On Fenchel Duality and Some of Its Variants

Radu Ioan Boț

Chemnitz University of Technology, Chemnitz, Germany

Banff International Research Station, Canada November 1–6, 2009

- Preliminary notions and results
- Regularity conditions for Fenchel duality
- Two convex regularization schemes
- Totally Fenchel unstable functions
- ▶ The finite dimensional case

- Preliminary notions and results
- Regularity conditions for Fenchel duality
- Two convex regularization schemes
- Totally Fenchel unstable functions
- ▶ The finite dimensional case

- Preliminary notions and results
- Regularity conditions for Fenchel duality
- Two convex regularization schemes
- Totally Fenchel unstable functions
- ▶ The finite dimensional case

- Preliminary notions and results
- Regularity conditions for Fenchel duality
- Two convex regularization schemes
- Totally Fenchel unstable functions
- ► The finite dimensional case

- Preliminary notions and results
- Regularity conditions for Fenchel duality
- Two convex regularization schemes
- Totally Fenchel unstable functions
- The finite dimensional case

- X a separated locally convex space and its topological dual space X^{*} endowed with the weak^{*} topology ω(X^{*}, X);
- For C ⊆ X convex, core(C), the algebraic interior of C. One has x ∈ core(C) if and only if ∪_{λ>0} λ(C − x) = X;
- For C ⊆ X convex, sqri(C), the strong-quasi relative interior of C. One has x ∈ sqri(C) if and only if ∪_{λ>0} λ(C − x) is a closed linear subspace of X;
- ▶ for a given set $C \subseteq X$, the indicator function of C, $\delta_C : X \to \overline{\mathbb{R}}$, defined as $\delta_C(x) = 0$, if $x \in C$ and $\delta_C(x) = +\infty$, otherwise.

- ➤ X a separated locally convex space and its topological dual space X* endowed with the weak* topology ω(X*, X);
- For C ⊆ X convex, core(C), the algebraic interior of C. One has x ∈ core(C) if and only if ∪_{λ>0} λ(C − x) = X;
- For C ⊆ X convex, sqri(C), the strong-quasi relative interior of C. One has x ∈ sqri(C) if and only if ∪_{λ>0} λ(C − x) is a closed linear subspace of X;
- ▶ for a given set $C \subseteq X$, the indicator function of C, $\delta_C : X \to \overline{\mathbb{R}}$, defined as $\delta_C(x) = 0$, if $x \in C$ and $\delta_C(x) = +\infty$, otherwise.

- X a separated locally convex space and its topological dual space X^{*} endowed with the weak^{*} topology ω(X^{*}, X);
- For C ⊆ X convex, core(C), the algebraic interior of C. One has x ∈ core(C) if and only if ∪_{λ>0} λ(C − x) = X;
- For C ⊆ X convex, sqri(C), the strong-quasi relative interior of C. One has x ∈ sqri(C) if and only if ∪_{λ>0} λ(C − x) is a closed linear subspace of X;
- ▶ for a given set $C \subseteq X$, the indicator function of C, $\delta_C : X \to \overline{\mathbb{R}}$, defined as $\delta_C(x) = 0$, if $x \in C$ and $\delta_C(x) = +\infty$, otherwise.

- X a separated locally convex space and its topological dual space X^{*} endowed with the weak^{*} topology ω(X^{*}, X);
- For C ⊆ X convex, core(C), the algebraic interior of C. One has x ∈ core(C) if and only if ∪_{λ>0} λ(C − x) = X;
- For C ⊆ X convex, sqri(C), the strong-quasi relative interior of C. One has x ∈ sqri(C) if and only if ∪_{λ>0} λ(C − x) is a closed linear subspace of X;
- ▶ for a given set $C \subseteq X$, the indicator function of C, $\delta_C : X \to \overline{\mathbb{R}}$, defined as $\delta_C(x) = 0$, if $x \in C$ and $\delta_C(x) = +\infty$, otherwise.

For $f: X \to \overline{\mathbb{R}}$ we consider the following notions

• domain: dom $f = \{x \in X : f(x) < +\infty\};$

- f is proper: $f(x) > -\infty \ \forall x \in X$ and dom $f \neq \emptyset$;
- epigraph: epi $f = \{(x, r) \in X \times \mathbb{R} : f(x) \le r\};$
- ▶ lower semicontinuous envelope of f: the function $cl(f) : X \to \overline{\mathbb{R}}$ defined by epi(cl(f)) = cl(epi f);
- ► conjugate function of $f: f^*: X^* \to \overline{\mathbb{R}}$, $f^*(x^*) = \sup \{ \langle x, x^* \rangle - f(x) : x \in X \};$
- ▶ for $\varepsilon \ge 0$ and $\bar{x} \in X$ with $f(\bar{x}) \in \mathbb{R}$ the (convex) ε -subdifferential of f at \bar{x} :

 $\partial_{\varepsilon}f(\bar{x}) = \{x^* \in X^* : f(x) - f(\bar{x}) \ge \langle x^*, x - \bar{x} \rangle - \varepsilon \ \forall x \in X\};$ otherwise, $\partial_{\varepsilon}f(\bar{x}) = \emptyset;$

- the (convex) subdifferential of f at $\bar{x} \in X$: $\partial f(\bar{x}) := \partial_0 f(\bar{x})$.
- When f, g : X → R are proper functions, their infimal convolution is defined by f□g : X → R, f□g(x) = inf{f(x y) + g(y) : y ∈ X}.
- ▶ We say that $f \Box g$ is exact at $x \in X$ if there exists some $y \in X$ for which the infimum is attained.

For $f: X \to \overline{\mathbb{R}}$ we consider the following notions

• domain: dom $f = \{x \in X : f(x) < +\infty\};$

- f is proper: $f(x) > -\infty \ \forall x \in X$ and dom $f \neq \emptyset$;
- epigraph: epi $f = \{(x, r) \in X \times \mathbb{R} : f(x) \le r\};$
- ▶ lower semicontinuous envelope of f: the function $cl(f) : X \to \overline{\mathbb{R}}$ defined by epi(cl(f)) = cl(epi f);
- ► conjugate function of $f: f^*: X^* \to \overline{\mathbb{R}}$, $f^*(x^*) = \sup \{ \langle x, x^* \rangle - f(x) : x \in X \};$
- ▶ for $\varepsilon \ge 0$ and $\bar{x} \in X$ with $f(\bar{x}) \in \mathbb{R}$ the (convex) ε -subdifferential of f at \bar{x} :

 $\partial_{\varepsilon}f(\bar{x}) = \{x^* \in X^* : f(x) - f(\bar{x}) \ge \langle x^*, x - \bar{x} \rangle - \varepsilon \ \forall x \in X\};$ otherwise, $\partial_{\varepsilon}f(\bar{x}) = \emptyset;$

- the (convex) subdifferential of f at $\bar{x} \in X$: $\partial f(\bar{x}) := \partial_0 f(\bar{x})$.
- ▶ When $f, g: X \to \overline{\mathbb{R}}$ are proper functions, their infimal convolution is defined by $f \Box g: X \to \overline{\mathbb{R}}$, $f \Box g(x) = \inf\{f(x y) + g(y) : y \in X\}$.
- We say that f□g is exact at x ∈ X if there exists some y ∈ X for which the infimum is attained.

(P) $\inf_{x \in X} \{f(x) + g(x)\}.$

▶ The Fenchel dual problem to (*P*) is

(D)
$$\sup_{z^* \in X^*} \{-f^*(-z^*) - g^*(z^*)\}.$$

We say that

- ▶ the pair f, g satisfy stable Fenchel duality if for all x* ∈ X*, there exists z* ∈ X* such that (f + g)*(x*) = f*(x* z*) + g*(z*)
- ▶ the pair f, g satisfy the classical Fenchel duality if there exists $z^* \in X^*$ such that $(f + g)^*(0) = f^*(-z^*) + g^*(z^*)$
- ▶ the pair f, g is totally Fenchel unstable if f, g satisfy Fenchel duality but $y^*, z^* \in X^*$ and

$$(f+g)^*(y^*+z^*) = f^*(y^*) + g^*(z^*) \Longrightarrow y^* + z^* = 0.$$

(P)
$$\inf_{x \in X} \{f(x) + g(x)\}.$$

► The Fenchel dual problem to (P) is (D) $\sup_{z^* \in X^*} \{-f^*(-z^*) - g^*(z^*)\}.$

We say that

- ▶ the pair f, g satisfy stable Fenchel duality if for all x* ∈ X*, there exists z* ∈ X* such that (f + g)*(x*) = f*(x* z*) + g*(z*)
- ▶ the pair f, g satisfy the classical Fenchel duality if there exists $z^* \in X^*$ such that $(f + g)^*(0) = f^*(-z^*) + g^*(z^*)$
- ▶ the pair f, g is totally Fenchel unstable if f, g satisfy Fenchel duality but $y^*, z^* \in X^*$ and

$$(f+g)^*(y^*+z^*) = f^*(y^*) + g^*(z^*) \Longrightarrow y^* + z^* = 0.$$

(P)
$$\inf_{x \in X} \{f(x) + g(x)\}.$$

► The Fenchel dual problem to (P) is
(D) sup {−f*(−z*) − g*(z*)}.

