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Preliminary notions and results
Consider

I X a separated locally convex space and its topological dual
space X ∗ endowed with the weak∗ topology ω(X ∗,X );

I for C ⊆ X convex, core(C), the algebraic interior of C . One
has x ∈ core(C) if and only if ∪λ>0 λ(C − x) = X ;

I for C ⊆ X convex, sqri(C), the strong-quasi relative interior
of C . One has x ∈ sqri(C) if and only if ∪λ>0 λ(C − x) is a
closed linear subspace of X ;

I for a given set C ⊆ X , the indicator function of C ,
δC : X → R, defined as δC (x) = 0, if x ∈ C and
δC (x) = +∞, otherwise.

3 Radu Ioan Boţ On Fenchel Duality and Some of Its Variants



Preliminaries Regularity conditions Convex regularization Totally Fenchel unstable functions The finite dimensional case

Preliminary notions and results
Consider

I X a separated locally convex space and its topological dual
space X ∗ endowed with the weak∗ topology ω(X ∗,X );

I for C ⊆ X convex, core(C), the algebraic interior of C . One
has x ∈ core(C) if and only if ∪λ>0 λ(C − x) = X ;

I for C ⊆ X convex, sqri(C), the strong-quasi relative interior
of C . One has x ∈ sqri(C) if and only if ∪λ>0 λ(C − x) is a
closed linear subspace of X ;

I for a given set C ⊆ X , the indicator function of C ,
δC : X → R, defined as δC (x) = 0, if x ∈ C and
δC (x) = +∞, otherwise.

3 Radu Ioan Boţ On Fenchel Duality and Some of Its Variants



Preliminaries Regularity conditions Convex regularization Totally Fenchel unstable functions The finite dimensional case

Preliminary notions and results
Consider

I X a separated locally convex space and its topological dual
space X ∗ endowed with the weak∗ topology ω(X ∗,X );

I for C ⊆ X convex, core(C), the algebraic interior of C . One
has x ∈ core(C) if and only if ∪λ>0 λ(C − x) = X ;

I for C ⊆ X convex, sqri(C), the strong-quasi relative interior
of C . One has x ∈ sqri(C) if and only if ∪λ>0 λ(C − x) is a
closed linear subspace of X ;

I for a given set C ⊆ X , the indicator function of C ,
δC : X → R, defined as δC (x) = 0, if x ∈ C and
δC (x) = +∞, otherwise.

3 Radu Ioan Boţ On Fenchel Duality and Some of Its Variants



Preliminaries Regularity conditions Convex regularization Totally Fenchel unstable functions The finite dimensional case

Preliminary notions and results
Consider

I X a separated locally convex space and its topological dual
space X ∗ endowed with the weak∗ topology ω(X ∗,X );

I for C ⊆ X convex, core(C), the algebraic interior of C . One
has x ∈ core(C) if and only if ∪λ>0 λ(C − x) = X ;

I for C ⊆ X convex, sqri(C), the strong-quasi relative interior
of C . One has x ∈ sqri(C) if and only if ∪λ>0 λ(C − x) is a
closed linear subspace of X ;

I for a given set C ⊆ X , the indicator function of C ,
δC : X → R, defined as δC (x) = 0, if x ∈ C and
δC (x) = +∞, otherwise.

3 Radu Ioan Boţ On Fenchel Duality and Some of Its Variants



Preliminaries Regularity conditions Convex regularization Totally Fenchel unstable functions The finite dimensional case

For f : X → R we consider the following notions
I domain: dom f = {x ∈ X : f (x) < +∞};
I f is proper: f (x) > −∞ ∀x ∈ X and dom f 6= ∅;
I epigraph: epi f = {(x , r) ∈ X × R : f (x) ≤ r};
I lower semicontinuous envelope of f : the function

cl(f ) : X → R defined by epi(cl(f )) = cl(epi f );
I conjugate function of f : f ∗ : X ∗ → R,

f ∗(x∗) = sup
{
〈x , x∗〉 − f (x) : x ∈ X

}
;

I for ε ≥ 0 and x̄ ∈ X with f (x̄) ∈ R the (convex)
ε-subdifferential of f at x̄ :
∂εf (x̄) = {x∗ ∈ X ∗ : f (x)− f (x̄) ≥ 〈x∗, x − x̄〉 − ε ∀x ∈ X};
otherwise, ∂εf (x̄) = ∅;

I the (convex) subdifferential of f at x̄ ∈ X : ∂f (x̄) := ∂0f (x̄).
I When f , g : X → R are proper functions, their infimal convolution is

defined by f�g : X → R, f�g(x) = inf{f (x − y) + g(y) : y ∈ X}.
I We say that f�g is exact at x ∈ X if there exists some y ∈ X for

which the infimum is attained.
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I Consider f , g : X → R two arbitrary proper convex functions and
the following convex optimization problem

(P) inf
x∈X
{f (x) + g(x)}.

