On Fenchel Duality and Some of Its Variants

Radu Ioan Boț

Chemnitz University of Technology, Chemnitz, Germany

Banff International Research Station, Canada

November 1-6, 2009

Contents

- Preliminary notions and results
- Regularity conditions for Fenchel duality
- Two convex regularization schemes
> Totally Fenchel unstable functions
- The finite dimensional case

Contents

- Preliminary notions and results
- Regularity conditions for Fenchel duality
- Two convex regularization schemes
- Totally Fenchel unstable functions
- The finite dimensional case

Contents

- Preliminary notions and results
- Regularity conditions for Fenchel duality
- Two convex regularization schemes
- Totally Fenchel unstable functions
- The finite dimensional case

Contents

- Preliminary notions and results
- Regularity conditions for Fenchel duality
- Two convex regularization schemes
- Totally Fenchel unstable functions
- The finite dimensional case

Contents

- Preliminary notions and results
- Regularity conditions for Fenchel duality
- Two convex regularization schemes
- Totally Fenchel unstable functions
- The finite dimensional case

Preliminary notions and results

Consider

- X a separated locally convex space and its topological dual space X^{*} endowed with the weak* topology $\omega\left(X^{*}, X\right)$;
> for $C \subseteq X$ convex, core (C), the algebraic interior of C. One has $x \in \operatorname{core}(C)$ if and only if $\cup_{\lambda>0} \lambda(C-x)=X$;
- for $C \subseteq X$ convex, sqri (C), the strong-quasi relative interior of C. One has $x \in \operatorname{sqri}(C)$ if and only if $\cup_{\lambda>0} \lambda(C-x)$ is a closed linear subspace of X;
- for a given set $C \subseteq X$, the indicator function of C, $\delta_{C}: X \rightarrow \overline{\mathbb{R}}$, defined as $\delta_{C}(x)=0$, if $x \in C$ and $\delta_{C}(x)=+\infty$, otherwise.

Preliminary notions and results

Consider

- X a separated locally convex space and its topological dual space X^{*} endowed with the weak* topology $\omega\left(X^{*}, X\right)$;
- for $C \subseteq X$ convex, core (C), the algebraic interior of C. One has $x \in \operatorname{core}(C)$ if and only if $\cup_{\lambda>0} \lambda(C-x)=X$;
- for $C \subseteq X$ convex, sqri(C), the strong-quasi relative interior of C. One has $x \in \operatorname{sqri}(C)$ if and only if $\cup_{\lambda>0} \lambda(C-x)$ is a closed linear subspace of X;
- for a given set $C \subseteq X$, the indicator function of C, $\delta_{C}(x)=+\infty$, otherwise.

Preliminary notions and results

Consider

- X a separated locally convex space and its topological dual space X^{*} endowed with the weak* topology $\omega\left(X^{*}, X\right)$;
- for $C \subseteq X$ convex, core (C), the algebraic interior of C. One has $x \in \operatorname{core}(C)$ if and only if $\cup_{\lambda>0} \lambda(C-x)=X$;
- for $C \subseteq X$ convex, sqri (C), the strong-quasi relative interior of C. One has $x \in \operatorname{sqri}(C)$ if and only if $\cup_{\lambda>0} \lambda(C-x)$ is a closed linear subspace of X;
$\delta_{C}(x)=+\infty$, otherwise.

Preliminary notions and results

Consider

- X a separated locally convex space and its topological dual space X^{*} endowed with the weak* topology $\omega\left(X^{*}, X\right)$;
- for $C \subseteq X$ convex, core (C), the algebraic interior of C. One has $x \in \operatorname{core}(C)$ if and only if $\cup_{\lambda>0} \lambda(C-x)=X$;
- for $C \subseteq X$ convex, sqri(C), the strong-quasi relative interior of C. One has $x \in \operatorname{sqri}(C)$ if and only if $\cup_{\lambda>0} \lambda(C-x)$ is a closed linear subspace of X;
- for a given set $C \subseteq X$, the indicator function of C, $\delta_{C}: X \rightarrow \overline{\mathbb{R}}$, defined as $\delta_{C}(x)=0$, if $x \in C$ and $\delta_{C}(x)=+\infty$, otherwise.

For $f: X \rightarrow \overline{\mathbb{R}}$ we consider the following notions

- domain: $\operatorname{dom} f=\{x \in X: f(x)<+\infty\}$;
- f is proper: $f(x)>-\infty \forall x \in X$ and $\operatorname{dom} f \neq \emptyset$;
- epigraph: epi $f=\{(x, r) \in X \times \mathbb{R}: f(x) \leq r\}$;
- lower semicontinuous envelope of f : the function $\mathrm{cl}(f): X \rightarrow \overline{\mathbb{R}}$ defined by epi $(\mathrm{cl}(f))=\mathrm{cl}($ epi $f)$;
- conjugate function of $f: f^{*}: X^{*} \rightarrow \overline{\mathbb{R}}$, $f^{*}\left(x^{*}\right)=\sup \left\{\left\langle x, x^{*}\right\rangle-f(x): x \in X\right\}$;
- for $\varepsilon \geq 0$ and $\bar{x} \in X$ with $f(\bar{x}) \in \mathbb{R}$ the (convex) ε-subdifferential of f at \bar{x} :
$\partial_{\varepsilon} f(\bar{x})=\left\{x^{*} \in X^{*}: f(x)-f(\bar{x}) \geq\left\langle x^{*}, x-\bar{x}\right\rangle-\varepsilon \forall x \in X\right\} ;$ otherwise, $\partial_{\varepsilon} f(\bar{x})=\emptyset$;
- the (convex) subdifferential of f at $\bar{x} \in X: \partial f(\bar{x}):=\partial_{0} f(\bar{x})$.
\square When f defined by $f \square g$
\rightarrow We say that $f \square g$ is exact at $x \in X$ if there exists some $y \in X$ for which the infimum is attained.

For $f: X \rightarrow \overline{\mathbb{R}}$ we consider the following notions

- domain: $\operatorname{dom} f=\{x \in X: f(x)<+\infty\}$;
- f is proper: $f(x)>-\infty \forall x \in X$ and $\operatorname{dom} f \neq \emptyset$;
- epigraph: epi $f=\{(x, r) \in X \times \mathbb{R}: f(x) \leq r\}$;
- lower semicontinuous envelope of f : the function $\mathrm{cl}(f): X \rightarrow \overline{\mathbb{R}}$ defined by epi $(\mathrm{cl}(f))=\mathrm{cl}($ epi $f)$;
- conjugate function of $f: f^{*}: X^{*} \rightarrow \overline{\mathbb{R}}$, $f^{*}\left(x^{*}\right)=\sup \left\{\left\langle x, x^{*}\right\rangle-f(x): x \in X\right\}$;
- for $\varepsilon \geq 0$ and $\bar{x} \in X$ with $f(\bar{x}) \in \mathbb{R}$ the (convex) ε-subdifferential of f at \bar{x} :
$\partial_{\varepsilon} f(\bar{x})=\left\{x^{*} \in X^{*}: f(x)-f(\bar{x}) \geq\left\langle x^{*}, x-\bar{x}\right\rangle-\varepsilon \forall x \in X\right\} ;$ otherwise, $\partial_{\varepsilon} f(\bar{x})=\emptyset$;
- the (convex) subdifferential of f at $\bar{x} \in X: \partial f(\bar{x}):=\partial_{0} f(\bar{x})$.
- When $f, g: X \rightarrow \overline{\mathbb{R}}$ are proper functions, their infimal convolution is defined by $f \square g: X \rightarrow \overline{\mathbb{R}}, f \square g(x)=\inf \{f(x-y)+g(y): y \in X\}$.
- We say that $f \square g$ is exact at $x \in X$ if there exists some $y \in X$ for which the infimum is attained.
- Consider $f, g: X \rightarrow \overline{\mathbb{R}}$ two arbitrary proper convex functions and the following convex optimization problem

$$
(P) \inf _{x \in X}\{f(x)+g(x)\} .
$$

- The Fenchel dual problem to (P) is

If the pair f, g satisfy stable Fenchel duality, then f, g satisfy Fenchel duality.

- Consider $f, g: X \rightarrow \overline{\mathbb{R}}$ two arbitrary proper convex functions and the following convex optimization problem

$$
\text { (P) } \inf _{x \in X}\{f(x)+g(x)\} .
$$

- The Fenchel dual problem to (P) is

$$
\text { (D) } \sup _{z^{*} \in X^{*}}\left\{-f^{*}\left(-z^{*}\right)-g^{*}\left(z^{*}\right)\right\} \text {. }
$$

We say that

- the pair f, g satisfy stable Fenchel duality if for all $x^{*} \in X^{*}$, there exists $z^{*} \in X^{*}$ such that $(f+g)^{*}\left(x^{*}\right)=f^{*}\left(x^{*}-z^{*}\right)+g^{*}\left(z^{*}\right)$
- the pair f, g satisfy the classical Fenchel duality if there exists $z^{*} \in X^{*}$ such that $(f+g)^{*}(0)=f^{*}\left(-z^{*}\right)+g^{*}\left(z^{*}\right)$
- the pair f, g is totally Fenchel unstable if f, g satisfy Fenchel duality but $y^{*}, z^{*} \in X^{*}$ and

If the pair f, g satisfy stable Fenchel duality, then f, g satisfy Fenchel duality.

- Consider $f, g: X \rightarrow \overline{\mathbb{R}}$ two arbitrary proper convex functions and the following convex optimization problem

$$
\text { (P) } \inf _{x \in X}\{f(x)+g(x)\} .
$$

- The Fenchel dual problem to (P) is

$$
\text { (D) } \sup _{z^{*} \in X^{*}}\left\{-f^{*}\left(-z^{*}\right)-g^{*}\left(z^{*}\right)\right\} \text {. }
$$

We say that
\Rightarrow the pair f, g satisfy stable Fenchel duality if for all $x^{*} \in X^{*}$, there exists $z^{*} \in X^{*}$ such that $(f+g)^{*}\left(x^{*}\right)=f^{*}\left(x^{*}-z^{*}\right)+g^{*}\left(z^{*}\right)$

- the pair f, g satisfy the classical Fenchel duality if there exists $z^{*} \in X^{*}$ such that $(f+g)^{*}(0)=f^{*}\left(-z^{*}\right)+g^{*}\left(z^{*}\right)$
- the pair f, g is totally Fenchel unstable if f, g satisfy Fenchel duality but $y^{*}, z^{*} \in X^{*}$ and

$$
(f+g)^{*}\left(y^{*}+z^{*}\right)=f^{*}\left(y^{*}\right)+g^{*}\left(z^{*}\right) \Longrightarrow y^{*}+z^{*}=0 .
$$

If the pair f, g satisfy stable Fenchel duality, then f, g satisfy Fenchel duality.

