Asymptotic models for the planetary and synoptic scales in the atmosphere

Stamen I. Dolaptchiev

Institut für Atmosphäre und Umwelt GOETHE UNIVERSITÄT FRANKFURT AM MAIN

with Rupert Klein (FU Berlin)

Outline

Planetary scale atmospheric motions and reduced models

2 The Planetary Regime

- Single scale model
- Two scale model: interactions with the synoptic scale
- Anisotropic Planetary Regime
- Balances on the planetary and synoptic scales in numerical experiments

Outline

Planetary scale atmospheric motions and reduced models

The Planetary Regime

- Single scale model
- Two scale model: interactions with the synoptic scale

3 Anisotropic Planetary Regime

Balances on the planetary and synoptic scales in numerical experiments

Planetary Scale Motions

Figure: Time mean geopotential height of the 500 hPa surface for the northern hemisphere, DJF. Based upon ERA40 reanalysis data.

< @ > , < ≥ > ,4

Planetary Scale Motions

Figure: Power spectrum density of the meridional geostrophic wind at 500 hPa and 50° N (Fraedrich & Böttger, 1978).

Planetary Scale Motions

atmospheric phenomena:

thermally and orographically induced quasi-stationary Rossby waves teleconnection patterns (e.g. NAO, PNA) zonal mean flows (subtropical and polar jets)

atmospheric phenomena:

thermally and orographically induced quasi-stationary Rossby waves teleconnection patterns (e.g. NAO, PNA)

zonal mean flows (subtropical and polar jets)

• planetary spatial scales: $\mathcal{O}(6000 \text{ km})$ planetary advective time scale: $\mathcal{O}(7 \text{ days})$, $(u_{ref} \sim 10 \text{ m/s})$

- atmospheric phenomena:
 - thermally and orographically induced quasi-stationary Rossby waves teleconnection patterns (e.g. NAO, PNA)
 - zonal mean flows (subtropical and polar jets)
- planetary spatial scales: $\mathcal{O}(6000 \text{ km})$ planetary advective time scale: $\mathcal{O}(7 \text{ days})$, $(u_{ref} \sim 10 \text{ m/s})$
- interactions with the synoptic eddies synoptic spatial and temporal scales: 1000 km and 1 day.

CLIMBER-2

Figure: Annual-mean surface air temperature change in the year 2100 for standard scenario of future CO_2 emissions (Courtesy of S. Rahmstorf).

<**@** > < ≡ > 7

- SDM, Atmosphere: $2-D(\phi, \lambda)-mL$
- resolution: 51°longitude, 10°latitude

Earth System Models of Intermediate Complexity

	Model	Short list of references
tion onceptual Models	1: Bern 2.5D	Stocker et al. (1992), Marchal et al. (1998)
EMICs Processes	2: CLIMBER-2	Petoukhov et al. (2000),
Comprehensive Models		Ganopolski et al. (2000)
	3: EcBilt	Opsteegh et al. (1998)
	4: EcBilt-CLIO	Goosse et al. (2000)
	5: IAP RAS	Petoukhov et al. (1998), Handorf et al. (1999),
		Mokhov et al. (2000)
	6: MPM	Wang and Mysak (2000),
		Mysak and Wang (2000)
	7: MIT	Prinn et al. (1999), Kamenkovich et al. (2000)
	8: MoBidiC	Crucifix et al. (2000a)(2000b)
<u> </u>	9: PUMA	Fraedrich et al. (1998),
		Maier-Reimer et al. (1993)
	10: Uvic	Weaver et al. (2000)
	11: IMAGE 2	Alcamo (1994), Alcamo et al. (1996)
Detail of Description		

Table 1. References to EMICs

Table 2. Interactive components of the climate system being implemented into EMICs (for explanation see text)