We say that

- ▶ the pair f, g satisfy stable Fenchel duality if for all x* ∈ X*, there exists z* ∈ X* such that (f + g)*(x*) = f*(x* z*) + g*(z*)
- ▶ the pair f, g satisfy the classical Fenchel duality if there exists $z^* \in X^*$ such that $(f + g)^*(0) = f^*(-z^*) + g^*(z^*)$
- ▶ the pair f, g is totally Fenchel unstable if f, g satisfy Fenchel duality but $y^*, z^* \in X^*$ and

$$(f+g)^*(y^*+z^*) = f^*(y^*) + g^*(z^*) \Longrightarrow y^* + z^* = 0.$$

(P)
$$\inf_{x \in X} \{f(x) + g(x)\}.$$

► The Fenchel dual problem to (P) is
(D) sup {−f*(−z*) − g*(z*)}.

We say that

► the pair f, g satisfy stable Fenchel duality if for all x* ∈ X*, there exists z* ∈ X* such that (f + g)*(x*) = f*(x* - z*) + g*(z*)

▶ the pair f, g satisfy the classical Fenchel duality if there exists $z^* \in X^*$ such that $(f + g)^*(0) = f^*(-z^*) + g^*(z^*)$

▶ the pair f, g is totally Fenchel unstable if f, g satisfy Fenchel duality but $y^*, z^* \in X^*$ and

$$(f+g)^*(y^*+z^*) = f^*(y^*) + g^*(z^*) \Longrightarrow y^* + z^* = 0.$$

(P)
$$\inf_{x \in X} \{f(x) + g(x)\}.$$

(D)
$$\sup_{z^* \in X^*} \{-f^*(-z^*) - g^*(z^*)\}.$$

We say that

- ► the pair f, g satisfy stable Fenchel duality if for all x* ∈ X*, there exists z* ∈ X* such that (f + g)*(x*) = f*(x* z*) + g*(z*)
- ▶ the pair f, g satisfy the classical Fenchel duality if there exists $z^* \in X^*$ such that $(f + g)^*(0) = f^*(-z^*) + g^*(z^*)$
- ► the pair f, g is totally Fenchel unstable if f, g satisfy Fenchel duality but y*, z* ∈ X* and

$$(f+g)^*(y^*+z^*) = f^*(y^*) + g^*(z^*) \Longrightarrow y^* + z^* = 0.$$

(P)
$$\inf_{x \in X} \{f(x) + g(x)\}.$$

(D)
$$\sup_{z^* \in X^*} \{-f^*(-z^*) - g^*(z^*)\}.$$

We say that

- ► the pair f, g satisfy stable Fenchel duality if for all x* ∈ X*, there exists z* ∈ X* such that (f + g)*(x*) = f*(x* z*) + g*(z*)
- ▶ the pair f, g satisfy the classical Fenchel duality if there exists $z^* \in X^*$ such that $(f + g)^*(0) = f^*(-z^*) + g^*(z^*)$
- ► the pair f, g is totally Fenchel unstable if f, g satisfy Fenchel duality but y*, z* ∈ X* and

$$(f+g)^*(y^*+z^*) = f^*(y^*) + g^*(z^*) \Longrightarrow y^* + z^* = 0.$$

(P)
$$\inf_{x \in X} \{f(x) + g(x)\}.$$

(D)
$$\sup_{z^* \in X^*} \{-f^*(-z^*) - g^*(z^*)\}.$$

We say that

- ► the pair f, g satisfy stable Fenchel duality if for all x* ∈ X*, there exists z* ∈ X* such that (f + g)*(x*) = f*(x* z*) + g*(z*)
- ▶ the pair f, g satisfy the classical Fenchel duality if there exists $z^* \in X^*$ such that $(f + g)^*(0) = f^*(-z^*) + g^*(z^*)$
- ► the pair f, g is totally Fenchel unstable if f, g satisfy Fenchel duality but y*, z* ∈ X* and

$$(f+g)^*(y^*+z^*) = f^*(y^*) + g^*(z^*) \Longrightarrow y^* + z^* = 0.$$

One always has

$$\operatorname{epi} f^* + \operatorname{epi} g^* \subseteq \operatorname{epi}(f+g)^*.$$

The pair f, g satisfy stable Fenchel duality if and only if

$$epi(f + g)^* = epi f^* + epi g^*.$$

The pair f, g satisfy Fenchel duality if and only if

$$\operatorname{epi}(f+g)^* \cap (\{0\} \times \mathbb{R}) = (\operatorname{epi} f^* + \operatorname{epi} g^*) \cap (\{0\} \times \mathbb{R}).$$

The pair f, g is totally Fenchel unstable if and only if

$$\operatorname{epi}(f+g)^* \cap (\{0\} imes \mathbb{R}) = (\operatorname{epi} f^* + \operatorname{epi} g^*) \cap (\{0\} imes \mathbb{R})$$

and there is no $x^* \in X^* \setminus \{0\}$ such that

 $\operatorname{epi}(f+g)^* \cap (\{x^*\} \times \mathbb{R}) = (\operatorname{epi} f^* + \operatorname{epi} g^*) \cap (\{x^*\} \times \mathbb{R}).$

Assume that $f, g: X \to \mathbb{R}$ are proper convex functions such that dom $f \cap \text{dom } g \neq \emptyset$. In the literature there exist different classes of regularity conditions for stable Fenchel duality:

(i) f is continuous at $x' \in \text{dom } f \cap \text{dom } g$;

Interior point regularity conditions:

(*ii*)
$$0 \in int(dom f - dom g);$$

(*iii*) $0 \in \operatorname{core}(\operatorname{dom} f - \operatorname{dom} g)$ (Rockafellar, 1974);

(*iv*) $0 \in \text{sqri}(\text{dom } f - \text{dom } g)$ (Attouch, Brézis, 1986, Zălinescu, 1987).

Closedness-type regularity condition:

Assume that $f, g: X \to \mathbb{R}$ are proper convex functions such that dom $f \cap \text{dom } g \neq \emptyset$. In the literature there exist different classes of regularity conditions for stable Fenchel duality:

(i) f is continuous at $x' \in \operatorname{dom} f \cap \operatorname{dom} g$;

Interior point regularity conditions:

(*ii*)
$$0 \in int(\operatorname{dom} f - \operatorname{dom} g);$$

(iii) $0 \in \operatorname{core}(\operatorname{dom} f - \operatorname{dom} g)$ (Rockafellar, 1974);

(*iv*) $0 \in \text{sqri}(\text{dom } f - \text{dom } g)$ (Attouch, Brézis, 1986, Zălinescu, 1987).

Closedness-type regularity condition:

Assume that $f, g: X \to \mathbb{R}$ are proper convex functions such that dom $f \cap \text{dom } g \neq \emptyset$. In the literature there exist different classes of regularity conditions for stable Fenchel duality:

(i) f is continuous at $x' \in \operatorname{dom} f \cap \operatorname{dom} g$;

Interior point regularity conditions:

(ii)
$$0 \in int(\operatorname{dom} f - \operatorname{dom} g);$$

(iii) $0 \in \operatorname{core}(\operatorname{dom} f - \operatorname{dom} g)$ (Rockafellar, 1974);

(*iv*) $0 \in \text{sqri}(\text{dom } f - \text{dom } g)$ (Attouch, Brézis, 1986, Zălinescu, 1987).

Closedness-type regularity condition:

Assume that $f, g: X \to \mathbb{R}$ are proper convex functions such that dom $f \cap \text{dom } g \neq \emptyset$. In the literature there exist different classes of regularity conditions for stable Fenchel duality:

(i) f is continuous at
$$x' \in \operatorname{dom} f \cap \operatorname{dom} g$$
;

Interior point regularity conditions:

(*ii*)
$$0 \in int(\operatorname{dom} f - \operatorname{dom} g)$$
;

(iii) $0 \in \operatorname{core}(\operatorname{dom} f - \operatorname{dom} g)$ (Rockafellar, 1974);

(*iv*) $0 \in \text{sqri}(\text{dom } f - \text{dom } g)$ (Attouch, Brézis, 1986, Zălinescu, 1987).

Closedness-type regularity condition:

Assume that $f, g: X \to \mathbb{R}$ are proper convex functions such that dom $f \cap \text{dom } g \neq \emptyset$. In the literature there exist different classes of regularity conditions for stable Fenchel duality:

(i) f is continuous at
$$x' \in \operatorname{dom} f \cap \operatorname{dom} g$$
;

Interior point regularity conditions:

(ii)
$$0 \in int(\operatorname{dom} f - \operatorname{dom} g);$$

(iii) $0 \in \operatorname{core}(\operatorname{dom} f - \operatorname{dom} g)$ (Rockafellar, 1974);

(*iv*) $0 \in \text{sqri}(\text{dom } f - \text{dom } g)$ (Attouch, Brézis, 1986, Zălinescu, 1987).