- Consider $f, g: X \rightarrow \overline{\mathbb{R}}$ two arbitrary proper convex functions and the following convex optimization problem

$$
\text { (P) } \inf _{x \in X}\{f(x)+g(x)\} .
$$

- The Fenchel dual problem to (P) is

$$
\text { (D) } \sup _{z^{*} \in X^{*}}\left\{-f^{*}\left(-z^{*}\right)-g^{*}\left(z^{*}\right)\right\} \text {. }
$$

We say that

- the pair f, g satisfy stable Fenchel duality if for all $x^{*} \in X^{*}$, there exists $z^{*} \in X^{*}$ such that $(f+g)^{*}\left(x^{*}\right)=f^{*}\left(x^{*}-z^{*}\right)+g^{*}\left(z^{*}\right)$
- the pair f, g satisfy the classical Fenchel duality if there exists $z^{*} \in X^{*}$ such that $(f+g)^{*}(0)=f^{*}\left(-z^{*}\right)+g^{*}\left(z^{*}\right)$
the pair f, g is totally Fenchel unstable if f, g satisfy Fenchel duality but $y^{*}, z^{*} \in X^{*}$ and

If the pair f, g satisfy stable Fenchel duality, then f, g satisfy Fenchel duality.

- Consider $f, g: X \rightarrow \overline{\mathbb{R}}$ two arbitrary proper convex functions and the following convex optimization problem

$$
(P) \inf _{x \in X}\{f(x)+g(x)\} .
$$

- The Fenchel dual problem to (P) is

$$
\text { (D) } \sup _{z^{*} \in X^{*}}\left\{-f^{*}\left(-z^{*}\right)-g^{*}\left(z^{*}\right)\right\} \text {. }
$$

We say that

- the pair f, g satisfy stable Fenchel duality if for all $x^{*} \in X^{*}$, there exists $z^{*} \in X^{*}$ such that $(f+g)^{*}\left(x^{*}\right)=f^{*}\left(x^{*}-z^{*}\right)+g^{*}\left(z^{*}\right)$
- the pair f, g satisfy the classical Fenchel duality if there exists $z^{*} \in X^{*}$ such that $(f+g)^{*}(0)=f^{*}\left(-z^{*}\right)+g^{*}\left(z^{*}\right)$
- the pair f, g is totally
but $y^{*} . z^{*} \in X^{*}$ and

Fenchel unstable if f, g satisfy Fenchel duality and

- Consider $f, g: X \rightarrow \overline{\mathbb{R}}$ two arbitrary proper convex functions and the following convex optimization problem

$$
\text { (P) } \inf _{x \in X}\{f(x)+g(x)\}
$$

- The Fenchel dual problem to (P) is

$$
\text { (D) } \sup _{z^{*} \in X^{*}}\left\{-f^{*}\left(-z^{*}\right)-g^{*}\left(z^{*}\right)\right\} \text {. }
$$

We say that

- the pair f, g satisfy stable Fenchel duality if for all $x^{*} \in X^{*}$, there exists $z^{*} \in X^{*}$ such that $(f+g)^{*}\left(x^{*}\right)=f^{*}\left(x^{*}-z^{*}\right)+g^{*}\left(z^{*}\right)$
- the pair f, g satisfy the classical Fenchel duality if there exists $z^{*} \in X^{*}$ such that $(f+g)^{*}(0)=f^{*}\left(-z^{*}\right)+g^{*}\left(z^{*}\right)$
- the pair f, g is totally Fenchel unstable if f, g satisfy Fenchel duality but $y^{*}, z^{*} \in X^{*}$ and

$$
(f+g)^{*}\left(y^{*}+z^{*}\right)=f^{*}\left(y^{*}\right)+g^{*}\left(z^{*}\right) \Longrightarrow y^{*}+z^{*}=0 .
$$

If the pair f, g satisfy stable Fenchel duality, then f, g satisfy Fenchel duality.

- Consider $f, g: X \rightarrow \overline{\mathbb{R}}$ two arbitrary proper convex functions and the following convex optimization problem

$$
\text { (P) } \inf _{x \in X}\{f(x)+g(x)\} .
$$

- The Fenchel dual problem to (P) is

$$
\text { (D) } \sup _{z^{*} \in X^{*}}\left\{-f^{*}\left(-z^{*}\right)-g^{*}\left(z^{*}\right)\right\} \text {. }
$$

We say that

- the pair f, g satisfy stable Fenchel duality if for all $x^{*} \in X^{*}$, there exists $z^{*} \in X^{*}$ such that $(f+g)^{*}\left(x^{*}\right)=f^{*}\left(x^{*}-z^{*}\right)+g^{*}\left(z^{*}\right)$
- the pair f, g satisfy the classical Fenchel duality if there exists $z^{*} \in X^{*}$ such that $(f+g)^{*}(0)=f^{*}\left(-z^{*}\right)+g^{*}\left(z^{*}\right)$
- the pair f, g is totally Fenchel unstable if f, g satisfy Fenchel duality but $y^{*}, z^{*} \in X^{*}$ and

$$
(f+g)^{*}\left(y^{*}+z^{*}\right)=f^{*}\left(y^{*}\right)+g^{*}\left(z^{*}\right) \Longrightarrow y^{*}+z^{*}=0 .
$$

If the pair f, g satisfy stable Fenchel duality, then f, g satisfy Fenchel duality.

One always has

$$
\text { epi } f^{*}+\operatorname{epi} g^{*} \subseteq \operatorname{epi}(f+g)^{*}
$$

The pair f, g satisfy stable Fenchel duality if and only if

$$
\operatorname{epi}(f+g)^{*}=\operatorname{epi} f^{*}+\operatorname{epi} g^{*}
$$

The pair f, g satisfy Fenchel duality if and only if

$$
\operatorname{epi}(f+g)^{*} \cap(\{0\} \times \mathbb{R})=\left(\text { epi } f^{*}+\text { epi } g^{*}\right) \cap(\{0\} \times \mathbb{R})
$$

The pair f, g is totally Fenchel unstable if and only if

$$
\operatorname{epi}(f+g)^{*} \cap(\{0\} \times \mathbb{R})=\left(\mathrm{epi} f^{*}+\operatorname{epi} g^{*}\right) \cap(\{0\} \times \mathbb{R})
$$

and there is no $x^{*} \in X^{*} \backslash\{0\}$ such that

$$
\operatorname{epi}(f+g)^{*} \cap\left(\left\{x^{*}\right\} \times \mathbb{R}\right)=\left(\text { epi } f^{*}+\operatorname{epi} g^{*}\right) \cap\left(\left\{x^{*}\right\} \times \mathbb{R}\right)
$$

Regularity conditions for Fenchel duality

Assume that $f, g: X \rightarrow \overline{\mathbb{R}}$ are proper convex functions such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$. In the literature there exist different classes of regularity conditions for stable Fenchel duality:

Interior point regularity conditions:
(ii) $0 \in \operatorname{int}(\operatorname{dom} f-\operatorname{dom} g)$;
(iii) $0 \in \operatorname{core}(\operatorname{dom} f-\operatorname{domg}$) (Rockafellar, 1974);
(iv) $0 \in \operatorname{sqri(domf}$ - domg) (Attouch, Brézis, 1986, Zălinescu, 1987)

Closedness-type regularity condition:

Regularity conditions for Fenchel duality

Assume that $f, g: X \rightarrow \overline{\mathbb{R}}$ are proper convex functions such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$. In the literature there exist different classes of regularity conditions for stable Fenchel duality:
(i) f is continuous at $x^{\prime} \in \operatorname{dom} f \cap \operatorname{dom} g$;

Interior point regularity conditions:
(ii) $0 \in \operatorname{int}(\operatorname{dom} f-\operatorname{dom} g)$;
(iii) $0 \in \operatorname{core}(\operatorname{dom} f-\operatorname{dom} g$) (Rockafellar, 1974);
(iv) $0 \in \operatorname{sqri}(d o m f-\operatorname{dom} g)(A t t o u c h, ~ B r e ́ z i s, ~ 1986, ~ Z a ̆ l i n e s c u, ~$ 1987)

Closedness-type regularity condition:

Regularity conditions for Fenchel duality

Assume that $f, g: X \rightarrow \overline{\mathbb{R}}$ are proper convex functions such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$. In the literature there exist different classes of regularity conditions for stable Fenchel duality:
(i) f is continuous at $x^{\prime} \in \operatorname{dom} f \cap \operatorname{dom} g$;

Interior point regularity conditions:
(ii) $0 \in \operatorname{int}(\operatorname{dom} f-\operatorname{dom} g)$;
(iii) $0 \in \operatorname{core}(\operatorname{dom} f-\operatorname{domg}$) (Rockafellar, 1974);
(iv) $0 \in \operatorname{sqri(domf}$ - domg) (Attouch, Brézis, 1986, Zălinescu, 1987)

Closedness-type regularity condition:
(v) epi $f^{*}+$ epi g^{*} is closed in the product topology of
2006)

Regularity conditions for Fenchel duality

Assume that $f, g: X \rightarrow \overline{\mathbb{R}}$ are proper convex functions such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$. In the literature there exist different classes of regularity conditions for stable Fenchel duality:
(i) f is continuous at $x^{\prime} \in \operatorname{dom} f \cap \operatorname{dom} g$;

Interior point regularity conditions:
(ii) $0 \in \operatorname{int}(\operatorname{dom} f-\operatorname{dom} g)$;
(iii) $0 \in \operatorname{core}(\operatorname{dom} f-\operatorname{dom} g$) (Rockafellar, 1974);

Regularity conditions for Fenchel duality

Assume that $f, g: X \rightarrow \overline{\mathbb{R}}$ are proper convex functions such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$. In the literature there exist different classes of regularity conditions for stable Fenchel duality:
(i) f is continuous at $x^{\prime} \in \operatorname{dom} f \cap \operatorname{dom} g$;

Interior point regularity conditions:
(ii) $0 \in \operatorname{int}(\operatorname{dom} f-\operatorname{dom} g)$;
(iii) $0 \in \operatorname{core}(\operatorname{dom} f-\operatorname{dom} g$) (Rockafellar, 1974);
(iv) $0 \in \operatorname{sqri(dom} f-\operatorname{dom} g)$ (Attouch, Brézis, 1986, Zălinescu, 1987).

Closedness-type regularity condition:
(v) epi $f^{*}+$ epi g^{*} is closed in the product topology of

Regularity conditions for Fenchel duality

Assume that $f, g: X \rightarrow \overline{\mathbb{R}}$ are proper convex functions such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$. In the literature there exist different classes of regularity conditions for stable Fenchel duality:
(i) f is continuous at $x^{\prime} \in \operatorname{dom} f \cap \operatorname{dom} g$;

Interior point regularity conditions:
(ii) $0 \in \operatorname{int}(\operatorname{dom} f-\operatorname{dom} g)$;
(iii) $0 \in \operatorname{core}(\operatorname{dom} f-\operatorname{dom} g$) (Rockafellar, 1974);
(iv) $0 \in \operatorname{sqri(dom} f-\operatorname{dom} g)$ (Attouch, Brézis, 1986, Zălinescu, 1987).

Closedness-type regularity condition:
(v) epi $f^{*}+$ epi g^{*} is closed in the product topology of $\left(X^{*}, \omega\left(X^{*}, X\right)\right) \times \mathbb{R}$ (B., Wanka, 2006, Burachik, Jeyakumar, 2006).