Model	Atmosphere	Ocean	Biosphere	Sea ice	Inland ice
1	EMBM, $1-D(\varphi)$	$2-D(\varphi, z)$, 3 basins	B _o , B _T	Т	
2	SDM, 2-D(φ , λ)-mL	$2-D(\varphi, z)$ 3 basins	B_0, B_T, B_V	TD	3-D, polythermal
3	QG, 3-D, T21, L3	3-D, 5.6°×5.6°, L12	0, 1, 1	Т	
4	QG, 3-D, T21-L3	3-D, 3°×3°	B_T, B_V	TD	
5	SDM, 3-D 4.5°×6°, L8	SDM, 2-D(ϕ , λ) 4.5°×6°, L3 fixed salinity		Т	
6	EMBM, 1-D(ϕ), land/ocean boxes	$2-D(\varphi, z)$, 3 basins		TD	$2-D(\varphi, z)$, isothermal
7	SDM, 2-D(φ, z)/atmospheric chemistry	3-D, 4°×1.25° to 3.75°, L15	B_{T}	Т	
8	QG, 2-D(\u03c6, z)-L2	$2-D(\varphi, z)$, 3 basins	B_0, B_T, B_V	TD	$2-D(\varphi, z)$, isothermal
9	GCM, 3-D, T21, L5	3-D, 5°×5°, L11	Bo	TD	
10	DEMBM, 2-D(φ , λ)	3-D, 3.6°×1.8°, L 19		TD	3-D, polythermal
11	DEMBM, 2-D(ϕ , λ)/atmospheric chemistry	2-D(φ , z), 2 basins	B_o, B_T, B_V	Т	

Adapted from Claussen et al. (2002)

Outline

Planetary scale atmospheric motions and reduced models

2 The Planetary Regime

- Single scale model
- Two scale model: interactions with the synoptic scale

3 Anisotropic Planetary Regime

Balances on the planetary and synoptic scales in numerical experiments

Asymptotic regimes

Figure: Scale map for the PR and PRBF, the validity range of the quasi-geostrophic (QG) theory is also shown.

Klein, 2000; Majda & Klein, 2003; Klein, 2008

- Universal small parameter: $\varepsilon = \left(\frac{a\Omega^2}{g}\right)^{\frac{1}{3}}$
- 2 Distinguished limit: expression of the characteristic numbers in terms of ε
- Multiple scales asymptotic ansatz

$$\boldsymbol{U}(t,\boldsymbol{x},z;\varepsilon) = \sum_{i} \varepsilon^{i} \boldsymbol{U}^{(i)}(\frac{t}{\varepsilon},t,\varepsilon t,\varepsilon^{2}t,\ldots,\frac{\boldsymbol{x}}{\varepsilon},\boldsymbol{x},\varepsilon \boldsymbol{x},\varepsilon^{2}\boldsymbol{x},\ldots,\frac{z}{\varepsilon},z,\ldots)$$

We consider horizontal velocities of the order of 10 m/s and weak background potential temperature variations, comparable in magnitude to those adopted in the classical QG theory: $\delta \Theta \sim \varepsilon^2$.

$$\begin{split} \delta \Theta &\sim \varepsilon^2 : \qquad \Theta(\underbrace{\varepsilon^3 t}_{t_P}, \lambda_P, \phi_P, z) = 1 + \varepsilon^2 \Theta^{(2)} + \mathcal{O}(\varepsilon^3) ,\\ u(t_P, \lambda_P, \phi_P, z) &= u^{(0)} + \varepsilon u^{(1)} + \varepsilon^2 u^{(2)} + \mathcal{O}(\varepsilon^3) . \end{split}$$

The Planetary Regime

Leading order model: planetary geostrophic equations

$$\boldsymbol{u}^{(0)} = \frac{1}{f\rho^{(0)}}\boldsymbol{e}_{z} \times \nabla_{P}p^{(2)},$$
$$\frac{\partial}{\partial z}\frac{p^{(2)}}{\rho^{(0)}} = \Theta^{(2)},$$
$$\nabla_{P} \cdot \rho^{(0)}\boldsymbol{u}^{(0)} + \frac{\partial}{\partial z}\rho^{(0)}\boldsymbol{w}^{(3)} = 0,$$
$$\frac{\partial}{\partial t_{P}}\Theta^{(2)} + \boldsymbol{u}^{(0)} \cdot \nabla_{P}\Theta^{(2)} + \boldsymbol{w}^{(3)}\frac{\partial}{\partial z}\Theta^{(2)} = 0,$$