I The Fenchel dual problem to (P) is
(D) sup

z∗∈X∗
{−f ∗(−z∗)− g∗(z∗)}.

We say that
I the pair f , g satisfy stable Fenchel duality if for all x∗ ∈ X∗, there

exists z∗ ∈ X∗ such that (f + g)∗(x∗) = f ∗(x∗ − z∗) + g∗(z∗)
I the pair f , g satisfy the classical Fenchel duality if there exists

z∗ ∈ X∗ such that (f + g)∗(0) = f ∗(−z∗) + g∗(z∗)
I the pair f , g is totally Fenchel unstable if f , g satisfy Fenchel duality

but y∗, z∗ ∈ X∗ and
(f + g)∗(y∗ + z∗) = f ∗(y∗) + g∗(z∗) =⇒ y∗ + z∗ = 0.

If the pair f , g satisfy stable Fenchel duality, then f , g satisfy Fenchel duality.
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One always has

epi f ∗ + epi g∗ ⊆ epi(f + g)∗.
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The pair f , g satisfy stable Fenchel duality if and only if

epi(f + g)∗ = epi f ∗ + epi g∗.
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The pair f , g satisfy Fenchel duality if and only if

epi(f + g)∗ ∩ ({0} × R) = (epi f ∗ + epi g∗) ∩ ({0} × R).
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The pair f , g is totally Fenchel unstable if and only if

epi(f + g)∗ ∩ ({0} × R) = (epi f ∗ + epi g∗) ∩ ({0} × R)

and there is no x∗ ∈ X ∗ \ {0} such that

epi(f + g)∗ ∩ ({x∗} × R) = (epi f ∗ + epi g∗) ∩ ({x∗} × R).
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Regularity conditions for Fenchel duality
Assume that f , g : X → R are proper convex functions such that
dom f ∩ dom g 6= ∅. In the literature there exist different classes of
regularity conditions for stable Fenchel duality:
(i) f is continuous at x ′ ∈ dom f ∩ dom g ;

Interior point regularity conditions:
(ii) 0 ∈ int(dom f − dom g);
(iii) 0 ∈ core(dom f − dom g) (Rockafellar, 1974);
(iv) 0 ∈ sqri(dom f − dom g) (Attouch, Brézis, 1986, Zălinescu,

1987).

Closedness-type regularity condition:
(v) epi f ∗ + epi g∗ is closed in the product topology of

(X ∗, ω(X ∗,X ))× R (B., Wanka, 2006, Burachik, Jeyakumar,
2006).
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We have that
I condition (i)⇒ stable Fenchel duality;
I if f , g are lower semicontinuous and X is a Fréchet space,

then (ii)⇔ (iii)⇒ (iv)⇒ stable Fenchel duality;
I if f , g are lower semicontinuous, then (v)⇔ stable Fenchel

duality.
Example 1. Let X = R, f (x) = 1

2 x2, if x ≥ 0, and f (x) = +∞,
otherwise, and g = δ(−∞,0]. Then (i)− (iv) are not fulfilled, while (v) is
valid.
Consider the following regularity condition for Fenchel duality:

(vi) f ∗�g∗ is lower semicontinuous and exact at 0 (B., Wanka, 2006).

If f , g are lower semicontinuous, then (v)⇒ (vi)⇒ Fenchel duality.
Example 2. Let X = R2, C =

{
(x1, x2)T ∈ R2 : x1 ≥ 0

}
,

D =
{

(x1, x2)T ∈ R2 : 2x1 + x2
2 ≤ 0

}
, f = δC and g = δD .