We have that

- condition $(i) \Rightarrow$ stable Fenchel duality;
- if f, g are lower semicontinuous and X is a Fréchet space, then (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Rightarrow stable Fenchel duality;
- if f, g are lower semicontinuous, then $(v) \Leftrightarrow$ stable Fenchel duality.
Example 1. Let $X=\mathbb{R}, f(x)=\frac{1}{2} x^{2}$, if $x \geq 0$, and $f(x)=+\infty$, otherwise, and $g=\delta_{(-\infty, 0]}$. Then ($\left.i\right)-(i v)$ are not fulfilled, while (v) is valid.
Consider the following regularity condition for Fenchel duality:
(vi) $f^{*} \square g^{*}$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

If f, g are lower semicontinuous, then $(v) \Rightarrow(v i) \Rightarrow$ Fenchel duality.
Example 2. Let $X=\mathbb{R}^{2}, C=\left\{\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}: x_{1} \geq 0\right\}$,
$D=\left\{\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}: 2 x_{1}+x_{2}^{2} \leq 0\right\}, f=\delta_{C}$ and $g=\delta_{D}$.
Thus f, g satisfy Fenchel duality, f, g doesn't satisfy stable Fenchel duality and the pair f, g is not totally Fenchel unstable.

We have that

- condition $(i) \Rightarrow$ stable Fenchel duality;
- if f, g are lower semicontinuous and X is a Fréchet space, then (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Rightarrow stable Fenchel duality;
- if f, g are lower semicontinuous, then $(v) \Leftrightarrow$ stable Fenchel duality.
Example 1. Let $X=\mathbb{R}, f(x)=\frac{1}{2} x^{2}$, if $x \geq 0$, and $f(x)=+\infty$,
otherwise, and $g=\delta_{(-\infty, 0]}$. Then (i)-(iv) are not fulfilled, while (v) is valid.
Consider the following regularity condition for Fenchel duality:
(vi) $f^{*} \square g^{*}$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

If f, g are lower semicontinuous, then $(v) \Rightarrow(v i) \Rightarrow$ Fenchel duality.
Example 2. Let $X=\mathbb{R}^{2}, C=\left\{\left(x_{1}, x_{2}\right)^{\top} \in \mathbb{R}^{2}: x_{1} \geq 0\right\}$,
$D=\left\{\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}: 2 x_{1}+x_{2}^{2} \leq 0\right\}, f=\delta_{C}$ and $g=\delta_{D}$.
Thus f, g satisfy Fenchel duality, f, g doesn't satisfy stable Fenchel duality and the pair f, g is not totally Fenchel unstable.

We have that

- condition $(i) \Rightarrow$ stable Fenchel duality;
- if f, g are lower semicontinuous and X is a Fréchet space, then $(i i) \Leftrightarrow(i i i) \Rightarrow(i v) \Rightarrow$ stable Fenchel duality;
- if f, g are lower semicontinuous, then $(v) \Leftrightarrow$ stable Fenchel duality.
Example 1. Let $X=\mathbb{R}, f(x)=\frac{1}{2} x^{2}$, if $x \geq 0$, and $f(x)=+\infty$,
otherwise, and $g=\delta_{(-\infty, 0)}$. Then ($\left.i\right)-(i v)$ are not fulfilled, while (v) is valid.
Consider the following regularity condition for Fenchel duality:
(vi) $f^{*} \square g^{*}$ is lower semicontinuous and exact at 0 (B., Wanka, 2006)

If f, g are lower semicontinuous, then $(v) \Rightarrow(v i) \Rightarrow$ Fenchel duality
Example 2. Let $X=\mathbb{R}^{2}, C=\left\{\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}: x_{1} \geq 0\right\}$,
$D=\left\{\left(x_{1}, x_{2}\right)^{\top} \in \mathbb{R}^{2}: 2 x_{1}+x_{2}^{2} \leq 0\right\}, f=\delta_{C}$ and $g=\delta_{D}$.
Thus f, g satisfy Fenchel duality, f, g doesn't satisfy stable Fenchel
duality and the pair f, g is not totally Fenchel unstable.

We have that

- condition $(i) \Rightarrow$ stable Fenchel duality;
- if f, g are lower semicontinuous and X is a Fréchet space, then (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Rightarrow stable Fenchel duality;
- if f, g are lower semicontinuous, then $(v) \Leftrightarrow$ stable Fenchel duality.

We have that

- condition $(i) \Rightarrow$ stable Fenchel duality;
- if f, g are lower semicontinuous and X is a Fréchet space, then $(i i) \Leftrightarrow(i i i) \Rightarrow(i v) \Rightarrow$ stable Fenchel duality;
- if f, g are lower semicontinuous, then $(v) \Leftrightarrow$ stable Fenchel duality.
Example 1. Let $X=\mathbb{R}, f(x)=\frac{1}{2} x^{2}$, if $x \geq 0$, and $f(x)=+\infty$, otherwise, and $g=\delta_{(-\infty, 0]}$. Then (i) - (iv) are not fulfilled, while (v) is valid.
Consider the following regularity condition for Fenchel duality:

If f, g are lower semicontinuous, then $(v) \Rightarrow(v i) \Rightarrow$ Fenchel duality Example 2. Let $X=\mathbb{R}^{2}, C=\left\{\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}: x_{1} \geq 0\right\}$,
$D=\left\{\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}: 2 x_{1}+x_{2}^{2} \leq 0\right\}, f=\delta_{C}$ and $g=\delta_{D}$
Thus f, g satisfy Fenchel duality, f, g doesn't satisfy stable Fenchel

We have that

- condition $(i) \Rightarrow$ stable Fenchel duality;
- if f, g are lower semicontinuous and X is a Fréchet space, then (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Rightarrow stable Fenchel duality;
- if f, g are lower semicontinuous, then $(v) \Leftrightarrow$ stable Fenchel duality.
Example 1. Let $X=\mathbb{R}, f(x)=\frac{1}{2} x^{2}$, if $x \geq 0$, and $f(x)=+\infty$, otherwise, and $g=\delta_{(-\infty, 0]}$. Then (i) - (iv) are not fulfilled, while (v) is valid.
Consider the following regularity condition for Fenchel duality:
(vi) $f^{*} \square g^{*}$ is lower semicontinuous and exact at 0 (B., Wanka, 2006) If f, g are lower semicontinuous, then $(v) \Rightarrow(v i) \Rightarrow$ Fenchel duality. Example 2. Let $X=\mathbb{R}^{2}, C=\left\{\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}: x_{1} \geq 0\right\}$,
$D=\left\{\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}: 2 x_{1}+x_{2}^{2} \leq 0\right\}, f=\delta_{C}$ and $g=\delta_{D}$. Thus f, g satisfy Fenchel duality, f, g doesn't satisfy stable Fenchel

We have that

- condition $(i) \Rightarrow$ stable Fenchel duality;
- if f, g are lower semicontinuous and X is a Fréchet space, then (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Rightarrow stable Fenchel duality;
- if f, g are lower semicontinuous, then $(v) \Leftrightarrow$ stable Fenchel duality.
Example 1. Let $X=\mathbb{R}, f(x)=\frac{1}{2} x^{2}$, if $x \geq 0$, and $f(x)=+\infty$, otherwise, and $g=\delta_{(-\infty, 0]}$. Then (i) - (iv) are not fulfilled, while (v) is valid.
Consider the following regularity condition for Fenchel duality:
(vi) $f^{*} \square g^{*}$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

\square

We have that

- condition $(i) \Rightarrow$ stable Fenchel duality;
- if f, g are lower semicontinuous and X is a Fréchet space, then (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Rightarrow stable Fenchel duality;
- if f, g are lower semicontinuous, then $(v) \Leftrightarrow$ stable Fenchel duality.
Example 1. Let $X=\mathbb{R}, f(x)=\frac{1}{2} x^{2}$, if $x \geq 0$, and $f(x)=+\infty$, otherwise, and $g=\delta_{(-\infty, 0]}$. Then (i) - (iv) are not fulfilled, while (v) is valid.
Consider the following regularity condition for Fenchel duality:
(vi) $f^{*} \square g^{*}$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

If f, g are lower semicontinuous, then $(v) \Rightarrow(v i) \Rightarrow$ Fenchel duality.

We have that

- condition $(i) \Rightarrow$ stable Fenchel duality;
- if f, g are lower semicontinuous and X is a Fréchet space, then (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Rightarrow stable Fenchel duality;
- if f, g are lower semicontinuous, then $(v) \Leftrightarrow$ stable Fenchel duality.
Example 1. Let $X=\mathbb{R}, f(x)=\frac{1}{2} x^{2}$, if $x \geq 0$, and $f(x)=+\infty$, otherwise, and $g=\delta_{(-\infty, 0]}$. Then ($\left.i\right)-(i v)$ are not fulfilled, while (v) is valid.
Consider the following regularity condition for Fenchel duality:
(vi) $f^{*} \square g^{*}$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

If f, g are lower semicontinuous, then $(v) \Rightarrow(v i) \Rightarrow$ Fenchel duality.
Example 2. Let $X=\mathbb{R}^{2}, C=\left\{\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}: x_{1} \geq 0\right\}$,
$D=\left\{\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}: 2 x_{1}+x_{2}^{2} \leq 0\right\}, f=\delta_{C}$ and $g=\delta_{D}$.

We have that

- condition $(i) \Rightarrow$ stable Fenchel duality;
- if f, g are lower semicontinuous and X is a Fréchet space, then (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Rightarrow stable Fenchel duality;
- if f, g are lower semicontinuous, then $(v) \Leftrightarrow$ stable Fenchel duality.
Example 1. Let $X=\mathbb{R}, f(x)=\frac{1}{2} x^{2}$, if $x \geq 0$, and $f(x)=+\infty$, otherwise, and $g=\delta_{(-\infty, 0]}$. Then ($\left.i\right)-(i v)$ are not fulfilled, while (v) is valid.

Consider the following regularity condition for Fenchel duality:
(vi) $f^{*} \square g^{*}$ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

If f, g are lower semicontinuous, then $(v) \Rightarrow(v i) \Rightarrow$ Fenchel duality.
Example 2. Let $X=\mathbb{R}^{2}, C=\left\{\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}: x_{1} \geq 0\right\}$, $D=\left\{\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}: 2 x_{1}+x_{2}^{2} \leq 0\right\}, f=\delta_{C}$ and $g=\delta_{D}$.
Thus f, g satisfy Fenchel duality, f, g doesn't satisfy stable Fenchel duality and the pair f, g is not totally Fenchel unstable.

Let $f, g: X \rightarrow \overline{\mathbb{R}}$ be proper functions with $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$. Algebraic result:

if and only if
$\inf _{x \in x^{\prime}}\left[f(x)+g(x)-\left\langle x^{*}, x\right\rangle\right]=\max _{y^{*} \in x^{2}}\left\{-f^{*}\left(x^{*}-y^{*}\right)-g^{*}\left(y^{*}\right)\right\} \forall x^{*} \in X^{*}$ (2)
if and only if

On the other hand, (3) implies (take $\varepsilon=0$)

$$
\begin{equation*}
\partial(f+g)(x)=\partial f(x)+\partial g(x) \forall x \in X \tag{4}
\end{equation*}
$$

> Comment. Conditions that guarantee stable strong duality for $(P)-(D)$ automatically ensure the fulfillment of (4).