Closedness-type regularity condition:

Assume that $f, g: X \to \mathbb{R}$ are proper convex functions such that dom $f \cap \text{dom } g \neq \emptyset$. In the literature there exist different classes of regularity conditions for stable Fenchel duality:

(i) f is continuous at
$$x' \in \operatorname{dom} f \cap \operatorname{dom} g$$
;

Interior point regularity conditions:

$$\begin{array}{ll} (ii) & 0 \in \operatorname{int}(\operatorname{dom} f - \operatorname{dom} g);\\ (iii) & 0 \in \operatorname{core}(\operatorname{dom} f - \operatorname{dom} g) \ (\operatorname{Rockafellar}, \ 1974);\\ (iv) & 0 \in \operatorname{sqri}(\operatorname{dom} f - \operatorname{dom} g) \ (\operatorname{Attouch}, \ \operatorname{Brézis}, \ 1986, \ \mathsf{Zǎlinescu}, \\ \ 1987). \end{array}$$

Closedness-type regularity condition:

- condition $(i) \Rightarrow$ stable Fenchel duality;
- ▶ if f, g are lower semicontinuous and X is a Fréchet space, then $(ii) \Leftrightarrow (iii) \Rightarrow (iv) \Rightarrow$ stable Fenchel duality;
- If f, g are lower semicontinuous, then (v) ⇔ stable Fenchel duality.

Example 1. Let $X = \mathbb{R}$, $f(x) = \frac{1}{2}x^2$, if $x \ge 0$, and $f(x) = +\infty$, otherwise, and $g = \delta_{(-\infty,0]}$. Then (i) - (iv) are not fulfilled, while (v) is valid.

Consider the following regularity condition for Fenchel duality:

(vi) $f^* \square g^*$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

• condition $(i) \Rightarrow$ stable Fenchel duality;

- ▶ if f, g are lower semicontinuous and X is a Fréchet space, then $(ii) \Leftrightarrow (iii) \Rightarrow (iv) \Rightarrow$ stable Fenchel duality;
- ▶ if f, g are lower semicontinuous, then (v) ⇔ stable Fenchel duality.

Example 1. Let $X = \mathbb{R}$, $f(x) = \frac{1}{2}x^2$, if $x \ge 0$, and $f(x) = +\infty$, otherwise, and $g = \delta_{(-\infty,0]}$. Then (i) - (iv) are not fulfilled, while (v) is valid.

Consider the following regularity condition for Fenchel duality:

(vi) $f^* \square g^*$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

- condition $(i) \Rightarrow$ stable Fenchel duality;
- ▶ if f, g are lower semicontinuous and X is a Fréchet space, then $(ii) \Leftrightarrow (iii) \Rightarrow (iv) \Rightarrow$ stable Fenchel duality;
- ▶ if f, g are lower semicontinuous, then (v) ⇔ stable Fenchel duality.

Example 1. Let $X = \mathbb{R}$, $f(x) = \frac{1}{2}x^2$, if $x \ge 0$, and $f(x) = +\infty$, otherwise, and $g = \delta_{(-\infty,0]}$. Then (i) - (iv) are not fulfilled, while (v) is valid.

Consider the following regularity condition for Fenchel duality:

(vi) $f^* \square g^*$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

- condition $(i) \Rightarrow$ stable Fenchel duality;
- ▶ if f, g are lower semicontinuous and X is a Fréchet space, then $(ii) \Leftrightarrow (iii) \Rightarrow (iv) \Rightarrow$ stable Fenchel duality;
- if f, g are lower semicontinuous, then (v) ⇔ stable Fenchel duality.

Example 1. Let $X = \mathbb{R}$, $f(x) = \frac{1}{2}x^2$, if $x \ge 0$, and $f(x) = +\infty$, otherwise, and $g = \delta_{(-\infty,0]}$. Then (i) - (iv) are not fulfilled, while (v) is valid.

Consider the following regularity condition for Fenchel duality:

(vi) $f^* \square g^*$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

- condition $(i) \Rightarrow$ stable Fenchel duality;
- If f, g are lower semicontinuous and X is a Fréchet space, then (ii) ⇔ (iii) ⇒ (iv) ⇒ stable Fenchel duality;
- If f, g are lower semicontinuous, then (v) ⇔ stable Fenchel duality.

Example 1. Let $X = \mathbb{R}$, $f(x) = \frac{1}{2}x^2$, if $x \ge 0$, and $f(x) = +\infty$, otherwise, and $g = \delta_{(-\infty,0]}$. Then (i) - (iv) are not fulfilled, while (v) is valid.

Consider the following regularity condition for Fenchel duality:

(vi) $f^* \Box g^*$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

- condition $(i) \Rightarrow$ stable Fenchel duality;
- If f, g are lower semicontinuous and X is a Fréchet space, then (ii) ⇔ (iii) ⇒ (iv) ⇒ stable Fenchel duality;
- If f, g are lower semicontinuous, then (v) ⇔ stable Fenchel duality.

Example 1. Let $X = \mathbb{R}$, $f(x) = \frac{1}{2}x^2$, if $x \ge 0$, and $f(x) = +\infty$, otherwise, and $g = \delta_{(-\infty,0]}$. Then (i) - (iv) are not fulfilled, while (v) is valid.

Consider the following regularity condition for Fenchel duality:

(vi) $f^* \Box g^*$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

- condition $(i) \Rightarrow$ stable Fenchel duality;
- If f, g are lower semicontinuous and X is a Fréchet space, then (ii) ⇔ (iii) ⇒ (iv) ⇒ stable Fenchel duality;
- If f, g are lower semicontinuous, then (v) ⇔ stable Fenchel duality.

Example 1. Let $X = \mathbb{R}$, $f(x) = \frac{1}{2}x^2$, if $x \ge 0$, and $f(x) = +\infty$, otherwise, and $g = \delta_{(-\infty,0]}$. Then (i) - (iv) are not fulfilled, while (v) is valid.

Consider the following regularity condition for Fenchel duality:

(vi) $f^* \square g^*$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

We have that

- condition $(i) \Rightarrow$ stable Fenchel duality;
- If f, g are lower semicontinuous and X is a Fréchet space, then (ii) ⇔ (iii) ⇒ (iv) ⇒ stable Fenchel duality;
- If f, g are lower semicontinuous, then (v) ⇔ stable Fenchel duality.

Example 1. Let $X = \mathbb{R}$, $f(x) = \frac{1}{2}x^2$, if $x \ge 0$, and $f(x) = +\infty$, otherwise, and $g = \delta_{(-\infty,0]}$. Then (i) - (iv) are not fulfilled, while (v) is valid.

Consider the following regularity condition for Fenchel duality:

(vi) $f^* \square g^*$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

If f, g are lower semicontinuous, then $(v) \Rightarrow (vi) \Rightarrow$ Fenchel duality. **Example 2.** Let $X = \mathbb{R}^2$, $C = \{(x_1, x_2)^T \in \mathbb{R}^2 : x_1 \ge 0\}$, $D = \{(x_1, x_2)^T \in \mathbb{R}^2 : 2x_1 + x_2^2 \le 0\}$, $f = \delta_C$ and $g = \delta_D$. Thus f, g satisfy Fenchel duality, f, g doesn't satisfy stable Fenchel duality and the pair f, g is not totally Fenchel unstable. We have that

- condition $(i) \Rightarrow$ stable Fenchel duality;
- If f, g are lower semicontinuous and X is a Fréchet space, then (ii) ⇔ (iii) ⇒ (iv) ⇒ stable Fenchel duality;
- If f, g are lower semicontinuous, then (v) ⇔ stable Fenchel duality.

Example 1. Let $X = \mathbb{R}$, $f(x) = \frac{1}{2}x^2$, if $x \ge 0$, and $f(x) = +\infty$, otherwise, and $g = \delta_{(-\infty,0]}$. Then (i) - (iv) are not fulfilled, while (v) is valid.

Consider the following regularity condition for Fenchel duality:

(vi) $f^* \square g^*$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

If f, g are lower semicontinuous, then $(v) \Rightarrow (vi) \Rightarrow$ Fenchel duality. **Example 2.** Let $X = \mathbb{R}^2$, $C = \{(x_1, x_2)^T \in \mathbb{R}^2 : x_1 \ge 0\}$, $D = \{(x_1, x_2)^T \in \mathbb{R}^2 : 2x_1 + x_2^2 \le 0\}, f = \delta_C \text{ and } g = \delta_D.$

Thus f,g satisfy Fenchel duality, f,g doesn't satisfy stable Fenchel duality and the pair f,g is not totally Fenchel unstable.

We have that

- condition $(i) \Rightarrow$ stable Fenchel duality;
- If f, g are lower semicontinuous and X is a Fréchet space, then (ii) ⇔ (iii) ⇒ (iv) ⇒ stable Fenchel duality;
- If f, g are lower semicontinuous, then (v) ⇔ stable Fenchel duality.

Example 1. Let $X = \mathbb{R}$, $f(x) = \frac{1}{2}x^2$, if $x \ge 0$, and $f(x) = +\infty$, otherwise, and $g = \delta_{(-\infty,0]}$. Then (i) - (iv) are not fulfilled, while (v) is valid.