Thus f , g satisfy Fenchel duality, f , g doesn’t satisfy stable Fenchel
duality and the pair f , g is not totally Fenchel unstable.
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Preliminaries Regularity conditions Convex regularization Totally Fenchel unstable functions The finite dimensional case

Let f , g : X → R be proper functions with dom f ∩ dom g 6= ∅.
Algebraic result:

(f + g)∗(x∗) = min
y∗∈X∗

{f ∗(x∗ − y∗) + g∗(y∗)} ∀x∗ ∈ X∗ (1)

if and only if

inf
x∈X

[f (x)+g(x)−〈x∗, x〉] = max
y∗∈X∗

{−f ∗(x∗−y∗)−g∗(y∗)} ∀x∗ ∈ X∗ (2)

if and only if

∂ε(f + g)(x) =
⋃

ε1,ε2≥0
ε1+ε2=ε

(∂ε1f (x) + ∂ε2g(x)) ∀x ∈ X ∀ε ≥ 0. (3)

On the other hand, (3) implies (take ε = 0)

∂(f + g)(x) = ∂f (x) + ∂g(x) ∀x ∈ X . (4)

Comment. Conditions that guarantee stable strong duality for
(P)− (D) automatically ensure the fulfillment of (4).
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Preliminaries Regularity conditions Convex regularization Totally Fenchel unstable functions The finite dimensional case

Two convex regularization schemes
I (Burger, Osher, 2004) Take U a Banach space, H a Hilbert space,
K : U → H a linear continuous operator and the ill-posed operator
equation

Ku = f , (5)
where f ∈ R(K).
Let J : U → R∪{+∞} be a convex and lower semicontinuous function.
Then ū ∈ U is called J-minimizing solution for (5) if it is an optimal
solution of

inf
Ku=f

J(u).

Source condition: the existence of Lagrange multiplier, i.e. ∃w̄ ∈ H with
K∗w ∈ ∂J(ū) ⇒ ū is a J-minimizing solution for (5).
Viceversa, if ū is a J-minimizing solution for (5) and

f ∈ sqri(K (dom J)) (interior-point regularity condition),

then there exists a Lagrange multiplier w̄ ∈ H with 〈w̄ , f − Kū〉 = 0 and
0 ∈ ∂(J − K∗w̄)(ū)⇔ K∗w̄ ∈ ∂J(ū).
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Then ū ∈ U is called J-minimizing solution for (5) if it is an optimal
solution of

inf
Ku=f

J(u).

Source condition: the existence of Lagrange multiplier, i.e. ∃w̄ ∈ H with
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Then ū ∈ U is called J-minimizing solution for (5) if it is an optimal
solution of

inf
Ku=f

J(u).

Source condition: the existence of Lagrange multiplier, i.e. ∃w̄ ∈ H with
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Then ū ∈ U is called J-minimizing solution for (5) if it is an optimal
solution of

inf
Ku=f

J(u).

Source condition: the existence of Lagrange multiplier, i.e. ∃w̄ ∈ H with
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K∗w ∈ ∂J(ū) ⇒ ū is a J-minimizing solution for (5).
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Preliminaries Regularity conditions Convex regularization Totally Fenchel unstable functions The finite dimensional case

I (Chambolle, Lions, 1997) On Ω ⊆ R2 a bounded and piecewise
smooth open set consider the image recovery problem

u0 = Au + n.

Here:
I u0 is the image;
I u is the transformed image;
I n is the random noise. It fulfills

∫
Ω n = 0 and

∫
Ω |n|2 = σ2;

I A : L2(Ω)→ L2(Ω) is a linear and continuous operator.
Problem: Knowing u0, one has to recover u.
I (Rudin, Osher, Fatemi, 1992): Solve the constrained
minimization problem:

inf∫
Ω

Au=
∫

Ω
u0,∫

Ω
|Au−u0|2=σ2

|Du|(Ω). (6)
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Define J : Lp(Ω)→ R ∪ {+∞},
J(u) = |Du|(Ω), if u ∈ BV (Ω), J(u) = +∞, otherwise.

Under some natural assumptions one can prove that (Chambolle,
Lions, 1997) (6) is equivalent to

inf∫
Ω
|Au−u0|2≤σ2

J(u). (7)

I (Chambolle, Lions, 1997) Assume that ū is an optimal solution
of (7) and that u0 ∈ cl(L2(Ω) ∩ A(BV (Ω))). For C = R+ and
g(u) = ‖Au − u0‖2 − σ2 the latter condition means in fact that

∃u′ ∈ dom J : g(u′) < 0 (Slater regularity condition).

Thus there exists a Lagrange multiplier λ̄ ≥ 0 such that
λ̄(‖Aū − u0‖ − σ) = 0 and
0 ∈ ∂(J + λ̄(‖A ·−u0‖2−σ2))(ū) = ∂J(ū)+ λ̄∂(‖A ·−u0‖2−σ2)(ū)

⇔ −λ̄A∗(Aū − u0) ∈ ∂J(ū).
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Totally Fenchel unstable functions
Consider X a nontrivial real Banach space, X ∗ its topological dual
space and X ∗∗ its bidual space. We have

I the canonical embedding of X into X ∗∗, ̂: X → X ∗∗,
〈x∗, x̂〉 := 〈x , x∗〉, for all x ∈ X and x∗ ∈ X ∗

I if C ⊆ X is convex, then x ∈ C is a support point of C if
there exists x∗ ∈ X ∗ \ {0}, such that sup〈C , x∗〉 = 〈x , x∗〉.

Example 3 (totally Fenchel unstable functions). (Simons,
2007) Let C ⊂ X be nonempty, bounded, closed and convex such
that there exists an extreme point x0 of C which is not a support
point of C . Take f := δx0−C and g := δC−x0 . Then f , g satisfy
Fenchel duality and the pair f , g is totally Fenchel unstable.
Example 4. (Borwein, 2007) Let X = l2, 1 < p < 2 and
C = {x ∈ l2 : ‖x‖p ≤ 1}. Then x is an extreme point of
C ⇔ ‖x‖p = 1. An extreme point of C is a support point of
C ⇔ x ∈ l2(p−1). Thus there are a plenty of extreme points of C
which are not support points.
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Regarding the functions defined in Example 3, Simons asks
whether,

epi f ∗ + epi g∗ ⊃ X ∗ × (0,+∞)

or, equivalently,

epi f ∗ + epi g∗ = {(0, 0)} ∪ (X ∗ × (0,+∞)).
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The reflexive case (B, 2007)
Let y∗ ∈ X∗ be arbitrary and h, k : X∗ → R, h(z∗) := f ∗(z∗) and
k(z∗) := g∗(y∗ − z∗). Since h and k are continuous, by the Fenchel
duality theorem,

− inf
X∗

[h + k] = min
z∈X

[h∗(z) + k∗(−z)] = min
X

[δ{0} − y∗] = 0,

so, for all ε > 0, there exists z∗ ∈ X∗ such that h(z∗) + k(z∗) ≤ ε, thus
(y∗, ε) ∈ epi f ∗ + epi g∗.
The nonreflexive case
Problem 1. (raised by Stephen Simons in his book "From Hahn-Banach
to Monotonicity", Springer-Verlag, 2008)
Let C be a nonempty, bounded, closed and convex subset of a
nonreflexive Banach space X , x0 be an extreme point of C , y∗ ∈ X∗ and
ε > 0. Then does there always exist M ≥ 0 such that, for all u, v ∈ C ,
M‖u + v − 2x0‖ ≥ 〈v − x0, y∗〉 − ε? The answer to this question is in the
affirmative if and only if

epi δ∗x0−C + epi δ∗C−x0
⊃ X∗ × (0,+∞).
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Weak∗-extreme points

I We recall that x0 is a weak∗-extreme point of the bounded, closed
and convex set C ⊆ X if x̂0 is an extreme point of cl Ĉ , where the
closure is taken with respect to the weak∗ topology w(X∗∗,X∗).

I If x0 is a weak∗-extreme point of C , then x0 is an extreme point of
C .

I (Phelps, 1961): must the image x̂ of an extreme point of x ∈ BX
(the unit ball of X ) be an extreme point of BX∗∗ (the unit ball of
the bidual)? We recall that by the Goldstine Theorem the closure of
B̂X in the weak∗ topology w(X∗∗,X∗) is BX∗∗ (hence the
generalization to a bounded, closed and convex set is natural).

I The first example of a Banach space and a point of its unit ball
which is not weak∗-extreme was suggested by K. de Leeuw and
proved in (Y. Katznelson, 1961).

I In the spaces C(X ), Lp(1 ≤ p ≤ ∞), all the extreme points of the
corresponding unit balls are weak∗-extreme points.
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The solution of the Problem 1 (B., Csetnek, Proc. of AMS, 2009)
For f : X → R we define f̂ : X ∗∗ → R by f̂ (x∗∗) = f (x), if
x∗∗ = x̂ ∈ X̂ and f̂ (x∗∗) = +∞, otherwise.
Lemma 1. We assume that f is convex with dom f 6= ∅ and that
cl(f̂ ) is proper, where the lower semicontinuous hull is considered
with respect to the topology w(X ∗∗,X ∗). Then f ∗∗ = cl(f̂ ).

Remark 2. If C ⊆ X is a nonempty convex set, then by Lemma 1
follows that δ∗∗C = δcl(Ĉ)

, where the closure is considered in the
topology ω(X ∗∗,X ∗). Thus Lemma 1 generalizes a result obtained
in (Chakrabarty, Shunmugaraj, Zălinescu, 2007).
Consider f , g : X → R proper convex functions with the following
properties

I dom f ∩ dom g 6= ∅
I cl(f̂ ) and cl(ĝ) are proper
I f ∗∗(0) + g∗∗(0) ≥ 0
I dom(f ∗) + dom(g∗) = X ∗.

20 Radu Ioan Boţ On Fenchel Duality and Some of Its Variants



Preliminaries Regularity conditions Convex regularization Totally Fenchel unstable functions The finite dimensional case

The solution of the Problem 1 (B., Csetnek, Proc. of AMS, 2009)
For f : X → R we define f̂ : X ∗∗ → R by f̂ (x∗∗) = f (x), if
x∗∗ = x̂ ∈ X̂ and f̂ (x∗∗) = +∞, otherwise.
Lemma 1. We assume that f is convex with dom f 6= ∅ and that
cl(f̂ ) is proper, where the lower semicontinuous hull is considered
with respect to the topology w(X ∗∗,X ∗). Then f ∗∗ = cl(f̂ ).

Remark 2. If C ⊆ X is a nonempty convex set, then by Lemma 1
follows that δ∗∗C = δcl(Ĉ)
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The solution of the Problem 1 (B., Csetnek, Proc. of AMS, 2009)
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x∗∗ = x̂ ∈ X̂ and f̂ (x∗∗) = +∞, otherwise.
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Remark 2. If C ⊆ X is a nonempty convex set, then by Lemma 1
follows that δ∗∗C = δcl(Ĉ)
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Theorem 1. We have X ∗ × (0,∞) ⊂ epi f ∗ + epi g∗ if and only if
dom(cl(f̂ )) ∩ dom(cl(ĝ)) = {0}.
Now consider

I C a nonempty, bounded and convex subset of the Banach
space X and x0 ∈ C

I f := δA, g := δB, where A := x0 − C , B := C − x0.

In this case we have
I f ∗ = sup〈A, ·〉, g∗ = sup〈B, ·〉, dom(f ∗) = dom(g∗) = X ∗

I f̂ = δÂ, cl(f̂ ) = δcl(Â)
, thus f ∗∗ = δcl(Â)

. By the same
argument, g∗∗ = δcl(B̂)

Theorem 2. We have X ∗ × (0,∞) ⊂ epi f ∗ + epi g∗ if and only if
x0 is a weak∗-extreme point of C .
Remark 3. The closedness of the set C , requested in (Simons,
2008), is not needed anymore for this result.
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Now consider

I C a nonempty, bounded and convex subset of the Banach
space X and x0 ∈ C

I f := δA, g := δB, where A := x0 − C , B := C − x0.

In this case we have
I f ∗ = sup〈A, ·〉, g∗ = sup〈B, ·〉, dom(f ∗) = dom(g∗) = X ∗
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The finite dimensional case
Problem 2. (raised by Stephen Simons in his book "From
Hahn-Banach to Monotonicity", Springer-Verlag, 2008)
Do there exist a nonzero finite dimensional Banach space X and
f , g : X → R proper and convex functions such that the pair f , g is
totally Fenchel unstable?
The solution of the Problem 2 (B., Löhne, Math. Prog., to appear)
For all x∗, y∗ ∈ X ∗ it holds

(f + g)∗(x∗) ≤ f ∗(x∗ − y∗) + g∗(y∗). (8)

Therefore, a pair f , g of proper and convex functions is totally
Fenchel unstable if and only if

∃y∗ ∈ X ∗ : (f + g)∗(0) = f ∗(−y∗) + g∗(y∗). (9)

∀x∗ ∈ X ∗ \ {0},∀y∗ ∈ X ∗ : (f + g)∗(x∗) < f ∗(x∗ − y∗) + g∗(y∗).
(10)
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Theorem 2. There are no proper convex functions f , g : Rn → R
such that the pair f , g is totally Fenchel unstable.
Comment. The situation below is not possible:
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Interpretation of the result. If two proper and convex functions
f , g : Rn → R satisfy Fenchel duality, then there exists at least one
element x∗ ∈ Rn \ {0}, such that f − 〈x∗, ·〉 and g (or f and
g − 〈x∗, ·〉) satisfy Fenchel duality, too.
Comment. We must have something like:
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Comment. More precisely, for the concrete situation considered in
the previous picture the following behavior can be noticed:
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