Let $f, g: X \rightarrow \overline{\mathbb{R}}$ be proper functions with $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$. Algebraic result:

$$
\begin{equation*}
(f+g)^{*}\left(x^{*}\right)=\min _{y^{*} \in X^{*}}\left\{f^{*}\left(x^{*}-y^{*}\right)+g^{*}\left(y^{*}\right)\right\} \forall x^{*} \in X^{*} \tag{1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\inf _{x \in X}\left[f(x)+g(x)-\left\langle x^{*}, x\right\rangle\right]=\max _{y^{*} \in X^{*}}\left\{-f^{*}\left(x^{*}-y^{*}\right)-g^{*}\left(y^{*}\right)\right\} \forall x^{*} \in X^{*} \tag{2}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\partial_{\varepsilon}(f+g)(x)=\bigcup_{\substack{\varepsilon_{1}, \varepsilon_{2} \geq 0 \\ \varepsilon_{1}+\varepsilon_{2}=\varepsilon}}\left(\partial_{\varepsilon_{1}} f(x)+\partial_{\varepsilon_{2}} g(x)\right) \forall x \in X \forall \varepsilon \geq 0 . \tag{3}
\end{equation*}
$$

On the other hand, (3) implies (take $\varepsilon=0$)

Let $f, g: X \rightarrow \overline{\mathbb{R}}$ be proper functions with $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$. Algebraic result:

$$
\begin{equation*}
(f+g)^{*}\left(x^{*}\right)=\min _{y^{*} \in X^{*}}\left\{f^{*}\left(x^{*}-y^{*}\right)+g^{*}\left(y^{*}\right)\right\} \forall x^{*} \in X^{*} \tag{1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\inf _{x \in X}\left[f(x)+g(x)-\left\langle x^{*}, x\right\rangle\right]=\max _{y^{*} \in X^{*}}\left\{-f^{*}\left(x^{*}-y^{*}\right)-g^{*}\left(y^{*}\right)\right\} \forall x^{*} \in X^{*} \tag{2}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\partial_{\varepsilon}(f+g)(x)=\bigcup_{\substack{\varepsilon_{1}, \varepsilon_{2} \geq 0 \\ \varepsilon_{1}+\varepsilon_{2}=\varepsilon}}\left(\partial_{\varepsilon_{1}} f(x)+\partial_{\varepsilon_{2}} g(x)\right) \forall x \in X \forall \varepsilon \geq 0 . \tag{3}
\end{equation*}
$$

On the other hand, (3) implies (take $\varepsilon=0$)

$$
\begin{equation*}
\partial(f+g)(x)=\partial f(x)+\partial g(x) \forall x \in X \tag{4}
\end{equation*}
$$

Let $f, g: X \rightarrow \overline{\mathbb{R}}$ be proper functions with $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$. Algebraic result:

$$
\begin{equation*}
(f+g)^{*}\left(x^{*}\right)=\min _{y^{*} \in X^{*}}\left\{f^{*}\left(x^{*}-y^{*}\right)+g^{*}\left(y^{*}\right)\right\} \forall x^{*} \in X^{*} \tag{1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\inf _{x \in X}\left[f(x)+g(x)-\left\langle x^{*}, x\right\rangle\right]=\max _{y^{*} \in X^{*}}\left\{-f^{*}\left(x^{*}-y^{*}\right)-g^{*}\left(y^{*}\right)\right\} \forall x^{*} \in X^{*} \tag{2}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\partial_{\varepsilon}(f+g)(x)=\bigcup_{\substack{\varepsilon_{1}, \varepsilon_{2} \geq 0 \\ \varepsilon_{1}+\varepsilon_{2}=\varepsilon}}\left(\partial_{\varepsilon_{1}} f(x)+\partial_{\varepsilon_{2}} g(x)\right) \forall x \in X \forall \varepsilon \geq 0 \tag{3}
\end{equation*}
$$

On the other hand, (3) implies (take $\varepsilon=0$)

$$
\begin{equation*}
\partial(f+g)(x)=\partial f(x)+\partial g(x) \forall x \in X \tag{4}
\end{equation*}
$$

Comment. Conditions that guarantee stable strong duality for $(P)-(D)$ automatically ensure the fulfillment of (4).

Two convex regularization schemes

- (Burger, Osher, 2004) Take \mathcal{U} a Banach space, \mathcal{H} a Hilbert space, $K: \mathcal{U} \rightarrow \mathcal{H}$ a linear continuous operator and the ill-posed operator equation

$$
\begin{equation*}
K u=f \tag{5}
\end{equation*}
$$

where $f \in R(\mathcal{K})$.
Let $J: \mathcal{U} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a convex and lower semicontinuous function. Then $\bar{u} \in \mathcal{U}$ is called J-minimizing solution for (5) if it is an optimal solution of

$$
\inf _{K u=f} J(u) .
$$

Source condition: the existence of Lagrange multiplier, i.e. $\exists \bar{w} \in \mathcal{H}$ with $K^{*} w \in \partial J(\bar{u}) \Rightarrow \bar{u}$ is a J-minimizing solution for (5)

Viceversa, if \bar{u} is a J-minimizing solution for (5) and

$$
f \in \operatorname{sqri}(K(\operatorname{dom} J)) \text { (interior-point regularity condition), }
$$

then there exists a Lagrange multiplier $\bar{w} \in \mathcal{H}$ with $\langle\bar{w}, f-K \bar{u}\rangle=0$ and

$$
0 \in \partial\left(I-K^{*}(\bar{w})(\bar{u}) \Leftrightarrow K^{*} \bar{w} \in \partial J(\bar{u})\right.
$$

Two convex regularization schemes

- (Burger, Osher, 2004) Take \mathcal{U} a Banach space, \mathcal{H} a Hilbert space, $K: \mathcal{U} \rightarrow \mathcal{H}$ a linear continuous operator and the ill-posed operator equation

$$
\begin{equation*}
K u=f, \tag{5}
\end{equation*}
$$

where $f \in R(\mathcal{K})$.
Let $J: \mathcal{U} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a convex and lower semicontinuous function. Then $\bar{u} \in \mathcal{U}$ is called J-minimizing solution for (5) if it is an optimal solution of

Source condition: the existence of Lagrange multiplier, i.e. $\exists \bar{w} \in \mathcal{H}$ with $K^{*} w \in \partial J(\bar{u}) \Rightarrow \bar{u}$ is a J-minimizing solution for (5) Viceversa, if \bar{u} is a J-minimizing solution for (5) and $f \in \operatorname{sqri}(K(\operatorname{dom} J))$ (interior-point regularity condition),
then there exists a I agrange multinlier $\overline{w_{\prime}} \in \mathcal{H}$ with $\langle\bar{w}, f-K \bar{u}\rangle=0$ and

$$
0 \in \partial\left(J-K^{*} \bar{w}\right)(\bar{u}) \Leftrightarrow K^{*} \bar{w} \in \partial J(\bar{u}) .
$$

Two convex regularization schemes

- (Burger, Osher, 2004) Take \mathcal{U} a Banach space, \mathcal{H} a Hilbert space, $K: \mathcal{U} \rightarrow \mathcal{H}$ a linear continuous operator and the ill-posed operator equation

$$
\begin{equation*}
K u=f, \tag{5}
\end{equation*}
$$

where $f \in R(\mathcal{K})$.
Let $J: \mathcal{U} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a convex and lower semicontinuous function. Then $\bar{u} \in \mathcal{U}$ is called J-minimizing solution for (5) if it is an optimal solution of

$$
\inf _{K u=f} J(u)
$$

Source condition: the existence of Lagrange multiplie
$K^{*} w \in \partial J(\bar{u}) \Rightarrow \bar{u}$ is a J-minimizing solution for (5)
Viceversa, if \bar{u} is a J-minimizing solution for (5) and

$$
f \in \operatorname{sqri}(K(\mathrm{dom} I)) \text { (interior-point regularity condition). }
$$

then there exists a Lagrange multiplier $\bar{w} \in \mathcal{H}$ with $\langle\bar{w}, f-K \bar{u}\rangle=0$ and

$$
0 \in \partial\left(J-K^{*} \bar{w}\right)(\bar{u}) \Leftrightarrow K^{*} \bar{w} \in \partial J(\bar{u}) .
$$

Two convex regularization schemes

- (Burger, Osher, 2004) Take \mathcal{U} a Banach space, \mathcal{H} a Hilbert space, $K: \mathcal{U} \rightarrow \mathcal{H}$ a linear continuous operator and the ill-posed operator equation

$$
\begin{equation*}
K u=f, \tag{5}
\end{equation*}
$$

where $f \in R(\mathcal{K})$.
Let $J: \mathcal{U} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a convex and lower semicontinuous function.
Then $\bar{u} \in \mathcal{U}$ is called J-minimizing solution for (5) if it is an optimal solution of

$$
\inf _{K u=f} J(u) .
$$

Source condition: the existence of Lagrange multiplier, i.e. $\exists \bar{w} \in \mathcal{H}$ with $K^{*} w \in \partial J(\bar{u}) \Rightarrow \bar{u}$ is a J-minimizing solution for (5).

Viceversa, if \bar{u} is a J-minimizing solution for (5) and

$$
f \in \operatorname{sqri}(K(\operatorname{dom} J)) \text { (interior-point regularity condition), }
$$

then there exists a Lagrange multiplier $\bar{w} \in \mathcal{H}$ with $\langle\bar{w}, f-K \bar{u}\rangle=0$ and

$$
0 \in \partial\left(J-K^{*} \bar{w}\right)(\bar{u}) \Leftrightarrow K^{*} \bar{w} \in \partial J(\bar{u}) .
$$

Two convex regularization schemes

- (Burger, Osher, 2004) Take \mathcal{U} a Banach space, \mathcal{H} a Hilbert space, $K: \mathcal{U} \rightarrow \mathcal{H}$ a linear continuous operator and the ill-posed operator equation

$$
\begin{equation*}
K u=f, \tag{5}
\end{equation*}
$$

where $f \in R(\mathcal{K})$.
Let $J: \mathcal{U} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a convex and lower semicontinuous function.
Then $\bar{u} \in \mathcal{U}$ is called J-minimizing solution for (5) if it is an optimal solution of

$$
\inf _{K u=f} J(u) .
$$

Source condition: the existence of Lagrange multiplier, i.e. $\exists \bar{w} \in \mathcal{H}$ with $K^{*} w \in \partial J(\bar{u}) \Rightarrow \bar{u}$ is a J-minimizing solution for (5).