- additional boundary condition needed: $p^{(2)}$ at some level or $\overline{p^{(2)}}^{*}$.
- implemented in the atmospheric module of some earth system models of intermediate complexity (EMICs)

Evolution equation for the barotropic component of the pressure $\overline{p^{(2)}}^{\rm z}$

$$\frac{\partial}{\partial t_P} \left(\frac{\partial}{\partial \tilde{y}_P} \frac{1}{f} \frac{\partial}{\partial y_P} \overline{p^{(2)}}^z - \frac{\beta}{f^2} \frac{\partial}{\partial y_P} \overline{p^{(2)}}^z - f \overline{p^{(2)}}^z \right) - \frac{\partial}{\partial \tilde{y}_P} N + \frac{\beta}{f} N = 0,$$

$$N = \frac{\partial}{\partial \tilde{y}_P} \overline{\rho^{(0)} v^{(0)} u^{(0)}}^{\lambda_P, z} - \overline{\rho^{(0)} v^{(0)} u^{(0)}}^{\lambda_P, z} \frac{\tan \phi_P}{a} + \frac{\partial}{\partial z} p^{(2)} \frac{\partial}{\partial x_P} \frac{p^{(2)}}{\rho^{(0)}}^{\lambda_P, z}$$

- the barotropic pressure $\overline{p^{(2)}}^z$ is zonally symmetric
- EMICs use a diagnostic closure!

- Interactions between the planetary and the synoptic scales
- Quasi-geostrophic theory on a sphere: $\delta f \sim f_0 \sim \mathcal{O}(1)$, $N \neq const$
- two scales ansatz resolving additionally to the planetary scales the synoptic spatial scales (internal Rossby deformation radius) and the corresponding advective time scale
- o coordinates scaling:

$$\Theta(t_P, \underbrace{\varepsilon^2 t}_{t_S}, \lambda_P, \phi_P, \underbrace{\varepsilon^{-1} \lambda_P}_{\lambda_S}, \underbrace{\varepsilon^{-1} \phi_P}_{\phi_S}, z)$$

= 1 + $\varepsilon^2 \Theta^{(2)}(t_P, \lambda_P, \phi_P, z) + \varepsilon^3 \Theta^{(3)}(t_P, t_S, \lambda_P, \phi_P, \lambda_S, \phi_S, z) + \mathcal{O}(\varepsilon^4)$

geostrophic balance:

$$\boldsymbol{u}^{(0)} = \underbrace{\frac{1}{f} \boldsymbol{e}_r \times \nabla_S \pi^{(3)}}_{:= \boldsymbol{u}_S^{(0)}} + \underbrace{\frac{1}{f} \boldsymbol{e}_r \times \nabla_P \pi^{(2)}}_{:= \boldsymbol{u}_P^{(0)}}, \qquad \pi^{(i)} = \frac{p^{(i)}}{\rho^{(0)}},$$

geostrophic balance:

$$\begin{split} \boldsymbol{u}^{(0)} &= \underbrace{\frac{1}{f} \boldsymbol{e}_r \times \nabla_S \pi^{(3)}}_{::= \boldsymbol{u}_S^{(0)}} + \underbrace{\frac{1}{f} \boldsymbol{e}_r \times \nabla_P \pi^{(2)}}_{:= \boldsymbol{u}_P^{(0)}}, \qquad \pi^{(i)} = \frac{p^{(i)}}{\rho^{(0)}}, \\ \boldsymbol{u}_S^{(0)} &= \boldsymbol{u}_S^{(0)}(t_S, t_P, \lambda_P, \phi_P, \lambda_S, \phi_S, z) \\ \boldsymbol{u}_P^{(0)} &= \boldsymbol{u}_P^{(0)}(t_P, \lambda_P, \phi_P, z) \end{split}$$

Planetary scale dynamics:

$$\left(\frac{\partial}{\partial t_P} + \boldsymbol{u}_P{}^{(0)} \cdot \nabla_P + w_P^{(3)} \frac{\partial}{\partial z}\right) PV^{(2)} = 0, \qquad PV^{(2)} = \frac{f}{\rho^{(0)}} \frac{\partial \Theta^{(2)}}{\partial z}.$$

