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Sensor Network Localization, SNL, Problem

SNL - a Fundamental Problem of Distance Geometry;
easy to describe - dates back to Grasssmann 1886

n ad hoc wireless sensors (nodes) to locate in R
r ,

(r is embedding dimension;
sensors pi ∈ R

r , i ∈ V := 1, . . . , n)

m of the sensors are anchors, pi , i = n −m + 1, . . . , n)
(positions known, using e.g. GPS)

pairwise distances Dij = ‖pi − pj‖2, ij ∈ E , are known
within radio range R > 0

P =







pT
1
...

pT
n






=

[

X
A

]

∈ R
n×r
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Applications

“21 Ideas for the 21st Century”, Business Week. 8/23-30, 1999

Untethered micro sensors will go anywhere and measure
anything - traffic flow, water level, number of people walking by,
temperature. This is developing into something like a nervous
system for the earth, a skin for the earth. The world will evolve
this way.

Tracking Humans/Animals/Equipment/Weather (smart dust)

geographic routing; data aggregation; topological control;
soil humidity; earthquakes and volcanos; weather and
ocean currents.

military; tracking of goods; vehicle positions; surveillance;
random deployment in inaccessible terrains.
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Conferences/Journals/Research
Groups/Books/Theses/Codes

Conference, MELT 2008

International Journal of Sensor Networks

Research groups include: CENS at UCLA,
Berkeley WEBS,

recent related theses and books include:
[10, 16, 8, 7, 11, 12, 6, 14, 17]

recent algorithms specific for SNL:
[1, 2, 3, 4, 5, 9, 15, 18, 13]
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http://www2.parc.com/isl/projects/MELT08/
http://www.inderscience.com/browse/index.php?journalID=186
http://research.cens.ucla.edu/
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Underlying Graph Realization/Partial EDM NP-Hard

Graph G = (V , E , ω)

node set V = {1, . . . , n}
edge set (i , j) ∈ E ; ωij = ‖pi − pj‖2 known approximately

The anchors form a clique (complete subgraph)

Realization of G in ℜr : a mapping of node vi → pi ∈ ℜr

with squared distances given by ω.

Corresponding Partial Euclidean Distance Matrix, EDM

Dij =

{

d2
ij if (i , j) ∈ E

0 otherwise (unknown distance),

d2
ij = ωij are known squared Euclidean distances between

sensors pi , pj ; anchors correspond to a clique.
7
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Sensor Localization Problem/Partial EDM

Sensors ◦ and Anchors
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 n = 100,     m = 9,     R = 2
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Connections to Semidefinite Programming (SDP)

Sn
+, Cone of (symmetric) SDP matrices in Sn ; xT Ax ≥ 0

inner product 〈A, B〉 = trace AB
Löwner (psd) partial order A � B, A ≻ B

D = K (B) ∈ En, B = K †(D) ∈ Sn ∩ SC (centered Be = 0)

PT =
[

p1 p2 . . . pn
]

∈M r×n; B := PPT ∈ Sn
+;

rank B = r ; D ∈ En be corresponding EDM .
(to D ∈ En) D =

(

‖pi − pj‖22
)n

i ,j=1

=
(

pT
i pi + pT

j pj − 2pT
i pj

)n

i ,j=1

= diag (B) eT + e diag (B)T − 2B
=: De(B)− 2B
=: K (B) (from B ∈ Sn

+).
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Current Techniques; SDP Relax.; Highly Degen.

Nearest, Weighted, SDP Approx. (relax rank B)

minB�0,B∈Ω ‖H ◦ (K (B)− D)‖; rank B = r ;
typical weights: Hij = 1/

√

Dij , if ij ∈ E .

with rank constraint: a non-convex, NP-hard program
SDP relaxation is convex, BUT:

expensive
low accuracy
implicitly highly degenerate (cliques restrict ranks of
feasible Bs)
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Instead: Take Advantage of Implicit Degeneracy!

clique α, |α| = k given

(corresp. D[α]) with embed. dim. = t ≤ r < k

=⇒ rankK †(D[α]) = t ≤ r

=⇒ rank B[α] ≤ rankK †(D[α]) + 1 =⇒
rank B = rankK †(D) ≤ n − (k − t − 1)

=⇒
Slater’s CQ (strict feasibility) fails
a proper face containing feasible set of Bs can be
identified.
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(Sn :) K : Sn
+ ∩ SC → En ⊂ Sn ∩ SH ←: T (:En)

Linear Transformations: Dv (B),K (B),T (D)

allow: Dv (B) := diag(B) vT + v diag(B)T ;
Dv (y) := yvT + vyT

adjoint K ∗(D) = 2(Diag (De)− D).

K is 1−1, onto between centered & hollow subspaces :
SC := {B ∈ Sn : Be = 0};
SH := {D ∈ Sn : diag (D) = 0} = R (offDiag )

J := I − 1
n eeT (orthogonal projection onto M := {e}⊥);

T (D) := −1
2JoffDiag (D)J (= K †(D))
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Semidefinite Cone, Faces

• F ⊆ K is a face of K , denoted F E K , if
(

x , y ∈ K , 1
2(x + y) ∈ F

)

=⇒ (cone {x , y} ⊆ F ) .
• All faces of Sn

+ are exposed.

Faces of cone K

F ⊳ K , if F E K , F 6= K ; F is proper face if {0} 6= F ⊳ K .

F E K is exposed if: intersection of K with a hyperplane.

face(S) denotes smallest face of K that contains set S.
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Facial Structure of SDP Cone; Equivalent
SUBSPACES

Face F E Sn
+ Equivalence to R (U) Subspace of R

n

F E Sn
+ determined by range of any S ∈ relint F ,

i.e. let S = UΓUT be compact spectral decomposition; Γ ∈ S t
++

is diagonal matrix of pos. eigenvalues; F = US t
+UT

(F associated with R (U))
dim F = t(t + 1)/2.

face F representation by subspace L
(subspace) L = R (T ), T is n × t full column, then:

F := TS t
+T T

E Sn
+

14
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Further Notation

Matrix with Fixed Principal Submatrix

For Y ∈ Sn , α ⊆ {1, . . . , n}: Y [α] denotes principal submatrix
formed from rows & cols with indices α.

Sets with Fixed Principal Submatrices

If |α| = k and Ȳ ∈ Sk , then:

Sn(α, Ȳ ) :=
{

Y ∈ Sn : Y [α] = Ȳ
}

,

Sn
+(α, Ȳ ) :=

{

Y ∈ Sn
+ : Y [α] = Ȳ

}

i.e. the subset of matrices Y ∈ Sn (Y ∈ Sn
+) with principal

submatrix Y [α] fixed to Ȳ .

15
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Sn(α, Ȳ ) :=
{

Y ∈ Sn : Y [α] = Ȳ
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}

i.e. the subset of matrices Y ∈ Sn (Y ∈ Sn
+) with principal

submatrix Y [α] fixed to Ȳ .
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Basic Single Clique/Facial Reduction

D̄ ∈ E k , α ⊆ 1 :n, |α| = k

Define En(α, D̄) :=
{

D ∈ En : D[α] = D̄
}

.

Given D̄; find a corresponding B � 0; find the corresponding
face; find the corresponding subspace.

if α = 1 : k ; embed. dim of D̄ is t ≤ r

D =

[

D̄ ·
· ·

]

,

16
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BASIC THEOREM for Single Clique/Facial Reduction

THEOREM 1: Single Clique/Facial Reduction

Let: D̄ := D[1 :k ] ∈ Ek , k < n, with embedding dimension t ≤ r ;
B := K †(D̄) = ŪBSŪT

B , ŪB ∈M k×t , ŪT
B ŪB = It , S ∈ S t

++.

Furthermore, let UB :=
[

ŪB
1√
k
e
]

∈M k×(t+1),

U :=

[

UB 0
0 In−k

]

, and let
[

V UT e
‖UT e‖

]

∈M n−k+t+1 be

orthogonal. Then:

faceK † (En(1 :k , D̄)
)

=
(

USn−k+t+1
+ UT

)

∩ SC

= (UV )Sn−k+t
+ (UV )T

Note that we add 1√
k
e to represent N (K ); then we use V to

eliminate e to recover a centered face.
17
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Sets for Intersecting Cliques/Faces

α1 := 1 : (k̄1 + k̄2); α2 := (k̄1 + 1) :(k̄1 + k̄2 + k̄3)

k̄2 k̄3k̄1

α2α1

For each clique |α| = k , we get a corresponding face/subspace
(k × r matrix) representation. We now see how to handle two
cliques, α1, α2, that intersect. 18
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Two (Intersecting) Clique Reduction/Subsp. Repres.

THEOREM 2: Clique/Facial Intersection Using Subspace
Intersection
{

α1, α2 ⊆ 1 :n; k := |α1 ∪ α2|
For i = 1, 2: D̄i := D[αi ] ∈ E ki , embedding dimension ti ;
Bi := K †(D̄i) = ŪiSi ŪT

i , Ūi ∈M ki×ti , ŪT
i Ūi = Iti , Si ∈ S ti

++;

Ui :=
[

Ūi
1√
ki

e
]

∈M ki×(ti+1); and Ū ∈M k×(t+1) satisfies

R (Ū) = R
([

U1 0
0 Ik̄3

])

∩R
([

Ik̄1
0

0 U2

])

, with ŪT Ū = It+1

cont. . .

19
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Two (Intersecting) Clique Reduction, cont. . .

THEOREM 2 Nonsing. Clique/Facial Inters. cont. . .

cont. . . with

R (Ū) = R
([

U1 0
0 Ik̄3

])

∩R
([

Ik̄1
0

0 U2

])

, with ŪT Ū = It+1 ;

let: U :=

[

Ū 0
0 In−k

]

∈M n×(n−k+t+1) and
[

V UT e
‖UT e‖

]

∈M n−k+t+1 be orthogonal. Then

⋂2
i=1 faceK † (En(αi , D̄i)

)

=
(

USn−k+t+1
+ UT

)

∩ SC

= (UV )Sn−k+t
+ (UV )T
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Expense/Work of (Two) Clique/Facial Reductions

Subspace Intersection for Two Intersecting Cliques/Faces

Suppose:

U1 =





U ′
1 0

U ′′
1 0

0 I



 and U2 =





I 0
0 U ′′

2
0 U ′

2





Then:

U :=





U ′
1

U ′′
1

U ′
2(U

′′
2 )†U ′′

1



 or U :=





U ′
1(U

′′
1 )†U ′′

2
U ′′

2
U ′

2





(Efficiently) satisfies:

R (U) = R (U1) ∩R (U2)

21
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Two (Intersecting) Clique Reduction Figure

Completion: missing distances can be recovered if desired.
22
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Two (Intersecting) Clique Explicit Delayed Completion

COR. Intersection with Embedding Dim. r /Completion

Hypotheses of Theorem 2 holds. Let D̄i := D[αi ] ∈ E ki , for
i = 1, 2, β ⊆ α1 ∩ α2, γ := α1 ∪ α2, D̄ := D[β], B :=
K †(D̄), Ūβ := Ū(β, :), where Ū ∈M k×(t+1) satisfies

intersection equation of Theorem 2. Let
[

V̄ ŪT e
‖ŪT e‖

]

∈M t+1

be orthogonal. Let Z := (JŪβV̄ )†B((JŪβV̄ )†)T . If the

embedding dimension for D̄ is r , THEN t = r in Theorem 2, and
Z ∈ S r

+ is the unique solution of the equation
(JŪβV̄ )Z (JŪβV̄ )T = B, and the exact completion is

D[γ] = K
(

PPT
)

where P := UVZ
1
2 ∈ R

|γ|×r

23
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Completing SNL (Delayed use of Anchor Locations)

Rotate to Align the Anchor Positions

Given P =

[

P1

P2

]

∈ R
n×r such that D = K (PPT )

Solve the orthogonal Procrustes problem:

min ‖A− P2Q‖
s.t. QT Q = I

PT
2 A = UΣV T SVD decomposition; set Q = UV T ;

(Golub/Van Loan, Algorithm 12.4.1)

Set X := P1Q

24
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Clique Unions and Node Absorptions
Numerics (low CPU time; high accuracy)

ALGOR: clique union; facial reduct.; delay compl.

Initialize: Find initial set of cliques.

Ci :=
{

j : (Dp)ij < (R/2)2
}

, for i = 1, . . . , n

Iterate

For |Ci ∩Cj | ≥ r + 1, do Rigid Clique Union

For |Ci ∩N (j)| ≥ r + 1, do Rigid Node Absorption

For |Ci ∩Cj | = r , do Non-Rigid Clique Union (lower bnds)

For |Ci ∩N (j)| = r , do Non-Rigid Node Absorp. (lower
bnds)

Finalize

When ∃ a clique containing all anchors, use computed facial
representation and positions of anchors to solve for X

25
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Results - Data for Random Noisless Problems

2.16 GHz Intel Core 2 Duo, 2 GB of RAM

Dimension r = 2

Square region: [0, 1]× [0, 1]

m = 9 anchors

Using only Rigid Clique Union and Rigid Node Absorption

Error measure: Root Mean Square Deviation

RMSD =

(

1
n

n
∑

i=1

‖pi − ptrue
i ‖2

)1/2

26



Preliminaries
Clique/Facial Reduction (Exploit degeneracy)

Algorithm
Noisy Data

Summary

Clique Unions and Node Absorptions
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Results - Large n (SDP size O(n2))

n # of Sensors Located
n # sensors \ R 0.07 0.06 0.05 0.04

2000 2000 2000 1956 1374
6000 6000 6000 6000 6000

10000 10000 10000 10000 10000

CPU Seconds
# sensors \ R 0.07 0.06 0.05 0.04

2000 1 1 1 3
6000 5 5 4 4

10000 10 10 9 8

RMSD (over located sensors)
n # sensors \ R 0.07 0.06 0.05 0.04

2000 4e−16 5e−16 6e−16 3e−16
6000 4e−16 4e−16 3e−16 3e−16
10000 3e−16 5e−16 4e−16 4e−16
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Clique Unions and Node Absorptions
Numerics (low CPU time; high accuracy)

Results - N Huge SDPs Solved

Large-Scale Problems

# sensors # anchors radio range RMSD Time
20000 9 .025 5e−16 25s
40000 9 .02 8e−16 1m 23s
60000 9 .015 5e−16 3m 13s

100000 9 .01 6e−16 9m 8s

Size of SDPs Solved: N =

(

n
2

)

(# vrbls)

E(density of G ) = πR2; M = E(|E |) = πR2N (# constraints)
Size of SDP Problems:
M =

[

3, 078, 915 12, 315, 351 27, 709, 309 76, 969, 790
]

N = 109
[

0.2000 0.8000 1.8000 5.0000
]
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Noisy Data: Locally Recover Exact EDMs

Nearest EDM

Given clique α; corresp. EDM Dǫ = D + Nǫ, Nǫ noise

we need to find the smallest face containing En(α, D).






min ‖K (X )− Dǫ‖
s.t. rank (X ) = r , Xe = 0, X � 0

X � 0.

Eliminate the constraints: Ve = 0, V T V = I,
K V (X ) := K (VXV T ):

U∗
r ∈ argmin 1

2

∥

∥K V (UUT )− Dǫ

∥

∥

2
F

s.t. U ∈ M(n−1)r .

The nearest EDM is D∗ = K V (U∗
r (U∗

r )T ).
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Solve Overdetermined Nonlin. Least Squares Prob.

Newton (expensive) or Gauss-Newton (less accurate)

F (U) := us2vec
(

K V (UUT )− Dǫ

)

, min
U

f (U) :=
1
2
‖F (U)‖2

Derivatives: gradient and Hessian

∇f (U)(∆U) = 〈2
(

K ∗
V

[

K V (UUT )− Dǫ

])

U,∆U〉

∇2f (U) = 2vec
(

L ∗
UK ∗

VK V SΣ L U +K ∗
V

(

K V (UUT )− Dǫ

))

Mat

where L U(·) = ·UT ; SΣ(U) = 1
2(U + UT )
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random noisy probs; r = 2, m = 9, nf = 1e − 6

Using only Rigid Clique Union, preliminary results:

remaining cliques

n / R 1.0 0.9 0.8 0.7 0.6
1000 1.00 5.00 11.00 40.00 124.00
2000 1.00 1.00 1.00 1.00 7.00
3000 1.00 1.00 1.00 1.00 1.00
4000 1.00 1.00 1.00 1.00 1.00
5000 1.00 1.00 1.00 1.00 1.00

cpu seconds

n / R 1.0 0.9 0.8 0.7 0.6
1000 9.43 6.98 5.57 5.04 4.05
2000 12.46 12.18 12.43 11.18 9.89
3000 18.08 18.50 19.07 18.33 16.33
4000 25.18 24.01 24.02 23.80 22.12
5000 38.13 31.66 30.26 30.32 29.88

max-log-error

n / R 1.0 0.9 0.8 0.7 0.6
1000 −3.28 −4.19 −2.92 Inf Inf
2000 −3.63 −3.81 −3.82 −2.39 −3.73
3000 −3.51 −3.98 −3.25 −3.90 −3.28
4000 −4.15 −4.05 −3.52 −3.04 −3.33
5000 −4.80 −4.38 −3.89 −4.13 −3.40
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Summary

SDP relaxation of SNL is (highly, implicitly) degenerate:
feasible set is restricted to a low dim. face
(Slater CQ - strict feasibility - fails)

take advantage of degeneracy using explicit
representations of intersections of faces corresponding to
unions of intersecting cliques

Without using an SDP-solver, we efficiently compute exact
solutions to SDP relaxation
(dual/extended view of geometric buildup)
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