Viceversa, if \bar{u} is a J-minimizing solution for (5) and

$$
f \in \operatorname{sqri}(K(\operatorname{dom} J)) \text { (interior-point regularity condition), }
$$

then there exists a Lagrange multiplier $\bar{w} \in \mathcal{H}$ with $\langle\bar{w}, f-K \bar{u}\rangle=0$ and

$$
0 \in \partial\left(J-K^{*} \bar{w}\right)(\bar{u}) \Leftrightarrow K^{*} \bar{w} \in \partial J(\bar{u}) .
$$

- (Chambolle, Lions, 1997) On $\Omega \subseteq \mathbb{R}^{2}$ a bounded and piecewise smooth open set consider the image recovery problem

$$
u_{0}=A u+n .
$$

Here:

- u_{0} is the image;
$\rightarrow u$ is the transformed image;
- n is the random noise. It fulfills $\int_{\Omega} n=0$ and $\int_{\Omega}|n|^{2}=\sigma^{2}$;
$\rightarrow A: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is a linear and continuous operator.
Problem: Knowing u_{0}, one has to recover u.
- (Rudin, Osher, Fatemi, 1992): Solve the constrained
minimization problem:

- (Chambolle, Lions, 1997) On $\Omega \subseteq \mathbb{R}^{2}$ a bounded and piecewise smooth open set consider the image recovery problem

$$
u_{0}=A u+n .
$$

Here:

- u_{0} is the image;
- u is the transformed image;
$\checkmark n$ is the random noise. It fulfills $\int_{\Omega} n=0$ and $\int_{\Omega}|n|^{2}=\sigma^{2}$;
$\rightarrow A: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is a linear and continuous operator.
Problem: Knowing u_{0}, one has to recover u.
- (Rudin, Osher, Fatemi, 1992): Solve the constrained
minimization problem:

- (Chambolle, Lions, 1997) On $\Omega \subseteq \mathbb{R}^{2}$ a bounded and piecewise smooth open set consider the image recovery problem

$$
u_{0}=A u+n .
$$

Here:

- u_{0} is the image;
- u is the transformed image;
$\Rightarrow n$ is the random noise. It fulfills $\int_{\Omega} n=0$ and $\int_{\Omega}|n|^{2}=\sigma^{2}$;
$\rightarrow A: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is a linear and continuous operator.
Problem: Knowing u_{0}, one has to recover u.
- (Rudin, Osher, Fatemi, 1992): Solve the constrained
minimization problem:

- (Chambolle, Lions, 1997) On $\Omega \subseteq \mathbb{R}^{2}$ a bounded and piecewise smooth open set consider the image recovery problem

$$
u_{0}=A u+n .
$$

Here:

- u_{0} is the image;
- u is the transformed image;
- n is the random noise. It fulfills $\int_{\Omega} n=0$ and $\int_{\Omega}|n|^{2}=\sigma^{2}$;
$\Rightarrow A: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is a linear and continuous operator.
Problem: Knowing u_{0}, one has to recover u.
- (Rudin, Osher, Fatemi, 1992): Solve the constrained
minimization problem:

- (Chambolle, Lions, 1997) On $\Omega \subseteq \mathbb{R}^{2}$ a bounded and piecewise smooth open set consider the image recovery problem

$$
u_{0}=A u+n .
$$

Here:

- u_{0} is the image;
- u is the transformed image;
- n is the random noise. It fulfills $\int_{\Omega} n=0$ and $\int_{\Omega}|n|^{2}=\sigma^{2}$;
- $A: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is a linear and continuous operator.

Problem: Knowing L_{0}, one has to recover u.

- (Rudin, Osher, Fatemi, 1992): Solve the constrained
minimization problem:

- (Chambolle, Lions, 1997) On $\Omega \subseteq \mathbb{R}^{2}$ a bounded and piecewise smooth open set consider the image recovery problem

$$
u_{0}=A u+n .
$$

Here:

- u_{0} is the image;
- u is the transformed image;
- n is the random noise. It fulfills $\int_{\Omega} n=0$ and $\int_{\Omega}|n|^{2}=\sigma^{2}$;
- $A: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is a linear and continuous operator.

Problem: Knowing u_{0}, one has to recover u.

- (Rudin, Osher, Fatemi, 1992): Solve the constrained
minimization problem:

- (Chambolle, Lions, 1997) On $\Omega \subseteq \mathbb{R}^{2}$ a bounded and piecewise smooth open set consider the image recovery problem

$$
u_{0}=A u+n .
$$

Here:
$-u_{0}$ is the image;

- u is the transformed image;
- n is the random noise. It fulfills $\int_{\Omega} n=0$ and $\int_{\Omega}|n|^{2}=\sigma^{2}$;
- $A: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is a linear and continuous operator.

Problem: Knowing u_{0}, one has to recover u.

- (Rudin, Osher, Fatemi, 1992): Solve the constrained minimization problem:

$$
\begin{equation*}
\inf _{\substack{\int_{\Omega} A u=\int_{\Omega} u_{0}, \int_{\Omega}\left|A u-u_{0}\right|^{2}=\sigma^{2}}}|\mathcal{D} u|(\Omega) . \tag{6}
\end{equation*}
$$

Define $J: L^{p}(\Omega) \rightarrow \mathbb{R} \cup\{+\infty\}$,

$$
J(u)=|\mathcal{D} u|(\Omega), \text { if } u \in B V(\Omega), J(u)=+\infty, \text { otherwise. }
$$

Under some natural assumptions one can prove that (Chambolle, Lions, 1997) (6) is equivalent to

$$
\inf _{\int_{\Omega}\left|A u-u_{0}\right|^{2} \leq \sigma^{2}} J(u) \text {. }
$$

- (Chambolle, Lions, 1997) Assume that \bar{u} is an optimal solution of (7) and that $u_{0} \in \operatorname{cl}\left(L^{2}(\Omega) \cap A(B V(\Omega))\right)$. For $C=\mathbb{R}_{+}$and $g(u)=\left\|A u-u_{0}\right\|^{2}-\sigma^{2}$ the latter condition means in fact that $\exists u^{\prime} \in \operatorname{dom} J: g\left(u^{\prime}\right)<0$ (Slater regularity condition).
Thus there exists a I agrange multiplier $\bar{\lambda} \geq 0$ such that $\bar{\lambda}\left(\left\|A \bar{u}-u_{0}\right\|-\sigma\right)=0$ and
$0 \in \partial\left(J+\bar{\lambda}\left(\left\|A \cdot-u_{0}\right\|^{2}-\sigma^{2}\right)\right)(\bar{u})=\partial J(\bar{u})+\bar{\lambda} \partial\left(\left\|A \cdot-u_{0}\right\|^{2}-\sigma^{2}\right)(\bar{u})$

$$
\Leftrightarrow-\bar{\lambda} A^{*}\left(A \bar{u}-u_{0}\right) \in \partial J(\bar{u}) .
$$

Define $J: L^{p}(\Omega) \rightarrow \mathbb{R} \cup\{+\infty\}$,

$$
J(u)=|\mathcal{D} u|(\Omega), \text { if } u \in B V(\Omega), J(u)=+\infty, \text { otherwise. }
$$

Under some natural assumptions one can prove that (Chambolle, Lions, 1997) (6) is equivalent to

$$
\begin{equation*}
\inf _{\int_{\Omega}\left|A u-u_{0}\right|^{2} \leq \sigma^{2}} J(u) . \tag{7}
\end{equation*}
$$

Define $J: L^{p}(\Omega) \rightarrow \mathbb{R} \cup\{+\infty\}$,

$$
J(u)=|\mathcal{D} u|(\Omega), \text { if } u \in B V(\Omega), J(u)=+\infty, \text { otherwise. }
$$

Under some natural assumptions one can prove that (Chambolle, Lions, 1997) (6) is equivalent to

$$
\begin{equation*}
\inf _{\int_{\Omega}\left|A u-u_{0}\right|^{2} \leq \sigma^{2}} J(u) . \tag{7}
\end{equation*}
$$

- (Chambolle, Lions, 1997) Assume that \bar{u} is an optimal solution of (7) and that $u_{0} \in \operatorname{cl}\left(L^{2}(\Omega) \cap A(B V(\Omega))\right)$. For $C=\mathbb{R}_{+}$and $g(u)=\left\|A u-u_{0}\right\|^{2}-\sigma^{2}$ the latter condition means in fact that $\exists u^{\prime} \in \operatorname{dom} J: g\left(u^{\prime}\right)<0$ (Slater regularity condition).
Thus there exists a Lagrange multiplier $\bar{\lambda} \geq 0$ such that
$\bar{\lambda}\left(\left\|A \bar{u}-u_{0}\right\|-\sigma\right)=0$ and
$0 \in \partial\left(J+\bar{\lambda}\left(\left\|A \cdot-u_{0}\right\|^{2}-\sigma^{2}\right)\right)(\bar{u})=\partial J(\bar{u})+\bar{\lambda} \partial\left(\left\|A \cdot-u_{0}\right\|^{2}-\sigma^{2}\right)(\bar{u})$ $\Leftrightarrow-\bar{\lambda} A^{*}\left(A \bar{u}-u_{0}\right) \in \partial J(\bar{u})$.

Define $J: L^{p}(\Omega) \rightarrow \mathbb{R} \cup\{+\infty\}$,

$$
J(u)=|\mathcal{D} u|(\Omega), \text { if } u \in B V(\Omega), J(u)=+\infty, \text { otherwise. }
$$

Under some natural assumptions one can prove that (Chambolle, Lions, 1997) (6) is equivalent to

$$
\begin{equation*}
\inf _{\int_{\Omega}\left|A u-u_{0}\right|^{2} \leq \sigma^{2}} J(u) . \tag{7}
\end{equation*}
$$

- (Chambolle, Lions, 1997) Assume that \bar{u} is an optimal solution of (7) and that $u_{0} \in \operatorname{cl}\left(L^{2}(\Omega) \cap A(B V(\Omega))\right)$. For $C=\mathbb{R}_{+}$and $g(u)=\left\|A u-u_{0}\right\|^{2}-\sigma^{2}$ the latter condition means in fact that

$$
\exists u^{\prime} \in \operatorname{dom} J: g\left(u^{\prime}\right)<0 \text { (Slater regularity condition). }
$$

Thus there exists a Lagrange multiplier $\bar{\lambda} \geq 0$ such that $\bar{\lambda}\left(\left\|A \bar{u}-u_{0}\right\|-\sigma\right)=0$ and
$0 \in \partial\left(J+\bar{\lambda}\left(\left\|A \cdot-u_{0}\right\|^{2}-\sigma^{2}\right)\right)(\bar{u})=\partial J(\bar{u})+\bar{\lambda} \partial\left(\left\|A \cdot-u_{0}\right\|^{2}-\sigma^{2}\right)(\bar{u})$

$$
\Leftrightarrow-\bar{\lambda} A^{*}\left(A \bar{u}-u_{0}\right) \in \partial J(\bar{u}) .
$$

Totally Fenchel unstable functions

Consider X a nontrivial real Banach space, X^{*} its topological dual space and $X^{* *}$ its bidual space. We have

Totally Fenchel unstable functions

Consider X a nontrivial real Banach space, X^{*} its topological dual space and $X^{* *}$ its bidual space. We have

- the canonical embedding of X into $X^{* *}, ~ \wedge: ~ X \rightarrow X^{* *}$, $\left\langle x^{*}, \widehat{x}\right\rangle:=\left\langle x, x^{*}\right\rangle$, for all $x \in X$ and $x^{*} \in X^{*}$

Example 3 (totally Fenchel unstable functions). (Simons, 2007) Let $C \subset X$ be nonempty, bounded, closed and convex such that there exists an extreme point x_{0} of C which is not a support point of C. Take $f:=\delta_{x_{0}-C}$ and $g:=\delta_{C-x_{0}}$. Then f, g satisfy Fenchel duality and the pair f, g is totally Fenchel unstable. Example 4. (Borwein, 2007) Let $X=l_{2}, 1<p<2$ and $C=\left\{x \in I_{2}:\|x\|_{p} \leq 1\right\}$. Then x is an extreme point of $C \Leftrightarrow\|x\|_{p}=1$. An extreme point of C is a support point of $C \Leftrightarrow x \in I_{2(p-1)}$. Thus there are a plenty of extreme points of C which are not support points.

Totally Fenchel unstable functions

Consider X a nontrivial real Banach space, X^{*} its topological dual space and $X^{* *}$ its bidual space. We have

- the canonical embedding of X into $X^{* *}, ~ \wedge: ~ X \rightarrow X^{* *}$, $\left\langle x^{*}, \widehat{x}\right\rangle:=\left\langle x, x^{*}\right\rangle$, for all $x \in X$ and $x^{*} \in X^{*}$
- if $C \subseteq X$ is convex, then $x \in C$ is a support point of C if there exists $x^{*} \in X^{*} \backslash\{0\}$, such that $\sup \left\langle C, x^{*}\right\rangle=\left\langle x, x^{*}\right\rangle$.
 which are not support points.

Totally Fenchel unstable functions

Consider X a nontrivial real Banach space, X^{*} its topological dual space and $X^{* *}$ its bidual space. We have

- the canonical embedding of X into $X^{* *},{ }^{\wedge}: X \rightarrow X^{* *}$, $\left\langle x^{*}, \widehat{x}\right\rangle:=\left\langle x, x^{*}\right\rangle$, for all $x \in X$ and $x^{*} \in X^{*}$
- if $C \subseteq X$ is convex, then $x \in C$ is a support point of C if there exists $x^{*} \in X^{*} \backslash\{0\}$, such that $\sup \left\langle C, x^{*}\right\rangle=\left\langle x, x^{*}\right\rangle$.

Example 3 (totally Fenchel unstable functions). (Simons, 2007) Let $C \subset X$ be nonempty, bounded, closed and convex such that there exists an extreme point x_{0} of C which is not a support point of C. Take $f:=\delta_{x_{0}-C}$ and $g:=\delta_{C-x_{0}}$. Then f, g satisfy Fenchel duality and the pair f, g is totally Fenchel unstable.
\square which are not support points.

Totally Fenchel unstable functions

Consider X a nontrivial real Banach space, X^{*} its topological dual space and $X^{* *}$ its bidual space. We have

- the canonical embedding of X into $X^{* *}, ~ `: ~ X \rightarrow X^{* *}$, $\left\langle x^{*}, \widehat{x}\right\rangle:=\left\langle x, x^{*}\right\rangle$, for all $x \in X$ and $x^{*} \in X^{*}$
- if $C \subseteq X$ is convex, then $x \in C$ is a support point of C if there exists $x^{*} \in X^{*} \backslash\{0\}$, such that $\sup \left\langle C, x^{*}\right\rangle=\left\langle x, x^{*}\right\rangle$.

Example 3 (totally Fenchel unstable functions). (Simons, 2007) Let $C \subset X$ be nonempty, bounded, closed and convex such that there exists an extreme point x_{0} of C which is not a support point of C. Take $f:=\delta_{x_{0}-C}$ and $g:=\delta_{C-x_{0}}$. Then f, g satisfy Fenchel duality and the pair f, g is totally Fenchel unstable. Example 4. (Borwein, 2007) Let $X=I_{2}, 1<p<2$ and $C=\left\{x \in I_{2}:\|x\|_{p} \leq 1\right\}$. Then x is an extreme point of $C \Leftrightarrow\|x\|_{p}=1$. An extreme point of C is a support point of $C \Leftrightarrow x \in I_{2(p-1)}$. Thus there are a plenty of extreme points of C which are not support points.

Regarding the functions defined in Example 3, Simons asks whether,

$$
\text { epi } f^{*}+\mathrm{epi} g^{*} \supset X^{*} \times(0,+\infty)
$$

or, equivalently,

$$
\text { epi } f^{*}+\text { epi } g^{*}=\{(0,0)\} \cup\left(X^{*} \times(0,+\infty)\right)
$$

The reflexive case ($\mathrm{B}, 2007$)
Let $y^{*} \in X^{*}$ be arbitrary and $h, k: X^{*} \rightarrow \mathbb{R}, h\left(z^{*}\right):=f^{*}\left(z^{*}\right)$ and $k\left(z^{*}\right):=g^{*}\left(y^{*}-z^{*}\right)$. Since h and k are continuous, by the Fenchel duality theorem,

$$
-\inf _{X^{*}}[h+k]=\min _{z \in X}\left[h^{*}(z)+k^{*}(-z)\right]=\min _{X}\left[\delta_{\{0\}}-y^{*}\right]=0,
$$

so, for all $\varepsilon>0$, there exists $z^{*} \in X^{*}$ such that $h\left(z^{*}\right)+k\left(z^{*}\right) \leq \varepsilon$, thus $\left(y^{*}, \varepsilon\right) \in \operatorname{epi} f^{*}+$ epi g^{*}.
The nonreflexive case
Problem 1. (raised by Stephen Simons in his book "From Hahn-Banach
to Monotonicity", Springer-Verlag, 2008)
Let C be a nonempty, bounded, closed and convex subset of a
nonreflexive Banach space X, x_{0} be an extreme point of $C, y^{*} \in X^{*}$ and $\varepsilon>0$. Then does there always exist $M \geq 0$ such that, for all $u, v \in C$, $M\left\|u+v-2 x_{0}\right\| \geq\left\langle v-x_{0}, y^{*}\right\rangle-\varepsilon$? The answer to this question is in the affirmative if and only if

The reflexive case (B, 2007)
Let $y^{*} \in X^{*}$ be arbitrary and $h, k: X^{*} \rightarrow \mathbb{R}, h\left(z^{*}\right):=f^{*}\left(z^{*}\right)$ and $k\left(z^{*}\right):=g^{*}\left(y^{*}-z^{*}\right)$. Since h and k are continuous, by the Fenchel duality theorem,

$$
-\inf _{X^{*}}[h+k]=\min _{z \in X}\left[h^{*}(z)+k^{*}(-z)\right]=\min _{X}\left[\delta_{\{0\}}-y^{*}\right]=0,
$$

so, for all $\varepsilon>0$, there exists $z^{*} \in X^{*}$ such that $h\left(z^{*}\right)+k\left(z^{*}\right) \leq \varepsilon$, thus $\left(y^{*}, \varepsilon\right) \in$ epi $f^{*}+$ epi g^{*}.
The nonreflexive case
Problem 1. (raised by Stephen Simons in his book "From Hahn-Banach to Monotonicity", Springer-Verlag, 2008)
Let C be a nonempty, bounded, closed and convex subset of a nonreflexive Banach space X, x_{0} be an extreme point of $C, y^{*} \in X^{*}$ and $\varepsilon>0$. Then does there always exist $M \geq 0$ such that, for all $u, v \in C$, $M\left\|u+v-2 x_{0}\right\| \geq\left\langle v-x_{0}, y^{*}\right\rangle-\varepsilon$? The answer to this question is in the affirmative if and only if

$$
\text { epi } \delta_{x_{0}-C}^{*}+\text { epi } \delta_{C-x_{0}}^{*} \supset X^{*} \times(0,+\infty)
$$

Weak*-extreme points

- We recall that x_{0} is a weak*-extreme point of the bounded, closed and convex set $C \subseteq X$ if $\widehat{x_{0}}$ is an extreme point of $\mathrm{cl} \widehat{C}$, where the closure is taken with respect to the weak* topology $w\left(X^{* *}, X^{*}\right)$.

```
| If }\mp@subsup{x}{0}{}\mathrm{ is a weak*-extreme point of C, then }\mp@subsup{x}{0}{}\mathrm{ is an extreme point of
C.
>(Phelps, 1961): must the image }\widehat{x}\mathrm{ of an extreme point of }x\inB
(the unit ball of X) be an extreme point of BX** (the unit ball of
the bidual)? We recall that by the Goldstine Theorem the closure of
\widehat { B X } \text { in the weak* topology w( } X ^ { * * } , X ^ { * } ) \text { is } B _ { X * * } ^ { * } \text { (hence the}
generalization to a bounded, closed and convex set is natural)
- The first example of a Banach space and a point of its unit ball
    which is not weak*-extreme was suggested by K. de Leeuw and
    proved in (Y. Katznelson, 1961)
> In the spaces C(X), L'P}(1\leqp\leq\infty)\mathrm{ , all the extreme points of the
    corresponding unit balls are weak*-extreme points.
```

Weak*-extreme points

- We recall that x_{0} is a weak*-extreme point of the bounded, closed and convex set $C \subseteq X$ if $\widehat{x_{0}}$ is an extreme point of $\mathrm{cl} \widehat{C}$, where the closure is taken with respect to the weak* topology $w\left(X^{* *}, X^{*}\right)$.
- If x_{0} is a weak*-extreme point of C, then x_{0} is an extreme point of C.
- (Phelps, 1961): must the image \widehat{x} of an extreme point of $x \in B_{x}$ (the unit ball of X) be an extreme point of $B_{X * *}$ (the unit ball of the bidual)? We recall that by the Goldstine Theorem the closure of $\widehat{B_{X}}$ in the weak* topology $w\left(X^{* *}, X^{*}\right)$ is $B_{X=*}$ (hence the generalization to a bounded, closed and convex set is natural).
- The first example of a Banach space and a point of its unit ball which is not weak*-extreme was suggested by K. de Leeuw and proved in (Y. Katznelson, 1961)
- In the spaces $C(X), L^{p}(1 \leq p \leq \infty)$, all the extreme points of the corresponding unit balls are weak*-extreme points.

Weak*-extreme points

- We recall that x_{0} is a weak*-extreme point of the bounded, closed and convex set $C \subseteq X$ if $\widehat{x_{0}}$ is an extreme point of $\mathrm{cl} \widehat{C}$, where the closure is taken with respect to the weak* topology $w\left(X^{* *}, X^{*}\right)$.
- If x_{0} is a weak*-extreme point of C, then x_{0} is an extreme point of C.
- (Phelps, 1961): must the image \widehat{x} of an extreme point of $x \in B_{X}$ (the unit ball of X) be an extreme point of $B_{X^{* *}}$ (the unit ball of the bidual)? We recall that by the Goldstine Theorem the closure of $\widehat{B_{X}}$ in the weak* topology $w\left(X^{* *}, X^{*}\right)$ is $B_{X^{* *}}$ (hence the generalization to a bounded, closed and convex set is natural).
- The first example of a Banach space and a point of its unit ball which is not weak*-extreme was suggested by K. de Leeuw and proved in (Y. Katznelson, 1961)
- In the spaces $C(X), L^{p}(1 \leq p \leq \infty)$, all the extreme points of the corresponding unit balls are weak*-extreme points.