Synoptic scale dynamics:

$$\left(\frac{\partial}{\partial t_S} + \left(\boldsymbol{u}_S^{(0)} + \boldsymbol{u}_P^{(0)} \right) \cdot \nabla_S \right) P V^{(3)} + \beta v_S^{(0)} + \frac{f}{\rho^{(0)}} \boldsymbol{u}_S^{(0)} \cdot \frac{\partial}{\partial z} \frac{\nabla_P \rho^{(0)} \Theta^{(2)}}{\partial \Theta^{(2)} / \partial z} = 0,$$

$$P V^{(3)} = \frac{1}{f} \Delta_S \pi^{(3)} + \frac{f}{\rho^{(0)}} \frac{\partial}{\partial z} \left(\frac{\rho^{(0)} \partial \pi^{(3)} / \partial z}{\partial \Theta^{(2)} / \partial z} \right)$$

- advection of synoptic scale PV by the planetary scale velocity field
- advection of PV resulting from the planetary scale gradient of Θ⁽²⁾ by the synoptic scale velocities

Planetary-synoptic interactions in the evolution equation for the planetary scale structure of $\overline{p^{(2)}}^z$

$$\begin{split} &\frac{\partial}{\partial t_P} \left(\frac{\partial}{\partial \tilde{y}_P} \frac{1}{f} \frac{\partial}{\partial y_P} \overline{p^{(2)}}^z - \frac{\beta}{f^2} \frac{\partial}{\partial y_P} \overline{p^{(2)}}^z - f \overline{p^{(2)}}^z \right) - \frac{\partial}{\partial \tilde{y}_P} N + \frac{\beta}{f} N = 0 \,, \\ &N = \frac{\partial}{\partial \tilde{y}_P} \overline{\rho^{(0)} \left(v_P^{(0)} u_P^{(0)} + v_S^{(0)} u_S^{(0)} \right)}^{S, \lambda_P, z} - \overline{\rho^{(0)} \left(v_P^{(0)} u_P^{(0)} + v_S^{(0)} u_S^{(0)} \right)}^{S, \lambda_P, z} \frac{\tan \phi_P}{a} \\ &+ \overline{\frac{\partial}{\partial z}} p^{(2)} \frac{\partial}{\partial x_P} \frac{p^{(2)}}{\rho^{(0)}}^{\lambda, z} \,. \end{split}$$

Outline

Planetary scale atmospheric motions and reduced models

2 The Planetary Regime

- Single scale model
- Two scale model: interactions with the synoptic scale

3 Anisotropic Planetary Regime

Balances on the planetary and synoptic scales in numerical experiments

Asymptotic regimes

Figure: Scale map for the PR and PRBF, the validity range of the quasi-geostrophic (QG) theory is also shown.

< ₽ >, < ≥ >,20

- β -plane approximation for a sphere
- anisotropic scaling

$$\Theta(\underbrace{\varepsilon^{2}t}_{t_{S}},\underbrace{\varepsilon^{3}t}_{t_{P}},\lambda_{P},\underbrace{\varepsilon^{-1}\lambda_{P}}_{\lambda_{S}},\underbrace{\varepsilon^{-1}\phi_{P}}_{\phi_{S}},z) = 1 + \varepsilon^{2}\Theta^{(2)}(\lambda_{P},z,t_{P})$$
$$+ \varepsilon^{3}\Theta^{(3)}(t_{P},t_{S},\lambda_{P},\lambda_{S},\phi_{S},z) + \mathcal{O}(\varepsilon^{4})$$
$$u(t_{P},t_{S},\lambda_{P},\lambda_{S},\phi_{S},z) = u^{(0)} + \varepsilon u^{(1)} + \varepsilon^{2}u^{(2)} + \mathcal{O}(\varepsilon^{3}) .$$

- β-plane approximation for a sphere
- anisotropic scaling

$$\Theta(\underbrace{\varepsilon^{2}t}_{t_{S}},\underbrace{\varepsilon^{3}t}_{t_{P}},\lambda_{P},\underbrace{\varepsilon^{-1}\lambda_{P}}_{\lambda_{S}},\underbrace{\varepsilon^{-1}\phi_{P}}_{\phi_{S}},z) = 1 + \varepsilon^{2}\Theta^{(2)}(\lambda_{P},z,t_{P}) \\ + \varepsilon^{3}\Theta^{(3)}(t_{P},t_{S},\lambda_{P},\lambda_{S},\phi_{S},z) + \mathcal{O}(\varepsilon^{4}) \\ u(t_{P},t_{S},\lambda_{P},\lambda_{S},\phi_{S},z) = u^{(0)} + \varepsilon u^{(1)} + \varepsilon^{2}u^{(2)} + \mathcal{O}(\varepsilon^{3}) .$$

- solvability condition $\Longrightarrow \Theta^{(2)}(z)$
- Leading order model: classical QG on a sphere

Case: dynamics on a plane: $\lambda_P, \lambda_S, \phi_S \rightarrow X, x, y$

Case: dynamics on a plane: $\lambda_P, \lambda_S, \phi_S \rightarrow X, x, y$ Next order model: **planetary scale structure**, **next order QG corrections**

$$\frac{d}{dt_S}PV^{(4)} + \boldsymbol{u}^{(1)} \cdot \nabla_S PV^{(3)} = S_{qg} - \frac{d}{dt_P}PV^{(3)} - \frac{d}{dt_S}\frac{\partial}{\partial X}v^{(0)},$$
$$PV^{(4)} = \tilde{\Delta}_S \Phi^{(4)} + \frac{1}{f_0}\frac{\partial}{\partial X}\frac{\partial}{\partial x}\pi^{(3)} - \frac{f_0}{2}y^2$$

$$\frac{d}{dt_{S,P}} = \left(\frac{\partial}{\partial t_{S,P}} + \boldsymbol{u}^{(0)} \cdot \nabla_{S,P}\right), \tilde{\Delta} = \frac{1}{f_0} \Delta_S + f_0 \frac{\partial^2}{\partial z^2}, S_{qg}(\pi^{(3)}).$$

Case: dynamics on a plane: $\lambda_P, \lambda_S, \phi_S \rightarrow X, x, y$ Next order model: **planetary scale structure**, **next order QG corrections**

$$\frac{d}{dt_S}PV^{(4)} + \boldsymbol{u}^{(1)}\cdot\nabla_S PV^{(3)} = S_{qg} - \frac{d}{dt_P}PV^{(3)} - \frac{d}{dt_S}\frac{\partial}{\partial X}v^{(0)},$$
$$PV^{(4)} = \tilde{\Delta}_S \Phi^{(4)} + \frac{1}{f_0}\frac{\partial}{\partial X}\frac{\partial}{\partial x}\pi^{(3)} - \frac{f_0}{2}y^2$$

$$\frac{d}{dt_{S,P}} = \left(\frac{\partial}{\partial t_{S,P}} + \boldsymbol{u}^{(0)} \cdot \nabla_{S,P}\right), \tilde{\Delta} = \frac{1}{f_0} \Delta_S + f_0 \frac{\partial^2}{\partial z^2}, S_{qg}(\pi^{(3)}).$$

- solvability condition for the planetary-scale dynamics
- **Case**: synoptic scales only \implies QG⁺¹ of Muraki et al. (1999)

Outline

Planetary scale atmospheric motions and reduced models

2 The Planetary Regime

- Single scale model
- Two scale model: interactions with the synoptic scale

3 Anisotropic Planetary Regime

Balances on the planetary and synoptic scales in numerical experiments

The Planetary Regime in numerical experiments

$$\overline{f\nabla_P \cdot \boldsymbol{u}^{(0)}}^S + \beta \overline{v^{(0)}}^S = 0$$

≥
24

The Planetary Regime in numerical experiments

$$\overline{\nabla_S \cdot \boldsymbol{u}^{(0)} \boldsymbol{\zeta}^{(0)}}^S = 0$$

• behavior of the model in the tropics Majda & Klein 2003; Majda, 2007: $X_M = \varepsilon^2 x, X_S = \varepsilon^{\frac{5}{2}} x, X_P = \varepsilon^{\frac{7}{2}} x$ $\implies MEWTG, IPESD$

- behavior of the model in the tropics Majda & Klein 2003; Majda, 2007: $X_M = \varepsilon^2 x, X_S = \varepsilon^{\frac{5}{2}} x, X_P = \varepsilon^{\frac{7}{2}} x$ $\implies MEWTG, IPESD$
- numerical implementation of the Planetary Regime, single scale/ two scale

- behavior of the model in the tropics Majda & Klein 2003; Majda, 2007: $X_M = \varepsilon^2 x, X_S = \varepsilon^{\frac{5}{2}} x, X_P = \varepsilon^{\frac{7}{2}} x$ $\implies MEWTG, IPESD$
- numerical implementation of the Planetary Regime, single scale/ two scale

MTV strategy for the synoptic scale dynamics

1. Universal parameters:

```
for the rotating earth:

a \sim 6 \ 10^3 \text{ km},

\Omega \sim 7 \ 10^{-5} \text{ s}^{-1},

g \sim 10 \text{ m s}^{-2}

for a variety of atmospheric flow regimes:

p_{ref} \sim 1 \text{ bar},

T_{ref} \sim 290 \text{ K},

u_{ref} \sim 10 \text{ m s}^{-1}
```


2. Characteristic numbers

three independent nondimensional numbers

$$\pi_1 = \frac{c_{ref}}{\Omega a} \approx \frac{1}{2}, \quad \pi_2 = \frac{u_{ref}}{c_{ref}} \approx 0.03, \quad \pi_3 = \frac{a\Omega^2}{g} \approx 0.006,$$

where $c_{ref} = \sqrt{\gamma RT_{ref}}$.

difficulties with multiple small parameter expansions

$$F = \frac{a + b\varepsilon}{1 + \delta}$$
$$\lim_{\varepsilon \to 0} \lim_{\delta \to 0} F = \lim_{\delta \to 0} \lim_{\varepsilon \to 0} F = a$$
$$G = \frac{a\varepsilon + b\delta}{\varepsilon + \delta}$$
$$\lim_{\varepsilon \to 0} \lim_{\delta \to 0} \lim_{\varepsilon \to 0} G = a \quad \lim_{\delta \to 0} \lim_{\varepsilon \to 0} \lim_{\varepsilon \to 0} G = b$$

 $\varepsilon \rightarrow 0 \delta \rightarrow 0$

< @ > < ≥ > 29

3. Distinguished limit

Expression of the characteristic numbers in terms of ε :

$$\begin{aligned} \pi_1 &= \frac{c_{ref}}{\Omega a} = \pi_1^* \,, \\ \pi_2 &= \frac{u_{ref}}{c_{ref}} = \varepsilon^2 \pi_2^* \,, \\ \pi_3 &= \frac{a\Omega^2}{g} = \varepsilon^3 \pi_3^* \,, \end{aligned}$$

$$\begin{aligned} \mathbf{as} \; \varepsilon \to 0 \end{aligned}$$

where π_1^* , π_2^* and π_3^* are $\mathcal{O}(1)$ and $\varepsilon \sim \frac{1}{8} \dots \frac{1}{6}$.

3. Classical dimensionless parameter

Mach, Froude and Rossby number are expressed in terms of ε

$$\begin{split} M &= \frac{u_{ref}}{\sqrt{\gamma R T_{ref}}} = \pi_2 \sim \varepsilon^2 \,, \\ Fr &= \frac{u_{ref}}{\sqrt{g h_{sc}}} = \sqrt{\gamma} \pi_2 \sim \varepsilon^2 \,, \\ Ro_{h_{sc}} &= \frac{u_{ref}}{2\Omega h_{sc}} = \frac{a}{2h_{sc}} \pi_2 \sim \frac{1}{\varepsilon} \,, \end{split}$$

where $h_{sc} = p_{ref}/(g\rho_{ref})$. The Rossby number is "small" if we use the internal Rossby deformation radius $L_{syn} \sim 1000 \text{km} \sim \epsilon^{-2} h_{sc}$

$$Ro_{L_{syn}} = \frac{u_{ref}}{2\Omega L_{syn}} \sim \varepsilon^2 Ro_{h_{sc}} \sim \varepsilon$$
.

4. Multiple scales asymptotic ansatz

$$\boldsymbol{U}(t,\boldsymbol{x},z;\varepsilon) = \sum_{i} \varepsilon^{i} \boldsymbol{U}^{(i)}(\frac{t}{\varepsilon},t,\varepsilon t,\varepsilon^{2}t,\ldots,\frac{\boldsymbol{x}}{\varepsilon},\boldsymbol{x},\varepsilon \boldsymbol{x},\varepsilon^{2}\boldsymbol{x},\ldots,\frac{z}{\varepsilon},z,\ldots)$$

Example: quasi-geostrophic theory Characteristic length and time scales, the rescaled coordinates

$$\begin{split} L_{syn} &\sim 1000 \, \mathrm{km} \sim \varepsilon^{-2} h_{sc} \Rightarrow x_S = \frac{x}{L_{syn}} = \frac{\varepsilon^2 x}{h_{sc}} = \varepsilon^2 x' \\ T_{syn} &\sim 1 \, \mathrm{day} \sim \varepsilon^{-2} \frac{h_{sc}}{u_{ref}} \Rightarrow t_S = \frac{t}{T_{syn}} = \frac{\varepsilon^2 t}{h_{sc}/u_{ref}} = \varepsilon^2 t' \end{split}$$

The asymptotic ansatz for the velocity takes the form

$$oldsymbol{u}(t,oldsymbol{x},z;oldsymbol{arepsilon}) = \sum_i arepsilon^i oldsymbol{u}^{(i)}(oldsymbol{x}_S,oldsymbol{y}_S,t_S,z)$$

< ₽ > < ≥ >.32

Coordinate scalings

$$\begin{split} \mathcal{U}^{(i)} &= \mathcal{U}^{(i)}(t,\mathbf{x},z) \\ \mathcal{U}^{(i)} &= \mathcal{U}^{(i)}(t,\varepsilon\mathbf{x},z) \\ \mathcal{U}^{(i)} &= \mathcal{U}^{(i)}(\frac{t}{\varepsilon},\mathbf{x},\frac{z}{\varepsilon}) \\ \mathcal{U}^{(i)} &= \mathcal{U}^{(i)}(\varepsilon^2 t,\varepsilon^2 \mathbf{x},z) \\ \mathcal{U}^{(i)} &= \mathcal{U}^{(i)}(\varepsilon^2 t,\varepsilon^2 \mathbf{x},z) \\ \mathcal{U}^{(i)} &= \mathcal{U}^{(i)}(\varepsilon^2 t,\varepsilon^{-1}\xi(\varepsilon^2 \mathbf{x}),z) \\ \mathcal{U}^{(i)} &= \mathcal{U}^{(i)}(\varepsilon^{\frac{5}{2}}t,\varepsilon^{\frac{7}{2}}x,\varepsilon^{\frac{5}{2}}y,z) \end{split}$$

Simplified model obtained

Anelastic & pseudo-incompressible models Linear large scale internal gravity waves Linear small scale internal gravity waves Mid-latitude Quasi-Geostrophic model Equatorial Weak Temperature Gradient models Semi-geostrophic model Equatorial Kelvin, Yanai & Rossby Waves

NEW MODELS

- Intraseasonal Planetary Equatorial Dynamics Majda & Klein (2003); Majda & Biello (2004)
- Deep Mesoscale Convection Klein & Majda (2006)
- Hurricanes Mikusky (2007); Mikusky, Klein & Owinoh (in prep.)

< ■ > < ≡ > 35

Majda, A. and Klein, R., (2003) *Systematic multi-scale models for the tropics*, J. Atmos. Sci., 2, 393–408.

Klein, R., (2004) An Applied Mathematical View of Theoretical Meteorology, in: Applied Mathematics Entering the 21st Century, SIAM Proceedings in Applied Mathematics, 116.

< @ > < ≣ > 36

Klein, R., (2008) An unified approach to meteorological modelling based on multiple-scales asymptotics, Advances in Geosciences, 15, 23-33.