Consider the following regularity condition for Fenchel duality:

(vi) $f^* \square g^*$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

If f, g are lower semicontinuous, then $(v) \Rightarrow (vi) \Rightarrow$ Fenchel duality. **Example 2.** Let $X = \mathbb{R}^2$, $C = \{(x_1, x_2)^T \in \mathbb{R}^2 : x_1 \ge 0\}$, $D = \{(x_1, x_2)^T \in \mathbb{R}^2 : 2x_1 + x_2^2 \le 0\}, f = \delta_C \text{ and } g = \delta_D$. Thus f, g satisfy Fenchel duality, f, g doesn't satisfy stable Fenchel duality and the pair f, g is not totally Fenchel unstable.

Let $f, g : X \to \mathbb{R}$ be proper functions with dom $f \cap \text{dom } g \neq \emptyset$. Algebraic result:

$$(f+g)^*(x^*) = \min_{y^* \in X^*} \{ f^*(x^* - y^*) + g^*(y^*) \} \ \forall x^* \in X^*$$
(1)

if and only if

$$\inf_{x \in X} [f(x) + g(x) - \langle x^*, x \rangle] = \max_{y^* \in X^*} \{ -f^*(x^* - y^*) - g^*(y^*) \} \ \forall x^* \in X^* \ (2)$$

if and only if

$$\partial_{\varepsilon}(f+g)(x) = \bigcup_{\substack{\varepsilon_1, \varepsilon_2 \ge 0\\\varepsilon_1 + \varepsilon_2 = \varepsilon}} (\partial_{\varepsilon_1} f(x) + \partial_{\varepsilon_2} g(x)) \quad \forall x \in X \ \forall \varepsilon \ge 0.$$
(3)

On the other hand, (3) implies (take $\varepsilon = 0$)

$$\partial (f+g)(x) = \partial f(x) + \partial g(x) \ \forall x \in X.$$
 (4)

Comment. Conditions that guarantee stable strong duality for (P) - (D) automatically ensure the fulfillment of (4).

Let $f, g: X \to \overline{\mathbb{R}}$ be proper functions with dom $f \cap \text{dom } g \neq \emptyset$. Algebraic result:

$$(f+g)^*(x^*) = \min_{y^* \in X^*} \{ f^*(x^* - y^*) + g^*(y^*) \} \ \forall x^* \in X^*$$
(1)

if and only if

$$\inf_{x \in X} [f(x) + g(x) - \langle x^*, x \rangle] = \max_{y^* \in X^*} \{ -f^*(x^* - y^*) - g^*(y^*) \} \ \forall x^* \in X^*$$
(2)

if and only if

$$\partial_{\varepsilon}(f+g)(x) = \bigcup_{\substack{\varepsilon_1, \varepsilon_2 \ge 0\\ \varepsilon_1 + \varepsilon_2 = \varepsilon}} (\partial_{\varepsilon_1} f(x) + \partial_{\varepsilon_2} g(x)) \ \forall x \in X \ \forall \varepsilon \ge 0.$$
(3)

On the other hand, (3) implies (take $\varepsilon = 0$)

$$\partial (f+g)(x) = \partial f(x) + \partial g(x) \ \forall x \in X.$$
 (4)

Comment. Conditions that guarantee stable strong duality for (P) - (D) automatically ensure the fulfillment of (4).

Let $f, g: X \to \overline{\mathbb{R}}$ be proper functions with dom $f \cap \text{dom } g \neq \emptyset$. Algebraic result:

$$(f+g)^*(x^*) = \min_{y^* \in X^*} \{ f^*(x^* - y^*) + g^*(y^*) \} \ \forall x^* \in X^*$$
(1)

if and only if

$$\inf_{x \in X} [f(x) + g(x) - \langle x^*, x \rangle] = \max_{y^* \in X^*} \{ -f^*(x^* - y^*) - g^*(y^*) \} \ \forall x^* \in X^*$$
(2)

if and only if

$$\partial_{\varepsilon}(f+g)(x) = \bigcup_{\substack{\varepsilon_1, \varepsilon_2 \ge 0\\ \varepsilon_1 + \varepsilon_2 = \varepsilon}} (\partial_{\varepsilon_1} f(x) + \partial_{\varepsilon_2} g(x)) \ \forall x \in X \ \forall \varepsilon \ge 0.$$
(3)

On the other hand, (3) implies (take $\varepsilon = 0$)

$$\partial (f+g)(x) = \partial f(x) + \partial g(x) \ \forall x \in X.$$
 (4)

Comment. Conditions that guarantee stable strong duality for (P) - (D) automatically ensure the fulfillment of (4).

Let $f, g: X \to \overline{\mathbb{R}}$ be proper functions with dom $f \cap \text{dom } g \neq \emptyset$. Algebraic result:

$$(f+g)^*(x^*) = \min_{y^* \in X^*} \{ f^*(x^* - y^*) + g^*(y^*) \} \ \forall x^* \in X^*$$
(1)

if and only if

$$\inf_{x \in X} [f(x) + g(x) - \langle x^*, x \rangle] = \max_{y^* \in X^*} \{ -f^*(x^* - y^*) - g^*(y^*) \} \ \forall x^* \in X^*$$
(2)

if and only if

$$\partial_{\varepsilon}(f+g)(x) = \bigcup_{\substack{\varepsilon_1, \varepsilon_2 \ge 0\\ \varepsilon_1 + \varepsilon_2 = \varepsilon}} (\partial_{\varepsilon_1} f(x) + \partial_{\varepsilon_2} g(x)) \ \forall x \in X \ \forall \varepsilon \ge 0.$$
(3)

On the other hand, (3) implies (take $\varepsilon = 0$)

$$\partial (f+g)(x) = \partial f(x) + \partial g(x) \ \forall x \in X.$$
 (4)

Comment. Conditions that guarantee stable strong duality for (P) - (D) automatically ensure the fulfillment of (4).

▶ (Burger, Osher, 2004) Take \mathcal{U} a Banach space, \mathcal{H} a Hilbert space, $K : \mathcal{U} \to \mathcal{H}$ a linear continuous operator and the ill-posed operator equation

$$Ku = f, (5)$$

where $f \in R(\mathcal{K})$.

Let $J : \mathcal{U} \to \mathbb{R} \cup \{+\infty\}$ be a convex and lower semicontinuous function. Then $\bar{u} \in \mathcal{U}$ is called *J*-minimizing solution for (5) if it is an optimal solution of

$$\inf_{Ku=f} J(u).$$

Source condition: the existence of Lagrange multiplier, i.e. $\exists \bar{w} \in \mathcal{H}$ with $K^*w \in \partial J(\bar{u}) \Rightarrow \bar{u}$ is a *J*-minimizing solution for (5).

Viceversa, if \bar{u} is a *J*-minimizing solution for (5) and

 $f \in \operatorname{sqri}(K(\operatorname{dom} J))$ (interior-point regularity condition),

then there exists a Lagrange multiplier $\bar{w} \in \mathcal{H}$ with $\langle \bar{w}, f - K\bar{u} \rangle = 0$ and

▶ (Burger, Osher, 2004) Take \mathcal{U} a Banach space, \mathcal{H} a Hilbert space, $\mathcal{K} : \mathcal{U} \to \mathcal{H}$ a linear continuous operator and the ill-posed operator equation

$$Ku = f, (5)$$

where $f \in R(\mathcal{K})$.

Let $J : \mathcal{U} \to \mathbb{R} \cup \{+\infty\}$ be a convex and lower semicontinuous function. Then $\bar{u} \in \mathcal{U}$ is called *J*-minimizing solution for (5) if it is an optimal solution of

$$\inf_{Ku=f} J(u).$$

Source condition: the existence of Lagrange multiplier, i.e. $\exists \bar{w} \in \mathcal{H}$ with $K^*w \in \partial J(\bar{u}) \Rightarrow \bar{u}$ is a *J*-minimizing solution for (5).

Viceversa, if \bar{u} is a *J*-minimizing solution for (5) and

 $f \in \operatorname{sqri}(K(\operatorname{dom} J))$ (interior-point regularity condition),

then there exists a Lagrange multiplier $\bar{w} \in \mathcal{H}$ with $\langle \bar{w}, f - K\bar{u} \rangle = 0$ and

▶ (Burger, Osher, 2004) Take \mathcal{U} a Banach space, \mathcal{H} a Hilbert space, $\mathcal{K} : \mathcal{U} \to \mathcal{H}$ a linear continuous operator and the ill-posed operator equation

$$Ku = f, (5)$$

where $f \in R(\mathcal{K})$.

Let $J : \mathcal{U} \to \mathbb{R} \cup \{+\infty\}$ be a convex and lower semicontinuous function. Then $\bar{u} \in \mathcal{U}$ is called *J*-minimizing solution for (5) if it is an optimal solution of

$$\inf_{Ku=f} J(u).$$

Source condition: the existence of Lagrange multiplier, i.e. $\exists \bar{w} \in \mathcal{H}$ with $K^* w \in \partial J(\bar{u}) \Rightarrow \bar{u}$ is a *J*-minimizing solution for (5).

Viceversa, if \bar{u} is a *J*-minimizing solution for (5) and

 $f \in \operatorname{sqri}(K(\operatorname{dom} J))$ (interior-point regularity condition),

then there exists a Lagrange multiplier $\bar{w} \in \mathcal{H}$ with $\langle \bar{w}, f - K\bar{u} \rangle = 0$ and

▶ (Burger, Osher, 2004) Take \mathcal{U} a Banach space, \mathcal{H} a Hilbert space, $\mathcal{K} : \mathcal{U} \to \mathcal{H}$ a linear continuous operator and the ill-posed operator equation

$$Ku = f, (5)$$

where $f \in R(\mathcal{K})$.

Let $J : \mathcal{U} \to \mathbb{R} \cup \{+\infty\}$ be a convex and lower semicontinuous function. Then $\bar{u} \in \mathcal{U}$ is called *J*-minimizing solution for (5) if it is an optimal solution of

$$\inf_{K_u=f} J(u).$$

Source condition: the existence of Lagrange multiplier, i.e. $\exists \bar{w} \in \mathcal{H}$ with $K^* w \in \partial J(\bar{u}) \Rightarrow \bar{u}$ is a *J*-minimizing solution for (5).

Viceversa, if \bar{u} is a *J*-minimizing solution for (5) and

 $f \in \operatorname{sqri}(K(\operatorname{dom} J))$ (interior-point regularity condition),

then there exists a Lagrange multiplier $\bar{w} \in \mathcal{H}$ with $\langle \bar{w}, f - K\bar{u} \rangle = 0$ and

▶ (Burger, Osher, 2004) Take \mathcal{U} a Banach space, \mathcal{H} a Hilbert space, $\mathcal{K} : \mathcal{U} \to \mathcal{H}$ a linear continuous operator and the ill-posed operator equation

$$Ku = f, (5)$$

where $f \in R(\mathcal{K})$.

Let $J : \mathcal{U} \to \mathbb{R} \cup \{+\infty\}$ be a convex and lower semicontinuous function. Then $\bar{u} \in \mathcal{U}$ is called *J*-minimizing solution for (5) if it is an optimal solution of

$$\inf_{Ku=f} J(u).$$

Source condition: the existence of Lagrange multiplier, i.e. $\exists \bar{w} \in \mathcal{H}$ with $K^* w \in \partial J(\bar{u}) \Rightarrow \bar{u}$ is a *J*-minimizing solution for (5).

Viceversa, if \bar{u} is a *J*-minimizing solution for (5) and

 $f \in \operatorname{sqri}(K(\operatorname{dom} J))$ (interior-point regularity condition),

then there exists a Lagrange multiplier $\bar{w} \in \mathcal{H}$ with $\langle \bar{w}, f - K\bar{u} \rangle = 0$ and

$$0 \in \partial (J - K^* \bar{w})(\bar{u}) \Leftrightarrow K^* \bar{w} \in \partial J(\bar{u}).$$

$$u_0 = Au + n.$$

Here:

 \blacktriangleright u_0 is the image;

▶ *u* is the transformed image;

▶ *n* is the random noise. It fulfills $\int_{\Omega} n = 0$ and $\int_{\Omega} |n|^2 = \sigma^2$;

► $A: L^2(\Omega) \to L^2(\Omega)$ is a linear and continuous operator.

Problem: Knowing u_0 , one has to recover u.

▶ (Rudin, Osher, Fatemi, 1992): Solve the constrained minimization problem:

$$\inf_{\substack{\int_{\Omega} Au = \int_{\Omega} u_0, \\ |Au - u_0|^2 = \sigma^2}} |\mathcal{D}u|(\Omega).$$
(6)

$$u_0=Au+n.$$

Here:

 \blacktriangleright u_0 is the image;

▶ *u* is the transformed image;

n is the random noise. It fulfills ∫_Ω n = 0 and ∫_Ω |n|² = σ²;
 A: L²(Ω) → L²(Ω) is a linear and continuous operator.
 Problem: Knowing u₀, one has to recover u.
 (Rudin, Osher, Fatemi, 1992): Solve the constrained minimization problem:

$$\inf_{\substack{\int_{\Omega} Au = \int_{\Omega} u_0, \\ \int_{\Omega} |Au - u_0|^2 = \sigma^2}} |\mathcal{D}u|(\Omega).$$
(6)

$$u_0=Au+n.$$

Here:

 \blacktriangleright u_0 is the image;

▶ *u* is the transformed image;

n is the random noise. It fulfills ∫_Ω n = 0 and ∫_Ω |n|² = σ²;
 A : L²(Ω) → L²(Ω) is a linear and continuous operator.
 Problem: Knowing u₀, one has to recover u.
 (Rudin, Osher, Fatemi, 1992): Solve the constrained minimization problem:

$$\inf_{\substack{\int_{\Omega} Au = \int_{\Omega} u_0, \\ \Omega} |Au - u_0|^2 = \sigma^2} |\mathcal{D}u|(\Omega).$$
(6)

$$u_0 = Au + n.$$

Here:

 \blacktriangleright u_0 is the image;

▶ *u* is the transformed image;

n is the random noise. It fulfills ∫_Ω n = 0 and ∫_Ω |n|² = σ²;
 A : L²(Ω) → L²(Ω) is a linear and continuous operator.
 Problem: Knowing u₀, one has to recover u.
 (Rudin, Osher, Fatemi, 1992): Solve the constrained minimization problem:

$$\inf_{\substack{\int_{\Omega} Au = \int_{\Omega} u_0, \\ \Omega} |Au - u_0|^2 = \sigma^2} |\mathcal{D}u|(\Omega).$$
(6)

$$u_0 = Au + n.$$

Here:

- ▶ u₀ is the image;
- ▶ *u* is the transformed image;
- ▶ *n* is the random noise. It fulfills $\int_{\Omega} n = 0$ and $\int_{\Omega} |n|^2 = \sigma^2$;
- $A: L^2(\Omega) \to L^2(\Omega)$ is a linear and continuous operator.

Problem: Knowing u_0 , one has to recover u.

▶ (Rudin, Osher, Fatemi, 1992): Solve the constrained minimization problem:

$$\inf_{\substack{\int_{\Omega} Au = \int_{\Omega} u_0, \\ \Omega} |Au - u_0|^2 = \sigma^2} |\mathcal{D}u|(\Omega).$$
(6)

$$u_0 = Au + n.$$

Here:

- ▶ u₀ is the image;
- ▶ *u* is the transformed image;
- ▶ *n* is the random noise. It fulfills $\int_{\Omega} n = 0$ and $\int_{\Omega} |n|^2 = \sigma^2$;
- $A: L^2(\Omega) \to L^2(\Omega)$ is a linear and continuous operator.

Problem: Knowing u_0 , one has to recover u.

► (Rudin, Osher, Fatemi, 1992): Solve the constrained minimization problem:

$$\inf_{\substack{\int_{\Omega} Au = \int_{\Omega} u_0, \\ \Omega} |Au - u_0|^2 = \sigma^2} |\mathcal{D}u|(\Omega).$$
(6)

$$u_0 = Au + n.$$

Here:

- \blacktriangleright u_0 is the image;
- ▶ *u* is the transformed image;
- ▶ *n* is the random noise. It fulfills $\int_{\Omega} n = 0$ and $\int_{\Omega} |n|^2 = \sigma^2$;
- $A: L^2(\Omega) \to L^2(\Omega)$ is a linear and continuous operator.

Problem: Knowing u_0 , one has to recover u.

► (Rudin, Osher, Fatemi, 1992): Solve the constrained minimization problem:

$$\inf_{\substack{\int_{\Omega} Au = \int_{\Omega} u_0, \\ \int_{\Omega} |Au - u_0|^2 = \sigma^2}} |\mathcal{D}u|(\Omega).$$
(6)

Define $J: L^p(\Omega) \to \mathbb{R} \cup \{+\infty\}$,

 $J(u) = |\mathcal{D}u|(\Omega)$, if $u \in BV(\Omega), J(u) = +\infty$, otherwise.

$$\inf_{\int_{\Omega} |Au - u_0|^2 \le \sigma^2} J(u). \tag{7}$$

 \blacktriangleright (Chambolle, Lions, 1997) Assume that \bar{u} is an optimal solution

Define $J: L^p(\Omega) \to \mathbb{R} \cup \{+\infty\}$,

 $J(u) = |\mathcal{D}u|(\Omega), \text{ if } u \in BV(\Omega), J(u) = +\infty, \text{ otherwise.}$

Under some natural assumptions one can prove that (Chambolle, Lions, 1997) (6) is equivalent to

$$\inf_{\int_{\Omega} |Au-u_0|^2 \le \sigma^2} J(u). \tag{7}$$

► (Chambolle, Lions, 1997) Assume that \bar{u} is an optimal solution of (7) and that $u_0 \in cl(L^2(\Omega) \cap A(BV(\Omega)))$. For $C = \mathbb{R}_+$ and $g(u) = ||Au - u_0||^2 - \sigma^2$ the latter condition means in fact that

 $\exists u' \in \text{dom } J : g(u') < 0$ (Slater regularity condition).