Weak*-extreme points

- We recall that x_{0} is a weak*-extreme point of the bounded, closed and convex set $C \subseteq X$ if $\widehat{x_{0}}$ is an extreme point of cl \widehat{C}, where the closure is taken with respect to the weak* topology $w\left(X^{* *}, X^{*}\right)$.
- If x_{0} is a weak*-extreme point of C, then x_{0} is an extreme point of C.
- (Phelps, 1961): must the image \hat{x} of an extreme point of $x \in B_{X}$ (the unit ball of X) be an extreme point of $B_{X^{* *}}$ (the unit ball of the bidual)? We recall that by the Goldstine Theorem the closure of $\widehat{B_{X}}$ in the weak* topology $w\left(X^{* *}, X^{*}\right)$ is $B_{X^{* *}}$ (hence the generalization to a bounded, closed and convex set is natural).
- The first example of a Banach space and a point of its unit ball which is not weak*-extreme was suggested by K. de Leeuw and proved in (Y. Katznelson, 1961).
 corresponding unit balls are weak*-extreme points.

Weak*-extreme points

- We recall that x_{0} is a weak*-extreme point of the bounded, closed and convex set $C \subseteq X$ if $\widehat{x_{0}}$ is an extreme point of cl \widehat{C}, where the closure is taken with respect to the weak* topology $w\left(X^{* *}, X^{*}\right)$.
- If x_{0} is a weak*-extreme point of C, then x_{0} is an extreme point of C.
- (Phelps, 1961): must the image \hat{x} of an extreme point of $x \in B_{X}$ (the unit ball of X) be an extreme point of $B_{X^{* *}}$ (the unit ball of the bidual)? We recall that by the Goldstine Theorem the closure of $\widehat{B_{X}}$ in the weak* topology $w\left(X^{* *}, X^{*}\right)$ is $B_{X^{* *}}$ (hence the generalization to a bounded, closed and convex set is natural).
- The first example of a Banach space and a point of its unit ball which is not weak*-extreme was suggested by K. de Leeuw and proved in (Y. Katznelson, 1961).
- In the spaces $C(X), L^{p}(1 \leq p \leq \infty)$, all the extreme points of the corresponding unit balls are weak*-extreme points.

The solution of the Problem 1 (B., Csetnek, Proc. of AMS, 2009) For $f: X \rightarrow \overline{\mathbb{R}}$ we define $\widehat{f}: X^{* *} \rightarrow \overline{\mathbb{R}}$ by $\widehat{f}\left(x^{* *}\right)=f(x)$, if $x^{* *}=\widehat{x} \in \widehat{X}$ and $\widehat{f}\left(x^{* *}\right)=+\infty$, otherwise.
Lemma 1. We assume that f is convex with $\operatorname{dom} f \neq \emptyset$ and that $\mathrm{cl}(\hat{f})$ is proper, where the lower semicontinuous hull is considered with respect to the topology $w\left(X^{* *}, X^{*}\right)$. Then $f^{* *}=\mathrm{cl}(f)$. Remark 2. If $C \subseteq X$ is a nonempty convex set, then by Lemma 1 follows that $\delta_{C}^{* *}=\delta_{\mathrm{cl}(\widehat{C})}$, where the closure is considered in the topology $\omega\left(X^{* *}, X^{*}\right)$. Thus Lemma 1 generalizes a result obtained in (Chakrabarty, Shunmugaraj, Zălinescu, 2007)
Consider $f, g: X \rightarrow \overline{\mathbb{R}}$ proper convex functions with the following properties

The solution of the Problem 1 (B., Csetnek, Proc. of AMS, 2009)
For $f: X \rightarrow \overline{\mathbb{R}}$ we define $\widehat{f}: X^{* *} \rightarrow \overline{\mathbb{R}}$ by $\widehat{f}\left(x^{* *}\right)=f(x)$, if $x^{* *}=\widehat{x} \in \widehat{X}$ and $\widehat{f}\left(x^{* *}\right)=+\infty$, otherwise.
Lemma 1. We assume that f is convex with $\operatorname{dom} f \neq \emptyset$ and that $\mathrm{cl}(\widehat{f})$ is proper, where the lower semicontinuous hull is considered with respect to the topology $w\left(X^{* *}, X^{*}\right)$. Then $f^{* *}=\mathrm{cl}(\widehat{f})$.
 properties

The solution of the Problem 1 (B., Csetnek, Proc. of AMS, 2009)
For $f: X \rightarrow \overline{\mathbb{R}}$ we define $\widehat{f}: X^{* *} \rightarrow \overline{\mathbb{R}}$ by $\widehat{f}\left(x^{* *}\right)=f(x)$, if $x^{* *}=\widehat{x} \in \widehat{X}$ and $\widehat{f}\left(x^{* *}\right)=+\infty$, otherwise.
Lemma 1. We assume that f is convex with $\operatorname{dom} f \neq \emptyset$ and that $\mathrm{cl}(\widehat{f})$ is proper, where the lower semicontinuous hull is considered with respect to the topology $w\left(X^{* *}, X^{*}\right)$. Then $f^{* *}=\mathrm{cl}(\widehat{f})$.
Remark 2. If $C \subseteq X$ is a nonempty convex set, then by Lemma 1 follows that $\delta_{C}^{* *}=\delta_{c l(\widehat{C})}$, where the closure is considered in the topology $\omega\left(X^{* *}, X^{*}\right)$. Thus Lemma 1 generalizes a result obtained in (Chakrabarty, Shunmugaraj, Zălinescu, 2007).
Consider $f, g: X \rightarrow \overline{\mathbb{R}}$ proper convex functions with the following properties

The solution of the Problem 1 (B., Csetnek, Proc. of AMS, 2009)
For $f: X \rightarrow \overline{\mathbb{R}}$ we define $\widehat{f}: X^{* *} \rightarrow \overline{\mathbb{R}}$ by $\widehat{f}\left(x^{* *}\right)=f(x)$, if $x^{* *}=\widehat{x} \in \widehat{X}$ and $\widehat{f}\left(x^{* *}\right)=+\infty$, otherwise.
Lemma 1. We assume that f is convex with $\operatorname{dom} f \neq \emptyset$ and that $\mathrm{cl}(\widehat{f})$ is proper, where the lower semicontinuous hull is considered with respect to the topology $w\left(X^{* *}, X^{*}\right)$. Then $f^{* *}=\mathrm{cl}(\widehat{f})$.
Remark 2. If $C \subseteq X$ is a nonempty convex set, then by Lemma 1 follows that $\delta_{C}^{* *}=\delta_{c l(\widehat{C})}$, where the closure is considered in the topology $\omega\left(X^{* *}, X^{*}\right)$. Thus Lemma 1 generalizes a result obtained in (Chakrabarty, Shunmugaraj, Zălinescu, 2007).
Consider $f, g: X \rightarrow \overline{\mathbb{R}}$ proper convex functions with the following properties

- $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$

The solution of the Problem 1 (B., Csetnek, Proc. of AMS, 2009)
For $f: X \rightarrow \overline{\mathbb{R}}$ we define $\widehat{f}: X^{* *} \rightarrow \overline{\mathbb{R}}$ by $\widehat{f}\left(x^{* *}\right)=f(x)$, if $x^{* *}=\widehat{x} \in \widehat{X}$ and $\widehat{f}\left(x^{* *}\right)=+\infty$, otherwise.
Lemma 1. We assume that f is convex with $\operatorname{dom} f \neq \emptyset$ and that $\mathrm{cl}(\hat{f})$ is proper, where the lower semicontinuous hull is considered with respect to the topology $w\left(X^{* *}, X^{*}\right)$. Then $f^{* *}=\mathrm{cl}(\widehat{f})$.
Remark 2. If $C \subseteq X$ is a nonempty convex set, then by Lemma 1 follows that $\delta_{C}^{* *}=\delta_{c l(\widehat{C})}$, where the closure is considered in the topology $\omega\left(X^{* *}, X^{*}\right)$. Thus Lemma 1 generalizes a result obtained in (Chakrabarty, Shunmugaraj, Zălinescu, 2007).
Consider $f, g: X \rightarrow \overline{\mathbb{R}}$ proper convex functions with the following properties

- $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$
- $\mathrm{cl}(\widehat{f})$ and $\mathrm{cl}(\widehat{g})$ are proper
$\Rightarrow \operatorname{dom}\left(f^{*}\right)+\operatorname{dom}\left(g^{*}\right)=X^{*}$

The solution of the Problem 1 (B., Csetnek, Proc. of AMS, 2009)
For $f: X \rightarrow \overline{\mathbb{R}}$ we define $\widehat{f}: X^{* *} \rightarrow \overline{\mathbb{R}}$ by $\widehat{f}\left(x^{* *}\right)=f(x)$, if $x^{* *}=\widehat{x} \in \widehat{X}$ and $\widehat{f}\left(x^{* *}\right)=+\infty$, otherwise.
Lemma 1. We assume that f is convex with $\operatorname{dom} f \neq \emptyset$ and that $\mathrm{cl}(\hat{f})$ is proper, where the lower semicontinuous hull is considered with respect to the topology $w\left(X^{* *}, X^{*}\right)$. Then $f^{* *}=\mathrm{cl}(\widehat{f})$.
Remark 2. If $C \subseteq X$ is a nonempty convex set, then by Lemma 1 follows that $\delta_{C}^{* *}=\delta_{c l(\widehat{C})}$, where the closure is considered in the topology $\omega\left(X^{* *}, X^{*}\right)$. Thus Lemma 1 generalizes a result obtained in (Chakrabarty, Shunmugaraj, Zălinescu, 2007).
Consider $f, g: X \rightarrow \overline{\mathbb{R}}$ proper convex functions with the following properties

- $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$
- $\mathrm{cl}(\widehat{f})$ and $\mathrm{cl}(\widehat{g})$ are proper
- $f^{* *}(0)+g^{* *}(0) \geq 0$

The solution of the Problem 1 (B., Csetnek, Proc. of AMS, 2009)
For $f: X \rightarrow \overline{\mathbb{R}}$ we define $\widehat{f}: X^{* *} \rightarrow \overline{\mathbb{R}}$ by $\widehat{f}\left(x^{* *}\right)=f(x)$, if $x^{* *}=\widehat{x} \in \widehat{X}$ and $\widehat{f}\left(x^{* *}\right)=+\infty$, otherwise.
Lemma 1. We assume that f is convex with $\operatorname{dom} f \neq \emptyset$ and that $\mathrm{cl}(\hat{f})$ is proper, where the lower semicontinuous hull is considered with respect to the topology $w\left(X^{* *}, X^{*}\right)$. Then $f^{* *}=\mathrm{cl}(\widehat{f})$.
Remark 2. If $C \subseteq X$ is a nonempty convex set, then by Lemma 1 follows that $\delta_{C}^{* *}=\delta_{c l(\widehat{C})}$, where the closure is considered in the topology $\omega\left(X^{* *}, X^{*}\right)$. Thus Lemma 1 generalizes a result obtained in (Chakrabarty, Shunmugaraj, Zălinescu, 2007).
Consider $f, g: X \rightarrow \overline{\mathbb{R}}$ proper convex functions with the following properties

- $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$
- $\mathrm{cl}(\widehat{f})$ and $\mathrm{cl}(\widehat{g})$ are proper
- $f^{* *}(0)+g^{* *}(0) \geq 0$
- $\operatorname{dom}\left(f^{*}\right)+\operatorname{dom}\left(g^{*}\right)=X^{*}$.

Theorem 1. We have $X^{*} \times(0, \infty) \subset$ epi $f^{*}+$ epi g^{*} if and only if $\operatorname{dom}(\mathrm{cl}(\widehat{f})) \cap \operatorname{dom}(\mathrm{cl}(\widehat{g}))=\{0\}$.

Now consider

$\Rightarrow C$ a nonempty, bounded and convex subset of the Banach space X and $x_{0} \in C$
$\Rightarrow f:=\delta_{A}, g:=\delta_{B}$, where $A:=x_{0}-C, B:=C-x_{0}$.
In this case we have

Theorem 2. We have $X^{*} \times(0, \infty) \subset$ epi $f^{*}+$ epi g^{*} if and only if x_{0} is a weak*-extreme point of C. Remark 3. The closedness of the set C, requested in (Simons, 2008), is not needed anymore for this result.

Theorem 1. We have $X^{*} \times(0, \infty) \subset$ epi $f^{*}+$ epi g^{*} if and only if $\operatorname{dom}(\mathrm{cl}(\widehat{f})) \cap \operatorname{dom}(\mathrm{cl}(\widehat{g}))=\{0\}$.
Now consider

- C a nonempty, bounded and convex subset of the Banach space X and $x_{0} \in C$

In this case we have

Theorem 2. We have $X^{*} \times(0, \infty) \subset$ epi $f^{*}+$ epi g^{*} if and only if x_{0} is a weak*-extreme point of C.
Remark 3. The closedness of the set C, requested in (Simons, 2008), is not needed anymore for this result.

Theorem 1. We have $X^{*} \times(0, \infty) \subset$ epi $f^{*}+$ epi g^{*} if and only if $\operatorname{dom}(\mathrm{cl}(\widehat{f})) \cap \operatorname{dom}(\mathrm{cl}(\widehat{g}))=\{0\}$.
Now consider

- C a nonempty, bounded and convex subset of the Banach space X and $x_{0} \in C$
- $f:=\delta_{A}, g:=\delta_{B}$, where $A:=x_{0}-C, B:=C-x_{0}$.

In this case we have

Theorem 2. x_{0} is a weak*-extreme point of C
Remark 3. The closedness of the set C, requested in (Simons, 2008), is not needed anymore for this result.

Theorem 1. We have $X^{*} \times(0, \infty) \subset$ epi $f^{*}+$ epi g^{*} if and only if $\operatorname{dom}(\mathrm{cl}(\widehat{f})) \cap \operatorname{dom}(\mathrm{cl}(\widehat{g}))=\{0\}$.
Now consider

- C a nonempty, bounded and convex subset of the Banach space X and $x_{0} \in C$
- $f:=\delta_{A}, g:=\delta_{B}$, where $A:=x_{0}-C, B:=C-x_{0}$.

In this case we have

- $f^{*}=\sup \langle A, \cdot\rangle, g^{*}=\sup \langle B, \cdot\rangle, \operatorname{dom}\left(f^{*}\right)=\operatorname{dom}\left(g^{*}\right)=X^{*}$

argument, $g^{* *}=\delta_{c l(\widehat{B})}$

Theorem 1. We have $X^{*} \times(0, \infty) \subset$ epi $f^{*}+$ epi g^{*} if and only if $\operatorname{dom}(\mathrm{cl}(\widehat{f})) \cap \operatorname{dom}(\mathrm{cl}(\widehat{g}))=\{0\}$.

Now consider

- C a nonempty, bounded and convex subset of the Banach space X and $x_{0} \in C$
- $f:=\delta_{A}, g:=\delta_{B}$, where $A:=x_{0}-C, B:=C-x_{0}$.

In this case we have

- $f^{*}=\sup \langle A, \cdot\rangle, g^{*}=\sup \langle B, \cdot\rangle, \operatorname{dom}\left(f^{*}\right)=\operatorname{dom}\left(g^{*}\right)=X^{*}$
$-\widehat{f}=\delta_{\widehat{A}}, \operatorname{cl}(\widehat{f})=\delta_{\operatorname{cl}(\widehat{A})}$, thus $f^{* *}=\delta_{\mathrm{cl}(\widehat{A})}$. By the same argument, $g^{* *}=\delta_{\mathrm{cl}(\widehat{B})}$

Theorem 2. We have X x_{0} is a weak*-extreme point of C. Remark 3. The closedness of the set C, requested in (Simons, 2008), is not needed anymore for this result.

Theorem 1. We have $X^{*} \times(0, \infty) \subset$ epi $f^{*}+$ epi g^{*} if and only if $\operatorname{dom}(\mathrm{cl}(\widehat{f})) \cap \operatorname{dom}(\mathrm{cl}(\widehat{g}))=\{0\}$.

Now consider

- C a nonempty, bounded and convex subset of the Banach space X and $x_{0} \in C$
- $f:=\delta_{A}, g:=\delta_{B}$, where $A:=x_{0}-C, B:=C-x_{0}$.

In this case we have

- $f^{*}=\sup \langle A, \cdot\rangle, g^{*}=\sup \langle B, \cdot\rangle, \operatorname{dom}\left(f^{*}\right)=\operatorname{dom}\left(g^{*}\right)=X^{*}$
$-\widehat{f}=\delta_{\widehat{A}}, \operatorname{cl}(\widehat{f})=\delta_{\operatorname{cl}(\widehat{A})}$, thus $f^{* *}=\delta_{\mathrm{cl}(\widehat{A})}$. By the same argument, $g^{* *}=\delta_{c l}(\widehat{B})$
Theorem 2. We have $X^{*} \times(0, \infty) \subset$ epi $f^{*}+$ epi g^{*} if and only if x_{0} is a weak*-extreme point of C.
Remark 3. The closedness of the set C, requested in (Simons, 2008), is not needed anymore for this result.

Theorem 1. We have $X^{*} \times(0, \infty) \subset$ epi $f^{*}+$ epi g^{*} if and only if $\operatorname{dom}(\mathrm{cl}(\widehat{f})) \cap \operatorname{dom}(\mathrm{cl}(\widehat{g}))=\{0\}$.

Now consider

- C a nonempty, bounded and convex subset of the Banach space X and $x_{0} \in C$
- $f:=\delta_{A}, g:=\delta_{B}$, where $A:=x_{0}-C, B:=C-x_{0}$.

In this case we have

- $f^{*}=\sup \langle A, \cdot\rangle, g^{*}=\sup \langle B, \cdot\rangle, \operatorname{dom}\left(f^{*}\right)=\operatorname{dom}\left(g^{*}\right)=X^{*}$
$-\widehat{f}=\delta_{\widehat{A}}, \operatorname{cl}(\widehat{f})=\delta_{\operatorname{cl}(\widehat{A})}$, thus $f^{* *}=\delta_{\mathrm{cl}(\widehat{A})}$. By the same argument, $g^{* *}=\delta_{c l}(\widehat{B})$
Theorem 2. We have $X^{*} \times(0, \infty) \subset$ epi $f^{*}+$ epi g^{*} if and only if x_{0} is a weak*-extreme point of C.
Remark 3. The closedness of the set C, requested in (Simons, 2008), is not needed anymore for this result.

The finite dimensional case

Problem 2. (raised by Stephen Simons in his book "From Hahn-Banach to Monotonicity", Springer-Verlag, 2008)
Do there exist a nonzero finite dimensional Banach space X and $f, g: X \rightarrow \overline{\mathbb{R}}$ proper and convex functions such that the pair f, g is totally Fenchel unstable?

The solution of the Problem 2 (B., Löhne, Math. Prog., to appear) For all $x^{*}, y^{*} \in X^{*}$ it holds

Therefore, a pair f, g of proper and convex functions is totally Fenchel unstable if and only if

The finite dimensional case

Problem 2. (raised by Stephen Simons in his book "From Hahn-Banach to Monotonicity", Springer-Verlag, 2008)
Do there exist a nonzero finite dimensional Banach space X and $f, g: X \rightarrow \overline{\mathbb{R}}$ proper and convex functions such that the pair f, g is totally Fenchel unstable?

The solution of the Problem 2 (B., Löhne, Math. Prog., to appear) For all $x^{*}, y^{*} \in X^{*}$ it holds

$$
\begin{equation*}
(f+g)^{*}\left(x^{*}\right) \leq f^{*}\left(x^{*}-y^{*}\right)+g^{*}\left(y^{*}\right) . \tag{8}
\end{equation*}
$$

Therefore, a pair f, g of proper and convex functions is totally Fenchel unstable if and only if

The finite dimensional case

Problem 2. (raised by Stephen Simons in his book "From Hahn-Banach to Monotonicity", Springer-Verlag, 2008)
Do there exist a nonzero finite dimensional Banach space X and $f, g: X \rightarrow \overline{\mathbb{R}}$ proper and convex functions such that the pair f, g is totally Fenchel unstable?

The solution of the Problem 2 (B., Löhne, Math. Prog., to appear) For all $x^{*}, y^{*} \in X^{*}$ it holds

$$
\begin{equation*}
(f+g)^{*}\left(x^{*}\right) \leq f^{*}\left(x^{*}-y^{*}\right)+g^{*}\left(y^{*}\right) . \tag{8}
\end{equation*}
$$

Therefore, a pair f, g of proper and convex functions is totally Fenchel unstable if and only if

$$
\begin{equation*}
\exists y^{*} \in X^{*}:(f+g)^{*}(0)=f^{*}\left(-y^{*}\right)+g^{*}\left(y^{*}\right) . \tag{9}
\end{equation*}
$$

$\forall x^{*} \in X^{*} \backslash\{0\}, \forall y^{*} \in X^{*}:(f+g)^{*}\left(x^{*}\right)<f^{*}\left(x^{*}-y^{*}\right)+g^{*}\left(y^{*}\right)$.

Theorem 2. There are no proper convex functions $f, g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ such that the pair f, g is totally Fenchel unstable.
Comment. The situation below is not possible:

Interpretation of the result. If two proper and convex functions $f, g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ satisfy Fenchel duality, then there exists at least one element $x^{*} \in \mathbb{R}^{n} \backslash\{0\}$, such that $f-\left\langle x^{*}, \cdot\right\rangle$ and g (or f and $\left.g-\left\langle x^{*}, \cdot\right\rangle\right)$ satisfy Fenchel duality, too.

Comment. We must have something like:

Comment. More precisely, for the concrete situation considered in the previous picture the following behavior can be noticed:

