊕ + −⊕ −−
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and everything in between, e.g.

PPG (add to QG interactions involving exactly 1 wave):

0 | 00 ⊕ 0 + ⊕ 0− (ppg1)

+ | 00 (ppg2)

− | 00 (ppg3)

Muraki, Snyder, Rotunno (1999), McIntyre & Norton (2000)
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Succes in RSW decay, Ro=0.4, Fr = 0.25, divergence-free unbalanced i.c.

QG
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Compare to McIntyre & Norton PV inversion (MN1, MN2)
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In physical space, change variables

Introduce a velocity potential and streamfunction:

u = χx − ψy + u(z), v = χy + ψx + v(z), = horizontal avg

and physical variables:

q = ∇2
hψ −

f

N

∂θ

∂z
linear potential vorticity

R =
N

f
θ +

∂ψ

∂z
geostrophic imbalance

and an operator:

O = (∇2
h +

f2

N2
∂zz) with Q = O−1q, R = O−1R
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===> an equivalent form of rotating Boussinesq:

∂q

∂t
+ ẑ · ∇ × (u · ∇u) −

f

N
∂z[(u · ∇)θ] = 0

∂f∇2
hR

∂t
−N2 Ow +N∇2

h[(u · ∇)θ] + f∂z(ẑ · ∇ × (u · ∇u)) = 0

∂∇2w

∂t
+ f∇2

hR+ ∇2
h(u · ∇w) − ∂z(∇h · (u · ∇uh)) = 0

∂u(z)

∂t
− fv(z) + ∂z(uw) = 0,

∂v(z)

∂t
+ fu(z) + ∂z(vw) = 0.

θ = f
N

(∇2
hR− ∂zQ), ψ = Q+ f2

N2∂zR, χ = ∇−2

h ∂zw
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From here, we can get to...

Reduced PDEs (viscous terms not included), e.g.,

QG results from keeping interactions involving only q

(

∂

∂t
+ uh · ∇

)

q = 0, q =

(

∇2
h +

f2

N2

∂2

∂z2

)

ψ(x, t)

∇2
h =

∂2

∂x2
+

∂2

∂y2
, uh = ẑ × ∇ψ, θ = −

f

N

∂ψ

∂z
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or the antithesis of QG

The energy-conserving GGG model results from eliminating
all interactions involving q:

∂q

∂t
= 0

∂f∇2
hR

∂t
−N2 Ow +N∇2

h[(u′ · ∇)θ′] + f∂z(ẑ · ∇ × (u′ · ∇u
′) = 0

∂∇2w

∂t
+ f∇2

hR + ∇2
h(u′ · ∇w) − ∂z(∇h · (u′ · ∇u

′

h)) = 0

∂u(z)

∂t
− fv(z) + ∂z(u′w) = 0

∂v(z)

∂t
+ fu(z) + ∂z(v′w) = 0
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with definitions:

u′ ≡ χx −
f2

N2
Rzy + u(z), v′ ≡ χy +

f2

N2
Rzx + v(z)

w′ ≡ w, θ′ ≡
f

N
∇2

hR

to eliminate interactions involving q from the nonlinear terms.
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Questions:

Can 3-wave interactions (resonant, near-resonant and
non-resonant) support a forward transfer of energy with
power-law scaling of the wave energy?

What is the power-law scaling? How does it compare with
the family of solutions found by Lvov & Tabak? How does it
compare with observations?

Can we learn more about generation of VSHF?
Embid & Majda (1998), Smith & Waleffe (2002), Laval,
McWilliams & Dubrulle (2003), Waite & Bartello (2006)
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2nd question:

High-resolution simulations to determine wave-mode
spectral scaling:

IBM Blue Gene/P at Argonne National Laboratory, DOE
Innovative and Novel Computational Impact on Theory and
Experiment (INCITE).

S. Kurien (LANL), M. Taylor (Sandia) & R. Balakrishnan
(Argonne)
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GGG vs. RBE Part I: Bu = O(1) flows inH/L < 1

H/L = 1/3, Ro = Fr = 0.1, 162 × 4862, identical IG-mode forcing.
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Spectra att = 17.7 sec.

(W,W,W) scaling; (W,V,W) help downscale transfer
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Bu = 1, moderateFr,Ro,H/L

3-wave (near-resonant) interactions are capable of forward
energy transfer resulting in a forced-dissipative steady state.

3-wave (near-resonant) interactions will be important for
determining wave-mode spectra under the influence of
unbalanced high-frequency forcing.
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Smaller Fr = Ro = 0.05,H/L = 1/5, 100 × 5002

RBE and GGG with IG-mode forcing: Under-resolved!
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Smaller Fr = Ro = 0.05,H/L = 1/5, 100 × 5002

RBE with all modes forced
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Fr = Ro = 0.05,H/L = 1/5, 100 × 5002, all modes forced

Calculations appear converged, but are wave modes
under-resolved? Scalings suspect...
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Part II. Purely Stratified Flow

∂∇2
hψ

∂t
+ ẑ · (∇× (u · ∇)u) = 0

∂N∇2
hθ

∂t
−N2∇2

hw +N∇2
h(u · ∇θ) = 0

∂∇2w

∂t
+N∇2

hθ + ∇2
h(u · ∇w) − ∂z∇h·(u · ∇uh) = 0

∂u(z)

∂t
+ ∂z(uw) = 0

∂v(z)

∂t
+ ∂z(vw) = 0

∂θ(z)

∂t
+ ∂z(θw) = 0
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From here, we can get to

Reduced PDEs (viscous terms not included), e.g.,

Interactions among slow vortical modes (excluding waves):

∂∇2
hψ

∂t
− J(∇2

hψ,ψ) = 0

is conservation of vertical vorticity.
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GGG = waves only

∂∇2
hψ

∂t
= 0

∂N∇2
hθ

∂t
−N2∇2

hw +N∇2
h(u′ · ∇θ′) = 0

∂∇2w

∂t
+N∇2

hθ + ∇2
h(u′ · ∇w) − ∂z∇h·(u

′ · ∇u
′

h
) = 0

∂u(z)

∂t
+ ∂z(u′w) = 0,

∂v(z)

∂t
+ ∂z(v′w) = 0,

∂θ(z)

∂t
= 0

—————————————————————————

u′ = χx + u(z), v′ = χy + v(z), w′ = w, θ′ = θ − θ(z)
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What can we learn about response to unbalanced,
high-frequency forcing?

Waite & Bartello (2006)

An additional issue: growth of the VSHF

(VSHF, V, W) vs. (VSHF, W, W)

Note: we never force VSHF directly

Sam Stechmann’s talk on convectively coupled gravity
waves in shear
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Back to physical space:

Generation of VSHF in GGG: (VSHF,±,±):

∂tu = −∂zχxw, ∂tv = −∂zχyw

In the full model we also have: (VSHF, 0, ±)

∂tu = −∂zψxw, ∂tv = −∂zψyw
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Energies in time
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Full model, all modes forced (except VSHF)
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Compare growth of VSHF
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clearly ∂tu = −∂zχxw, ∂tv = −∂zχyw most important
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GGG Spectra (with caution), Fr = 0.05, 2563
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Future work on waves in simplified moisture models

KM(2006), MMX (2008), MX (2009)

Du

Dt
= ...+

1

Fr
(T + ǫqv + ql)k̂

DT

Dt
= ...+ δ+ A Fc (qv − qs) − δ− A Fe ql

Dqv
Dt

= −δ+ Fc (qv − qs) + δ− Fe ql

Dql
Dt

+ Fv
∂ql
∂z

= δ+ Fc (qv − qs) − δ− Fe ql

qv, ql = mixing ratios of water vapor and liquid water
qs(z) = saturation profile, Fv = Vt/U, Fc = τa/τc, Fe = τa/τe
δ+ = H(qv − qs), δ− = H(qs − qv), A = L/(CmTo)
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Conclusions

Keeping fast inertia-gravity waves can qualitatively and
quantitatively change flow dynamics (e.g. asymmetries,
shear flow growth)

3-wave interactions set up their own forced-dissipative
statistically steady state for Bu = O(1) (when they are
resolved!)

3-wave (near-resonant) interactions are generators of shear
Bu≫ 1

Spectra ?
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