Thus there exists a Lagrange multiplier $\overline{\lambda} \ge 0$ such that $\overline{\lambda}(\|A\overline{u} - u_0\| - \sigma) = 0$ and $0 \in \partial (J + \overline{\lambda}(\|A \cdot - u_0\|^2 - \sigma^2))(\overline{u}) = \partial J(\overline{u}) + \overline{\lambda}\partial(\|A \cdot - u_0\|^2 - \sigma^2)(\overline{u})$ $\Leftrightarrow -\overline{\lambda}A^*(A\overline{u} - u_0) \in \partial J(\overline{u}).$ Define $J: L^{p}(\Omega) \to \mathbb{R} \cup \{+\infty\}$,

 $J(u) = |\mathcal{D}u|(\Omega), \text{ if } u \in BV(\Omega), J(u) = +\infty, \text{ otherwise.}$

Under some natural assumptions one can prove that (Chambolle, Lions, 1997) (6) is equivalent to

$$\inf_{\int_{\Omega} |Au-u_0|^2 \le \sigma^2} J(u).$$
(7)

► (Chambolle, Lions, 1997) Assume that \bar{u} is an optimal solution of (7) and that $u_0 \in cl(L^2(\Omega) \cap A(BV(\Omega)))$. For $C = \mathbb{R}_+$ and $g(u) = ||Au - u_0||^2 - \sigma^2$ the latter condition means in fact that

 $\exists u' \in \text{dom } J : g(u') < 0$ (Slater regularity condition).

Thus there exists a Lagrange multiplier $\lambda \ge 0$ such that $\overline{\lambda}(\|A\overline{u} - u_0\| - \sigma) = 0$ and $0 \in \partial (J + \overline{\lambda}(\|A \cdot - u_0\|^2 - \sigma^2))(\overline{u}) = \partial J(\overline{u}) + \overline{\lambda}\partial(\|A \cdot - u_0\|^2 - \sigma^2)(\overline{u})$ $\Leftrightarrow -\overline{\lambda}A^*(A\overline{u} - u_0) \in \partial J(\overline{u}).$ Define $J: L^{p}(\Omega) \to \mathbb{R} \cup \{+\infty\}$,

 $J(u) = |\mathcal{D}u|(\Omega), \text{ if } u \in BV(\Omega), J(u) = +\infty, \text{ otherwise.}$

Under some natural assumptions one can prove that (Chambolle, Lions, 1997) (6) is equivalent to

$$\inf_{\int_{\Omega} |Au-u_0|^2 \le \sigma^2} J(u).$$
(7)

► (Chambolle, Lions, 1997) Assume that \bar{u} is an optimal solution of (7) and that $u_0 \in cl(L^2(\Omega) \cap A(BV(\Omega)))$. For $C = \mathbb{R}_+$ and $g(u) = ||Au - u_0||^2 - \sigma^2$ the latter condition means in fact that

 $\exists u' \in \text{dom } J : g(u') < 0$ (Slater regularity condition).

Thus there exists a Lagrange multiplier $\bar{\lambda} \ge 0$ such that $\bar{\lambda}(\|A\bar{u} - u_0\| - \sigma) = 0$ and $0 \in \partial (J + \bar{\lambda}(\|A \cdot - u_0\|^2 - \sigma^2))(\bar{u}) = \partial J(\bar{u}) + \bar{\lambda}\partial(\|A \cdot - u_0\|^2 - \sigma^2)(\bar{u})$ $\Leftrightarrow -\bar{\lambda}A^*(A\bar{u} - u_0) \in \partial J(\bar{u}).$

Consider X a nontrivial real Banach space, X^* its topological dual space and X^{**} its bidual space. We have

▶ the canonical embedding of X into X^{**} , $\widehat{}: X \to X^{**}$, $\langle x^*, \hat{x} \rangle := \langle x, x^* \rangle$, for all $x \in X$ and $x^* \in X^*$

If C ⊆ X is convex, then x ∈ C is a support point of C if there exists x^{*} ∈ X^{*} \ {0}, such that sup(C, x^{*}) = ⟨x, x^{*}⟩.

Consider X a nontrivial real Banach space, X^* its topological dual space and X^{**} its bidual space. We have

▶ the canonical embedding of X into X^{**} , ^: $X \to X^{**}$,

$$\langle x^*, \widehat{x} \rangle := \langle x, x^* \rangle$$
, for all $x \in X$ and $x^* \in X^*$

If C ⊆ X is convex, then x ∈ C is a support point of C if there exists x* ∈ X* \ {0}, such that sup(C, x*) = ⟨x, x*⟩.

Consider X a nontrivial real Banach space, X^* its topological dual space and X^{**} its bidual space. We have

▶ the canonical embedding of X into X^{**} , ^: $X \to X^{**}$,

$$\langle x^*, \widehat{x} \rangle := \langle x, x^* \rangle$$
, for all $x \in X$ and $x^* \in X^*$

If C ⊆ X is convex, then x ∈ C is a support point of C if there exists x^{*} ∈ X^{*} \ {0}, such that sup(C, x^{*}) = ⟨x, x^{*}⟩.

Consider X a nontrivial real Banach space, X^* its topological dual space and X^{**} its bidual space. We have

▶ the canonical embedding of X into X^{**} , $\widehat{}: X \to X^{**}$,

$$\langle x^*, \widehat{x} \rangle := \langle x, x^* \rangle$$
, for all $x \in X$ and $x^* \in X^*$

If C ⊆ X is convex, then x ∈ C is a support point of C if there exists x* ∈ X* \ {0}, such that sup(C, x*) = ⟨x, x*⟩.

Consider X a nontrivial real Banach space, X^* its topological dual space and X^{**} its bidual space. We have

▶ the canonical embedding of X into X^{**} , $\widehat{}: X \to X^{**}$,

$$\langle x^*, \widehat{x} \rangle := \langle x, x^* \rangle$$
, for all $x \in X$ and $x^* \in X^*$

If C ⊆ X is convex, then x ∈ C is a support point of C if there exists x* ∈ X* \ {0}, such that sup(C, x*) = ⟨x, x*⟩.

Regarding the functions defined in Example 3, Simons asks whether,

epi
$$f^*+$$
epi $g^*\supset X^* imes (0,+\infty)$

or, equivalently,

epi
$$f^*+$$
epi $g^*=\{(0,0)\}\cup (X^* imes (0,+\infty)).$

The reflexive case (B, 2007)

Let $y^* \in X^*$ be arbitrary and $h, k : X^* \to \mathbb{R}$, $h(z^*) := f^*(z^*)$ and $k(z^*) := g^*(y^* - z^*)$. Since h and k are continuous, by the Fenchel duality theorem.

$$-\inf_{X^*}[h+k] = \min_{z \in X}[h^*(z) + k^*(-z)] = \min_{X}[\delta_{\{0\}} - y^*] = 0,$$

so, for all $\varepsilon > 0$, there exists $z^* \in X^*$ such that $h(z^*) + k(z^*) \leq \varepsilon$, thus $(\mathbf{v}^*, \varepsilon) \in \operatorname{epi} f^* + \operatorname{epi} g^*$.

epi
$$\delta^*_{x_0-C}$$
 + epi $\delta^*_{C-x_0} \supset X^* \times (0, +\infty).$

The reflexive case (B, 2007)

Let $y^* \in X^*$ be arbitrary and $h, k : X^* \to \mathbb{R}$, $h(z^*) := f^*(z^*)$ and $k(z^*) := g^*(y^* - z^*)$. Since h and k are continuous, by the Fenchel duality theorem.

$$-\inf_{X^*}[h+k] = \min_{z \in X}[h^*(z) + k^*(-z)] = \min_{X}[\delta_{\{0\}} - y^*] = 0,$$

so, for all $\varepsilon > 0$, there exists $z^* \in X^*$ such that $h(z^*) + k(z^*) \leq \varepsilon$, thus $(\mathbf{v}^*, \varepsilon) \in \operatorname{epi} f^* + \operatorname{epi} g^*$.

The nonreflexive case

Problem 1. (raised by Stephen Simons in his book "From Hahn-Banach to Monotonicity", Springer-Verlag, 2008) Let C be a nonempty, bounded, closed and convex subset of a nonreflexive Banach space X, x_0 be an extreme point of C, $v^* \in X^*$ and $\varepsilon > 0$. Then does there always exist M > 0 such that, for all $u, v \in C$, $M||u+v-2x_0|| \geq \langle v-x_0, y^* \rangle - \varepsilon$? The answer to this question is in the affirmative if and only if

epi
$$\delta^*_{x_0-\mathcal{C}}$$
 + epi $\delta^*_{\mathcal{C}-x_0} \supset X^* imes (0,+\infty).$

- We recall that x₀ is a weak*-extreme point of the bounded, closed and convex set C ⊆ X if x₀ is an extreme point of cl C, where the closure is taken with respect to the weak* topology w(X**, X*).
- If x₀ is a weak*-extreme point of C, then x₀ is an extreme point of C.
- ▶ (Phelps, 1961): must the image \hat{x} of an extreme point of $x \in B_X$ (the unit ball of X) be an extreme point of $B_{X^{**}}$ (the unit ball of the bidual)? We recall that by the Goldstine Theorem the closure of \widehat{B}_X in the weak* topology $w(X^{**}, X^*)$ is $B_{X^{**}}$ (hence the generalization to a bounded, closed and convex set is natural).
- The first example of a Banach space and a point of its unit ball which is not weak*-extreme was suggested by K. de Leeuw and proved in (Y. Katznelson, 1961).
- In the spaces C(X), L^p(1 ≤ p ≤ ∞), all the extreme points of the corresponding unit balls are weak*-extreme points.

- We recall that x₀ is a weak*-extreme point of the bounded, closed and convex set C ⊆ X if x₀ is an extreme point of cl C, where the closure is taken with respect to the weak* topology w(X**, X*).
- If x₀ is a weak*-extreme point of C, then x₀ is an extreme point of C.
- ▶ (Phelps, 1961): must the image \hat{x} of an extreme point of $x \in B_X$ (the unit ball of X) be an extreme point of $B_{X^{**}}$ (the unit ball of the bidual)? We recall that by the Goldstine Theorem the closure of \widehat{B}_X in the weak* topology $w(X^{**}, X^*)$ is $B_{X^{**}}$ (hence the generalization to a bounded, closed and convex set is natural).
- The first example of a Banach space and a point of its unit ball which is not weak*-extreme was suggested by K. de Leeuw and proved in (Y. Katznelson, 1961).
- In the spaces C(X), L^p(1 ≤ p ≤ ∞), all the extreme points of the corresponding unit balls are weak*-extreme points.

- We recall that x₀ is a weak*-extreme point of the bounded, closed and convex set C ⊆ X if x₀ is an extreme point of cl Ĉ, where the closure is taken with respect to the weak* topology w(X**, X*).
- If x₀ is a weak*-extreme point of C, then x₀ is an extreme point of C.
- ▶ (Phelps, 1961): must the image \hat{x} of an extreme point of $x \in B_X$ (the unit ball of X) be an extreme point of $B_{X^{**}}$ (the unit ball of the bidual)? We recall that by the Goldstine Theorem the closure of $\widehat{B_X}$ in the weak* topology $w(X^{**}, X^*)$ is $B_{X^{**}}$ (hence the generalization to a bounded, closed and convex set is natural).
- The first example of a Banach space and a point of its unit ball which is not weak*-extreme was suggested by K. de Leeuw and proved in (Y. Katznelson, 1961).
- In the spaces C(X), L^p(1 ≤ p ≤ ∞), all the extreme points of the corresponding unit balls are weak*-extreme points.

- We recall that x₀ is a weak*-extreme point of the bounded, closed and convex set C ⊆ X if x₀ is an extreme point of cl Ĉ, where the closure is taken with respect to the weak* topology w(X**, X*).
- If x₀ is a weak*-extreme point of C, then x₀ is an extreme point of C.
- ▶ (Phelps, 1961): must the image \hat{x} of an extreme point of $x \in B_X$ (the unit ball of X) be an extreme point of $B_{X^{**}}$ (the unit ball of the bidual)? We recall that by the Goldstine Theorem the closure of $\widehat{B_X}$ in the weak* topology $w(X^{**}, X^*)$ is $B_{X^{**}}$ (hence the generalization to a bounded, closed and convex set is natural).
- The first example of a Banach space and a point of its unit ball which is not weak*-extreme was suggested by K. de Leeuw and proved in (Y. Katznelson, 1961).
- In the spaces C(X), L^p(1 ≤ p ≤ ∞), all the extreme points of the corresponding unit balls are weak*-extreme points.

- We recall that x₀ is a weak*-extreme point of the bounded, closed and convex set C ⊆ X if x₀ is an extreme point of cl Ĉ, where the closure is taken with respect to the weak* topology w(X**, X*).
- If x₀ is a weak*-extreme point of C, then x₀ is an extreme point of C.
- ▶ (Phelps, 1961): must the image \hat{x} of an extreme point of $x \in B_X$ (the unit ball of X) be an extreme point of $B_{X^{**}}$ (the unit ball of the bidual)? We recall that by the Goldstine Theorem the closure of $\widehat{B_X}$ in the weak* topology $w(X^{**}, X^*)$ is $B_{X^{**}}$ (hence the generalization to a bounded, closed and convex set is natural).
- The first example of a Banach space and a point of its unit ball which is not weak*-extreme was suggested by K. de Leeuw and proved in (Y. Katznelson, 1961).
- In the spaces C(X), L^p(1 ≤ p ≤ ∞), all the extreme points of the corresponding unit balls are weak*-extreme points.

Lemma 1. We assume that f is convex with dom $f \neq \emptyset$ and that $cl(\hat{f})$ is proper, where the lower semicontinuous hull is considered with respect to the topology $w(X^{**}, X^*)$. Then $f^{**} = cl(\hat{f})$. **Remark 2.** If $C \subseteq X$ is a nonempty convex set, then by Lemma 1 follows that $\delta_C^{**} = \delta_{cl(\hat{C})}$, where the closure is considered in the topology $\omega(X^{**}, X^*)$. Thus Lemma 1 generalizes a result obtained in (Chakrabarty, Shunmugaraj, Zălinescu, 2007).

Consider $f, g: X \to \mathbb{R}$ proper convex functions with the following properties

- ▶ dom $f \cap$ dom $g \neq \emptyset$
- $cl(\widehat{f})$ and $cl(\widehat{g})$ are proper
- ▶ $f^{**}(0) + g^{**}(0) \ge 0$
- $\blacktriangleright \operatorname{dom}(f^*) + \operatorname{dom}(g^*) = X^*.$

Lemma 1. We assume that f is convex with dom $f \neq \emptyset$ and that $cl(\hat{f})$ is proper, where the lower semicontinuous hull is considered with respect to the topology $w(X^{**}, X^*)$. Then $f^{**} = cl(\hat{f})$.

Remark 2. If $C \subseteq X$ is a nonempty convex set, then by Lemma 1 follows that $\delta_C^{**} = \delta_{cl(\widehat{C})}$, where the closure is considered in the topology $\omega(X^{**}, X^*)$. Thus Lemma 1 generalizes a result obtained in (Chakrabarty, Shunmugaraj, Zălinescu, 2007). Consider $f, g: X \to \mathbb{R}$ proper convex functions with the following

properties

- ▶ dom $f \cap$ dom $g \neq \emptyset$
- $cl(\hat{f})$ and $cl(\hat{g})$ are proper
- ▶ $f^{**}(0) + g^{**}(0) \ge 0$
- $\blacktriangleright \operatorname{dom}(f^*) + \operatorname{dom}(g^*) = X^*.$

Lemma 1. We assume that f is convex with dom $f \neq \emptyset$ and that $cl(\hat{f})$ is proper, where the lower semicontinuous hull is considered with respect to the topology $w(X^{**}, X^*)$. Then $f^{**} = cl(\hat{f})$.

Remark 2. If $C \subseteq X$ is a nonempty convex set, then by Lemma 1 follows that $\delta_C^{**} = \delta_{cl(\widehat{C})}$, where the closure is considered in the topology $\omega(X^{**}, X^*)$. Thus Lemma 1 generalizes a result obtained in (Chakrabarty, Shunmugaraj, Zălinescu, 2007).

Consider $f, g: X \to \mathbb{R}$ proper convex functions with the following properties

- ▶ dom $f \cap$ dom $g \neq \emptyset$
- $cl(\widehat{f})$ and $cl(\widehat{g})$ are proper
- ► $f^{**}(0) + g^{**}(0) \ge 0$
- $\blacktriangleright \operatorname{dom}(f^*) + \operatorname{dom}(g^*) = X^*.$

Lemma 1. We assume that f is convex with dom $f \neq \emptyset$ and that $cl(\hat{f})$ is proper, where the lower semicontinuous hull is considered with respect to the topology $w(X^{**}, X^*)$. Then $f^{**} = cl(\hat{f})$.

Remark 2. If $C \subseteq X$ is a nonempty convex set, then by Lemma 1 follows that $\delta_C^{**} = \delta_{cl(\widehat{C})}$, where the closure is considered in the topology $\omega(X^{**}, X^*)$. Thus Lemma 1 generalizes a result obtained in (Chakrabarty, Shunmugaraj, Zălinescu, 2007).

Consider $f, g: X \to \overline{\mathbb{R}}$ proper convex functions with the following properties

- ▶ dom $f \cap$ dom $g \neq \emptyset$
- ▶ $cl(\hat{f})$ and $cl(\hat{g})$ are proper
- ► $f^{**}(0) + g^{**}(0) \ge 0$
- $\blacktriangleright \operatorname{dom}(f^*) + \operatorname{dom}(g^*) = X^*.$

Lemma 1. We assume that f is convex with dom $f \neq \emptyset$ and that $cl(\hat{f})$ is proper, where the lower semicontinuous hull is considered with respect to the topology $w(X^{**}, X^*)$. Then $f^{**} = cl(\hat{f})$.

Remark 2. If $C \subseteq X$ is a nonempty convex set, then by Lemma 1 follows that $\delta_C^{**} = \delta_{cl(\widehat{C})}$, where the closure is considered in the topology $\omega(X^{**}, X^*)$. Thus Lemma 1 generalizes a result obtained in (Chakrabarty, Shunmugaraj, Zălinescu, 2007).

Consider $f, g: X \to \overline{\mathbb{R}}$ proper convex functions with the following properties

- ▶ dom $f \cap$ dom $g \neq \emptyset$
- $cl(\hat{f})$ and $cl(\hat{g})$ are proper

► $f^{**}(0) + g^{**}(0) \ge 0$

 $\blacktriangleright \operatorname{dom}(f^*) + \operatorname{dom}(g^*) = X^*.$

Lemma 1. We assume that f is convex with dom $f \neq \emptyset$ and that $cl(\hat{f})$ is proper, where the lower semicontinuous hull is considered with respect to the topology $w(X^{**}, X^*)$. Then $f^{**} = cl(\hat{f})$.

Remark 2. If $C \subseteq X$ is a nonempty convex set, then by Lemma 1 follows that $\delta_C^{**} = \delta_{cl(\widehat{C})}$, where the closure is considered in the topology $\omega(X^{**}, X^*)$. Thus Lemma 1 generalizes a result obtained in (Chakrabarty, Shunmugaraj, Zălinescu, 2007).

Consider $f, g: X \to \overline{\mathbb{R}}$ proper convex functions with the following properties

- ▶ dom $f \cap$ dom $g \neq \emptyset$
- $cl(\hat{f})$ and $cl(\hat{g})$ are proper
- ▶ $f^{**}(0) + g^{**}(0) \ge 0$

 $\blacktriangleright \operatorname{dom}(f^*) + \operatorname{dom}(g^*) = X^*.$

Lemma 1. We assume that f is convex with dom $f \neq \emptyset$ and that $cl(\hat{f})$ is proper, where the lower semicontinuous hull is considered with respect to the topology $w(X^{**}, X^*)$. Then $f^{**} = cl(\hat{f})$.

Remark 2. If $C \subseteq X$ is a nonempty convex set, then by Lemma 1 follows that $\delta_C^{**} = \delta_{cl(\widehat{C})}$, where the closure is considered in the topology $\omega(X^{**}, X^*)$. Thus Lemma 1 generalizes a result obtained in (Chakrabarty, Shunmugaraj, Zălinescu, 2007).

Consider $f, g: X \to \overline{\mathbb{R}}$ proper convex functions with the following properties

- ▶ dom $f \cap$ dom $g \neq \emptyset$
- $cl(\hat{f})$ and $cl(\hat{g})$ are proper
- ▶ $f^{**}(0) + g^{**}(0) \ge 0$
- dom (f^*) + dom $(g^*) = X^*$.

Now consider

► C a nonempty, bounded and convex subset of the Banach space X and x₀ ∈ C

• $f := \delta_A$, $g := \delta_B$, where $A := x_0 - C$, $B := C - x_0$.

In this case we have

Theorem 2. We have $X^* \times (0, \infty) \subset \operatorname{epi} f^* + \operatorname{epi} g^*$ if and only if x_0 is a weak*-extreme point of C.

Now consider

► C a nonempty, bounded and convex subset of the Banach space X and x₀ ∈ C

• $f := \delta_A$, $g := \delta_B$, where $A := x_0 - C$, $B := C - x_0$.

In this case we have

Theorem 2. We have $X^* \times (0, \infty) \subset \text{epi } f^* + \text{epi } g^*$ if and only if x_0 is a weak*-extreme point of C.

Now consider

► C a nonempty, bounded and convex subset of the Banach space X and x₀ ∈ C

• $f := \delta_A$, $g := \delta_B$, where $A := x_0 - C$, $B := C - x_0$.

In this case we have

Theorem 2. We have $X^* \times (0, \infty) \subset \operatorname{epi} f^* + \operatorname{epi} g^*$ if and only if x_0 is a weak*-extreme point of C.

Now consider

► C a nonempty, bounded and convex subset of the Banach space X and x₀ ∈ C

• $f := \delta_A$, $g := \delta_B$, where $A := x_0 - C$, $B := C - x_0$.

In this case we have

•
$$f^* = \sup \langle A, \cdot \rangle$$
, $g^* = \sup \langle B, \cdot \rangle$, $\operatorname{dom}(f^*) = \operatorname{dom}(g^*) = X^*$

►
$$\widehat{f} = \delta_{\widehat{A}}$$
, $cl(\widehat{f}) = \delta_{cl(\widehat{A})}$, thus $f^{**} = \delta_{cl(\widehat{A})}$. By the same argument, $g^{**} = \delta_{cl(\widehat{B})}$

Theorem 2. We have $X^* \times (0, \infty) \subset \operatorname{epi} f^* + \operatorname{epi} g^*$ if and only if x_0 is a weak*-extreme point of C.

Now consider

► C a nonempty, bounded and convex subset of the Banach space X and x₀ ∈ C

• $f := \delta_A$, $g := \delta_B$, where $A := x_0 - C$, $B := C - x_0$.

In this case we have

Theorem 2. We have $X^* \times (0, \infty) \subset \operatorname{epi} f^* + \operatorname{epi} g^*$ if and only if x_0 is a weak*-extreme point of C.

Now consider

► C a nonempty, bounded and convex subset of the Banach space X and x₀ ∈ C

• $f := \delta_A$, $g := \delta_B$, where $A := x_0 - C$, $B := C - x_0$.

In this case we have

Theorem 2. We have $X^* \times (0, \infty) \subset \text{epi } f^* + \text{epi } g^*$ if and only if x_0 is a weak*-extreme point of C.

Now consider

► C a nonempty, bounded and convex subset of the Banach space X and x₀ ∈ C

• $f := \delta_A$, $g := \delta_B$, where $A := x_0 - C$, $B := C - x_0$.

In this case we have

Theorem 2. We have $X^* \times (0, \infty) \subset \text{epi } f^* + \text{epi } g^*$ if and only if x_0 is a weak*-extreme point of C.

The finite dimensional case

Problem 2. (raised by Stephen Simons in his book "From Hahn-Banach to Monotonicity", Springer-Verlag, 2008) Do there exist a nonzero finite dimensional Banach space X and $f, g: X \to \overline{\mathbb{R}}$ proper and convex functions such that the pair f, g is totally Fenchel unstable?

The solution of the Problem 2 (B., Löhne, Math. Prog., to appear) For all $x^*, y^* \in X^*$ it holds

$$(f+g)^*(x^*) \le f^*(x^*-y^*) + g^*(y^*). \tag{8}$$

Therefore, a pair f, g of proper and convex functions is totally Fenchel unstable if and only if

$$\exists y^* \in X^*: \ (f+g)^*(0) = f^*(-y^*) + g^*(y^*). \tag{9}$$

 $\forall x^* \in X^* \setminus \{0\}, \forall y^* \in X^*: \ (f+g)^*(x^*) < f^*(x^*-y^*) + g^*(y^*).$ (10)

The finite dimensional case

Problem 2. (raised by Stephen Simons in his book "From Hahn-Banach to Monotonicity", Springer-Verlag, 2008) Do there exist a nonzero finite dimensional Banach space X and $f, g: X \to \overline{\mathbb{R}}$ proper and convex functions such that the pair f, g is totally Fenchel unstable?

The solution of the Problem 2 (B., Löhne, Math. Prog., to appear) For all $x^*, y^* \in X^*$ it holds

$$(f+g)^*(x^*) \le f^*(x^*-y^*) + g^*(y^*).$$
 (8)

Therefore, a pair f, g of proper and convex functions is totally Fenchel unstable if and only if

$$\exists y^* \in X^*: \ (f+g)^*(0) = f^*(-y^*) + g^*(y^*). \tag{9}$$

 $\forall x^* \in X^* \setminus \{0\}, \forall y^* \in X^*: \ (f+g)^*(x^*) < f^*(x^*-y^*) + g^*(y^*).$ (10)

The finite dimensional case

Problem 2. (raised by Stephen Simons in his book "From Hahn-Banach to Monotonicity", Springer-Verlag, 2008) Do there exist a nonzero finite dimensional Banach space X and $f, g: X \to \overline{\mathbb{R}}$ proper and convex functions such that the pair f, g is totally Fenchel unstable?

The solution of the Problem 2 (B., Löhne, Math. Prog., to appear)

For all $x^*, y^* \in X^*$ it holds

$$(f+g)^*(x^*) \le f^*(x^*-y^*) + g^*(y^*).$$
 (8)

Therefore, a pair f, g of proper and convex functions is totally Fenchel unstable if and only if

$$\exists y^* \in X^*: \ (f+g)^*(0) = f^*(-y^*) + g^*(y^*). \tag{9}$$

$$\forall x^* \in X^* \setminus \{0\}, \forall y^* \in X^*: \ (f+g)^*(x^*) < f^*(x^*-y^*) + g^*(y^*).$$
(10)

Theorem 2. There are no proper convex functions $f, g : \mathbb{R}^n \to \overline{\mathbb{R}}$ such that the pair f, g is totally Fenchel unstable.

Comment. The situation below is not possible:

Interpretation of the result. If two proper and convex functions $f, g: \mathbb{R}^n \to \overline{\mathbb{R}}$ satisfy Fenchel duality, then there exists at least one element $x^* \in \mathbb{R}^n \setminus \{0\}$, such that $f - \langle x^*, \cdot \rangle$ and g (or f and $g - \langle x^*, \cdot \rangle$) satisfy Fenchel duality, too.

Comment. We must have something like:

Comment. More precisely, for the concrete situation considered in the previous picture the following behavior can be noticed:

