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Abstract

We discuss the theory of SSD spaces and Banach SSD spaces. We explain why
type (ED), dense type, type (D), type (NI) and strong representability are equivalent
concepts for maximally monotone sets and how the known properties of strongly
representable sets follow from known properties of sets of type (ED).

Downloads

You can download files containing these slides, and related papers from

<www.math.ucsb.edu/∼simons/Banff.html>.
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— Banach SSD spaces and classes of monotone sets —

SSD spaces and Banach SSD spaces(
B, b·, ·c

)
is a symmetrically self–dual space (SSD space) if B is a nonzero real vector

space and b·, ·c:B × B → R is a symmetric bilinear form.
(
B, b·, ·c, ‖ · ‖

)
is a Banach

SSD space if
(
B, b·, ·c

)
is an SSD space, (B, ‖ · ‖

)
is a Banach space and,

∀ b, c ∈ B, bb, cc ≤ ‖b‖‖c‖. ( )

The quadratic form q

If
(
B, b·, ·c

)
is an SSD space. we define the quadratic form q on B by q(b) := 1

2bb, bc.
We have the parallelogram law:

b, c ∈ B =⇒ 1
2q(b− c) + 1

2q(b+ c) = q(b) + q(c).

Examples

(a) If B is a Hilbert space with inner product (b, c) 7→ 〈b, c〉 then B is a Banach SSD
space with bb, cc := 〈b, c〉, and q(b) = 1

2‖b‖
2.

(b) If B is a Hilbert space with inner product (b, c) 7→ 〈b, c〉 then B is a Banach SSD
space with bb, cc := −〈b, c〉, and q(b) = − 1

2‖b‖
2.

(c) R3 is a Banach SSD space with
⌊
(b1, b2, b3), (c1, c2, c3)

⌋
:= b1c2 + b2c1 + b3c3.

Then q(b1, b2, b3) = b1b2 + 1
2b

2
3.

(d) R3 is not a Banach SSD space with
⌊
(b1, b2, b3), (c1, c2, c3)

⌋
:= b1c2 +b2c3 +b3c1.

(The bilinear form b·, ·c is not symmetric.)
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— Banach SSD spaces and classes of monotone sets —

SSD spaces and Banach SSD spaces(
B, b·, ·c

)
is a symmetrically self–dual space (SSD space) if B is a nonzero real vector

space and b·, ·c:B × B → R is a symmetric bilinear form.
(
B, b·, ·c, ‖ · ‖

)
is a Banach

SSD space if
(
B, b·, ·c

)
is an SSD space, (B, ‖ · ‖

)
is a Banach space and,

∀ b, c ∈ B, bb, cc ≤ ‖b‖‖c‖. ( )

Another example

(e) Let E be a nonzero Banach space and B := E × E∗ under the norm∥∥(x, x∗)
∥∥ :=

√
‖x‖2 + ‖x∗‖2.

∀ b = (x, x∗), c = (y, y∗) ∈ B, let
bb, cc := 〈x, y∗〉+ 〈y, x∗〉.

Then
(
B, b·, ·c, ‖ · ‖

)
is a Banach SSD space, and

q(b) = 〈x, x∗〉.
Any finite dimensional SSD space of this form must have even dimension. Thus odd
dimensional cases of the examples considered on the previous slide cannot be of this
form. This example uses two bilinear forms, and our later analysis will use three.
• To clarify matters, we introduce the following more precise notation:

(
B, b·, ·c

)
and(

D, d·, ·e
)

will always be SSD spaces and
(
B, b·, ·c, ‖ · ‖

)
and

(
D, d·, ·e, ‖ · ‖

)
will always

be Banach SSD spaces. We will call b·, ·c “floor” and d·, ·e “ceiling”, and sometimes B
the “floor space” and D the “ceiling space”.
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— Banach SSD spaces and classes of monotone sets —

q–positive sets

Let
(
B, b·, ·c

)
be a SSD space and A ⊂ B. We say that A is q–positive if A 6= ∅ and

b, c ∈ A =⇒ q(b− c) ≥ 0.

Examples

(a) B is a Hilbert space with q(b) = 1
2‖b‖

2: every nonempty subset of B is q–positive.
(b) B is a Hilbert space with q(b) = − 1

2‖b‖
2: the q–positive subsets of B are the

singletons.
(e) E is a nonzero Banach space, B := E × E∗, ∀ b = (x, x∗) ∈ B, q(b) = 〈x, x∗〉.
Let ∅ 6= A ⊂ B. Then A is q–positive when

(x, x∗), (y, y∗) ∈ A =⇒ 〈x− y, x∗ − y∗〉 ≥ 0.
That is to say,

A is q–positive ⇐⇒ A is a monotone subset of E × E∗.

General notation
• Let X be a vector space and f : X → ]−∞,∞ ]. Then dom f := {x ∈ X: f(x) ∈ R}.
• f is proper if dom f 6= ∅.
• PC(X) is the set of all proper convex functions f : X → ]−∞,∞ ].
• If X is a Banach space, PCLSC(X) := {f ∈ PC(X): f is lower semicontinuous}.
• If

(
B, b·, ·c

)
is a SSD space, A will always denote a q–positive subset of B.
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— Banach SSD spaces and classes of monotone sets —

The q–positive set given by a convex function

Let f ∈ PC(B) and f ≥ q on B. Let Pq(f) :=
{
b ∈ B: f(b) = q(b)

}
. If

Pq(f) 6= ∅ then Pq(f) is a q–positive subset of B.

Proof. Let b, c ∈ Pq(f). Then, from the parallelogram law, the quadraticity of q, and
the convexity of f ,

1
2q(b− c) = q(b) + q(c)− 1

2q(b+ c) = q(b) + q(c)− 2q
(

1
2 (b+ c)

)
≥ f(b) + f(c)− 2f

(
1
2 (b+ c)

)
≥ 0. �

• If f ∈ PC(B), we write f@ for the intrinsic conjugate of f with respect to the pairing
b·, ·c. That is to say, ∀ c ∈ B,

f@(c) := supB
[
b·, cc − f

]
.

• Let f ∈ PC(B). f is a BC–function if
b ∈ B =⇒ f@(b) ≥ f(b) ≥ q(b). ( )

“BC” stands for “bigger conjugate”.

Surprise result

Let f ∈ PC(B) be a BC–function. Then Pq(f@) = Pq(f).
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• Let f ∈ PC(B). f is a BC–function if
b ∈ B =⇒ f@(b) ≥ f(b) ≥ q(b). ( )

Surprise result

Let f ∈ PC(B) be a BC–function. Then Pq(f@) = Pq(f).

Proof. Let c be an arbitrary element of Pq(f). Let b ∈ B and λ ∈ ]0, 1[ be arbitrary.
For simplicity, let µ := 1 − λ ∈ ]0, 1[ . Then, from the quadraticity of q, the convexity
of f and ( ),

λ2q(b) + λµbb, cc+ µ2q(c) = q
(
λb+ µc

)
≤ f(λb+ µc)

≤ λf(b) + µf(c) = λf(b) + µq(c).
Thus

λµbb, cc − λf(b) ≤ λµq(c)− λ2q(b).
Dividing by λ and letting λ→ 0,

bb, cc − f(b) ≤ q(c).
Taking the supremum over b ∈ B,

f@(c) ≤ q(c),
and ( ) implies that c ∈ Pq(f@). Thus we have proved that Pq(f) ⊂ Pq(f@).
The opposite inclusion is obvious from ( ). �
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The convex function given by a q–positive subset, A, of
(
B, b·, ·c

)
We define ΦA: B → ]−∞,∞ ] by

ΦA(b) := supA
[
bb, ·c − q

]
= q(b)− inf q(A− b).

• ΦA = q on A and ΦA ∈ PC(B).

• ∀ c ∈ B and a ∈ A, bc, ac − q(a) ≤ ΦA(c), and so bc, ac − ΦA(c) ≤ q(a). Thus
ΦA@(a) ≤ q(a).

• Let c ∈ B. Then
ΦA@(c) = supB

[
b·, cc − ΦA

]
≥ supA

[
bc, ·c − ΦA

]
= supA

[
bc, ·c − q

]
= ΦA(c)

and
ΦA@@(c) = supB

[
b·, cc − ΦA@

]
≥ supA

[
bc, ·c − ΦA@

]
≥ supA

[
bc, ·c − q

]
= ΦA(c).

It is easy to see that ΦA@@(c) ≤ ΦA(c).

Properties of ΦA

ΦA(b) = q(b)− inf q(A− b), ΦA = q on A, ΦA@ ≥ ΦA on B and ΦA@@ = ΦA.
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• Let f ∈ PC(B). f is a BC–function if
b ∈ B =⇒ f@(b) ≥ f(b) ≥ q(b). ( )

Surprise result

Let f ∈ PC(B) be a BC–function. Then Pq(f@) = Pq(f).

Properties of ΦA

ΦA(b) = q(b)− inf q(A− b), ΦA = q on A, ΦA@ ≥ ΦA on B and ΦA@@ = ΦA.

Pq
(
ΦA@

)
theorem

Let ΦA ≥ q on B. Then ΦA is a BC–function, and so Pq(ΦA@) = Pq(ΦA).

• Let b ∈ B and ΦA(b) ≤ q(b). Then inf q(A − b) ≥ 0, and so A ∪ {b} is
q–positive. So if A is maximally q–positive then b ∈ B \A =⇒ Φ(b) > q(b).
• To sum up:

A maximally q–positive =⇒ ΦA ≥ q on B and Pq(ΦA) = A.

The convex function given by a maximally q–positive set

Let A be a maximally q–positive subset of B. Then ΦA is a BC–function, and so

Pq(ΦA@) = Pq(ΦA) = A.
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— Banach SSD spaces and classes of monotone sets —

SSD–homomorphisms

Let
(
B, b·, ·c

)
and

(
D, d·, ·e

)
be SSD spaces and ι: B → D. ι is a SSD–homomorphism

if ι is linear and,
∀ b, c ∈ B,

⌈
ι(b), ι(c)

⌉
= bb, cc.

• Let q̃(d) := 1
2dd, de (d ∈ D). Then q̃ ◦ ι = q.

• Define the bilinear map 〈·, ·〉ι:B ×D → R by 〈b, d〉ι := dι(b), de
(
(b, d) ∈ B ×D

)
.

Then, ∀ b, c ∈ B,
〈
b, ι(c)

〉
ι

=
⌈
ι(b), ι(c)

⌉
= bb, cc.

• If f ∈ PC(B) and d ∈ D let f∗(d) := supB
[
〈·, d〉ι − f

]
. Then f∗ ◦ ι = f@.

• Recall that, ∀ b ∈ B, ΦA(b) = q(b)− inf q(A− b).
• ι(A) is a q̃–positive subset of D and, moving the expression above to the “ceiling”,
∀ d ∈ D, Φι(A)(d) = q̃(d)− inf q̃

(
ι(A)− d

)
. It follows that Φι(A) ◦ ι = ΦA. ( )

Φι(A)
@(d) = supD

[
d·, de − Φι(A)

]
≥ supB

[⌈
ι(·), d

⌉
− Φι(A) ◦ ι

]
= supB

[
〈·, d〉ι − ΦA

]
ΦA∗(d) = supB

[
〈·, d〉ι − ΦA

]
≥ supA

[
〈·, d〉ι − ΦA

]
= supA

[
〈·, d〉ι − q

]
= supι(A)

[
dd, ·e − q̃

]
= Φι(A)(d).

Half–sandwich property
Φι(A)

@ ≥ ΦA∗ ≥ Φι(A) on D.

9



— Banach SSD spaces and classes of monotone sets —

Properties of ΦA
. . . and ΦA@@ = ΦA.

Half–sandwich property
Φι(A)

@ ≥ ΦA∗ ≥ Φι(A) on D.

• Since Φι(A)
@ ≥ ΦA∗ ≥ Φι(A) on D, we have Φι(A)

@ ≥ ΦA∗@ ≥ Φι(A)
@@ on D.

From the “ceiling” version of the property of Φ· above, Φι(A)
@@ = Φι(A). Consequently:

Sandwich property
Φι(A)

@ ≥ ΦA∗ ≥ Φι(A) on D and Φι(A)
@ ≥ ΦA∗@ ≥ Φι(A) on D.

• If f ∈ PC(B), we call f∗@ the sesquiconjugate of f . So in words we have: the
conjugate and the sesquiconjugate of ΦA are sandwiched between Φι(A) and its intrinsic
conjugate.

Pq
(
ΦA@

)
theorem

Let ΦA ≥ q on B. Then ΦA is a BC–function, and so Pq(ΦA@) = Pq(ΦA).

“Ceiling” Pq̃
(
Φι(A)

@
)

theorem
Let Φι(A) ≥ q̃ on D. Then Φι(A) is a BC–function, and so Pq̃(Φι(A)

@) = Pq̃(Φι(A)).

10



— Banach SSD spaces and classes of monotone sets —

∀ d ∈ D, Φι(A)(d) = q̃(d)− inf q̃
(
ι(A)− d

)
. It follows that Φι(A) ◦ ι = ΦA. ( )

Sandwich property
Φι(A)

@ ≥ ΦA∗ ≥ Φι(A) on D and Φι(A)
@ ≥ ΦA∗@ ≥ Φι(A) on D.

“Ceiling” Pq̃
(
Φι(A)

@
)

theorem
Let Φι(A) ≥ q̃ on D. Then Φι(A) is a BC–function, and so Pq̃(Φι(A)

@) = Pq̃(Φι(A)).

The Gossez extension

Let
(
B, b·, ·c

)
and

(
D, d·, ·e

)
be SSD spaces and ι: B → D be an SSD–homomorphism.

The Gossez extension of A is the set AG =
{
d ∈ D: Φι(A)(d) ≤ q̃(d)

}
.

Theorem on the Gossez extension

(a) ι(A) ⊂ AG . (This justifies the term “extension”.)
(b) If Φι(A) ≥ q̃ on D then AG = Pq̃(ΦA∗@) = Pq̃(ΦA∗) = Pq̃(Φι(A)

@) = Pq̃(Φι(A)).

Proof. (a) From ( ), ∀a ∈ A, Φι(A)

(
ι(a)

)
= ΦA(a) = q(a) = q̃

(
ι(a)

)
, which gives

(a). As for (b), obviously AG = Pq̃(Φι(A)), and the sandwich property and the
Pq̃
(
Φι(A)

@
)

theorem give Pq̃(Φι(A)
@) ⊂ Pq̃(ΦA∗) ⊂ Pq̃(Φι(A)) = Pq̃(Φι(A)

@) and
Pq̃(Φι(A)

@) ⊂ Pq̃(ΦA∗@) ⊂ Pq̃(Φι(A)) = Pq̃(Φι(A)
@). �
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• Let
(
B, b·, ·c, ‖ · ‖

)
be a Banach SSD space.

• From ( ), ∀ b ∈ B, |q(b)| = 1
2 |bb, bc| ≤

1
2‖b‖‖b‖. Now define the function p on B by

p := 1
2‖ · ‖

2 + q. Then infB p = 0.

VZ functions
Let f ∈ PC(B). We say that f is a VZ function if (writing ∇ for inf–convolution)

(f − q)∇ p = 0 on B.

Theorem on lower semicontinuous VZ functions
Let f ∈ PCLSC(B) be a VZ function. Then Pq(f) is a maximally q–positive subset of
B and, ∀ c ∈ B,

dist
(
c,Pq(f)

)
≤
√

2
√

(f − q)(c).
Note that

√
2 is the best constant possible: take

(
R× R, b·, ·c, ‖ · ‖

)
and f := g.

• We say that a subset A of B is p–dense in B if, ∀ c ∈ B, inf p(A− c) = 0.

p-density criterion for a VZ function
Let f ∈ PCLSC(B). Then f is a VZ function ⇐⇒ f ≥ q on B and Pq(f) is
p–dense in B.

• If f ∈ PC(B) is a VZ function then f@ is a VZ function.

• These results depend heavily on the completeness of B. For full details, see the last
of the items available at <www.math.ucsb.edu/∼simons/Banff.html>.
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The map ι
From ( ) and standard algebraic arguments, ∃ a linear map ι: B → B∗ such that ‖ι‖ ≤ 1
and

∀ b, c ∈ B,
〈
b, ι(c)

〉
= bb, cc. ( )

Banach SSD duals
Let

(
B, b·, ·c, ‖ · ‖

)
be a Banach SSD space, (B∗, ‖ · ‖) be the Banach space dual of B

and the linear map ι: B → B∗ be defined as in ( ). Let
(
B∗, d·, ·e, ‖ · ‖

)
also be a

Banach SSD space. We say that
(
B∗, d·, ·e, ‖ ·‖

)
is a Banach SSD dual of

(
B, b·, ·c, ‖ ·‖

)
if 〈·, ·〉ι = 〈·, ·〉 on B ×B∗, that is to say

∀ b ∈ B and c∗ ∈ B∗,
⌈
ι(b), c∗

⌉
= 〈b, c∗〉. ( )

Let
(
B∗, d·, ·e, ‖ · ‖

)
be a Banach SSD dual of

(
B, b·, ·c, ‖ · ‖

)
.

• From ( ) and ( ), ∀ b, c ∈ B,
⌈
ι(b), ι(c)

⌉
=
〈
b, ι(c)

〉
= bb, cc. So ι is an SSD-

homomorphism from
(
B, b·, ·c

)
into

(
B∗, d·, ·e

)
.

The map ι̃
By analogy with ( ), we define the linear map ι̃:B∗ → B∗∗ such that ‖ι̃‖ ≤ 1 and

∀ c∗, b∗ ∈ B∗,
〈
c∗, ι̃(b∗)

〉
= dc∗, b∗e. ( )

• We had f ∈ PC(B) =⇒ f∗ ◦ i = f@. “Ceiling version”: h ∈ PC(B∗) =⇒ h∗ ◦ ι̃ = h@.
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Let
(
B∗, d·, ·e, ‖ · ‖

)
be a Banach SSD dual of

(
B, b·, ·c, ‖ · ‖

)
.

So far . . .
∀ b ∈ B and c∗ ∈ B∗,

⌈
ι(b), c∗

⌉
= 〈b, c∗〉. ( )

∀ c∗, b∗ ∈ B∗, dc∗, b∗e =
〈
c∗, ι̃(b∗)

〉
. ( )

The automatic factorization of the canonical map :̂ B → B∗∗

∀ b ∈ B. b̂ = ι̃ ◦ ι(b).

Proof. Let b ∈ B and c∗ ∈ B∗. Then, from the definition of b̂, ( ) and ( ),〈
c∗, b̂

〉
= 〈b, c∗〉 =

⌈
ι(b), c∗

⌉
=
⌈
c∗, ι(b)

⌉
=
〈
c∗, ι̃ ◦ ι(b)

〉
. �

If f ∈ PCLSC(B) then, from the Fenchel–Moreau theorem, ∀b ∈ B, f(b) = f∗∗
(
b̂
)
.

Thus f = f∗∗ ◦ ι̃ ◦ ι = (f∗)∗ ◦ ι̃ ◦ ι = (f∗)@ ◦ ι = f∗@ ◦ ι. So we get the following
• Fenchel–Moreau theorem for sesquiconjugates: f ∈ PCLSC(B) =⇒ f = f∗@ ◦ ι.
• Define the function p̃: B∗ → R by p̃ := 1

2‖ · ‖
2 + q̃. Then p̃ ≥ 0 on B∗.

The “−” equality
If f ∈ PC(B) then −

(
(f − q)∇ p

)
=
(
(f∗ − q̃)∇ p̃

)
◦ ι on B.

Proof. This follows from Rockafellar’s version of the Fenchel duality theorem and the
fact that the conjugate of the function b 7→ 1

2‖b‖
2 is the function b∗ 7→ 1

2‖b
∗‖2. �

• We say that ι(B) is p̃–dense in B∗ if, ∀ b∗ ∈ B∗, inf p̃
(
ι(B)− b∗

)
= 0.
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Let
(
B∗, d·, ·e, ‖ · ‖

)
be a Banach SSD dual of

(
B, b·, ·c, ‖ · ‖

)
.

VZ functions
Let f ∈ PC(B). f is a VZ function if (f − q)∇ p = 0 on B.

The “−” equality
If f ∈ PC(B) then −

(
(f − q)∇ p

)
=
(
(f∗ − q̃)∇ p̃

)
◦ ι on B.

MAS functions
Let f ∈ PC(B). f is an MAS function if f ≥ q on B and f∗ ≥ q̃ on B∗.

MASVZ theorem

Let ι(B) be p̃–dense in B∗ and f ∈ PC(B). Then

f is an MAS function ⇐⇒ f is a VZ function.

Proof. (=⇒) We have infB
[
f−q

]
≥ 0, infB p ≥ 0, infB∗

[
f∗− q̃

]
≥ 0 and infB∗ p̃ ≥ 0.

Consequently, infB
[
(f−q)∇ p

]
≥ 0 and infB

[(
(f∗− q̃)∇ p̃

)
◦ ι
]
≥ 0, and (=⇒) follows

from the “−” equality.
(⇐=) It is easily seen that f ≥ q on B. Now let b∗ ∈ B∗ and c ∈ B. Then

(f∗ − q̃)(b∗) + p̃
(
ι(c)− b∗

)
≥
(
(f∗ − q̃)∇ p̃

)(
ι(c)
)

= −
(
(f − q)∇ p

)
(c) = 0.

Taking the infimum over c ∈ B and using the p̃–density, (f∗ − q̃)(b∗) ≥ 0 on B∗.
Since this holds for all b∗ ∈ B∗, f is an MAS function, giving (⇐=). �
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Let
(
B∗, d·, ·e, ‖ · ‖

)
be a Banach SSD dual of

(
B, b·, ·c, ‖ · ‖

)
.

Compatible topologies on B∗

We say that T is a compatible topology on B∗ if (a)–(c) below are satisfied:
(a) T ⊃ w(B∗, B∗).
(b) If f ∈ PCLSC(B) and b∗ ∈ B∗ then ∃ a net {bγ} of elements of B such that
ι(bγ)→ b∗ in T and f(bγ)→ f∗@(b∗).
(c) If {bγ} and {aγ} are nets of elements of B, b∗ ∈ B∗, ι(bγ) → b∗ in T and
‖aγ − bγ‖ → 0 then ι(aγ)→ b∗ in T .

• Fenchel–Moreau theorem for sesquiconjugates: f ∈ PCLSC(B) =⇒ f = f∗@ ◦ ι.
Consequently

f(bγ)→ f∗@(b∗)
m

f∗@
(
ι(bγ)

)
→ f∗@(b∗).

• CLB(B) is defined as the set of all convex functions h: B → R that are bounded
above on the bounded subsets of B.
• TD(B∗) is defined as the coarsest topology on B∗ making all the sesquiconjugates
h∗@: B∗ → R

(
h ∈ CLB(B)

)
continuous.

Theorem on TD(B∗)
TD(B∗) is a compatible topology on B∗ and q̃ is TD(B∗)–continuous.
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∀ b∗ ∈ B∗, Φι(A)(b∗) = q̃(b∗)− inf q̃
(
ι(A)− b∗

)
. It follows that Φι(A) ◦ ι = ΦA. ( )

• The Gossez extension of A is the set AG =
{
b∗ ∈ B∗: Φι(A)(b∗) ≤ q̃(b∗)

}
.

Property (a) of compatible topologies
(a) If T is a compatible topology on B∗ then T ⊃ w(B∗, B∗).

Main theorem

Let T be a compatible topology on B∗, q̃ be T –continuous and A be a maximally
q–positive subset of B. Then the conditions (a)–(c) below are equivalent.

(a) ∀ b∗ ∈ AG , ∃ a net {aγ} of elements of A such that ι(aγ)→ b∗ in T .

(b) ∀ b∗ ∈ AG , inf q̃
(
ι(A)− b∗

)
≤ 0.

(c) Φι(A) ≥ q̃ on B∗.

Proof that (a)=⇒(b)=⇒(c). Let {aγ} be a net of elements of A such that ι(aγ)→
b∗ in T . From property (a) above,

⌈
ι(aγ), b∗

⌉
→
⌈
b∗, b∗

⌉
= 2q̃(b∗). From the T –

continuity of q̃, q̃
(
ι(aγ)

)
→ q̃(b∗). Thus

q̃
(
ι(aγ)− b∗

)
= q̃
(
ι(aγ)

)
−
⌈
ι(aγ), b∗

⌉
+ q̃(b∗)→ q̃(b∗)− 2q̃(b∗) + q̃(b∗) = 0,

and so (a) =⇒ (b). If (b) is true then, from ( ), b∗ ∈ AG =⇒ Φι(A)(b∗) ≥ q̃(b∗). On
the other hand, b∗ ∈ B∗ \AG =⇒ Φι(A)(b∗) > q̃(b∗). Thus (b) =⇒ (c).
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Theorem on the Gossez extension

(b) If Φι(A) ≥ q̃ on D then AG = Pq̃(ΦA∗@) = Pq̃(ΦA∗) = Pq̃(Φι(A)
@) = Pq̃(Φι(A)).

Property (b) of compatible topologies
(b) If f ∈ PCLSC(B) and b∗ ∈ B∗ then ∃ a net {bγ} of elements of B such that
ι(bγ)→ b∗ in T and f(bγ)→ f∗@(b∗).

Main theorem
(
(c)=⇒(a)

)
Let T be a compatible topology on B∗, q̃ be T –continuous, A be a maximally q–positive
subset of B, Φι(A) ≥ q̃ on B∗ and b∗ ∈ AG . Then ∃ a net {aγ} of elements of A
such that ι(aγ)→ b∗ in T .

First part of proof. We know that ΦA ∈ PCLSC(B). From (b) of the theorem on
the Gossez extension,

ΦA∗(b∗) = ΦA∗@(b∗) = q̃(b∗).
From property (b) of compatible topologies, ∃ a net {bγ} of elements of B such that

ι(bγ)→ b∗ in T and ΦA(bγ)→ ΦA∗@(b∗) = q̃(b∗).
Since q̃ is T –continuous, q(bγ) = q̃ ◦ ι(bγ)→ q̃(b∗) and so

(ΦA − q)(bγ) = ΦA(bγ)− q(bγ)→ q̃(b∗)− q̃(b∗) = 0.
To be continued. . .
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The convex function given by a maximally q–positive set

Let A be a maximally q–positive subset of B. Then. . . ΦA ≥ q on B . . .

Half–sandwich property
Φι(A)

@ ≥ ΦA∗ ≥ Φι(A) on D.

MAS functions
Let f ∈ PC(B). f is an MAS function if f ≥ q on B and f∗ ≥ q̃ on B∗.

MASVZ theorem

Let ι(B) be p̃–dense in B∗ and f ∈ PC(B). Then

f is an MAS function ⇐⇒ f is a VZ function.

Main theorem
(
(c)=⇒(a)

)
Let T be a compatible topology on B∗, q̃ be T –continuous, A be a maximally q–positive
subset of B, Φι(A) ≥ q̃ on B∗ and b∗ ∈ AG . Then ∃ a net {aγ} of elements of A
such that ι(aγ)→ b∗ in T .

Second part of proof. Now ΦA ≥ q on B and ΦA∗ ≥ Φι(A) ≥ q̃ on B∗. Thus
ΦA is an MAS function. From the MASVZ theorem, ΦA is a VZ function.

To be continued. . .
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Theorem on lower semicontinuous VZ functions
Let f ∈ PCLSC(B) be a VZ function. Then, ∀ c ∈ B, dist

(
c,Pq(f)

)
≤
√

2
√

(f − q)(c).

The convex function given by a maximally q–positive set

Let A be a maximally q–positive subset of B. Then. . . Pq(ΦA) = A . . .

Property (c) of compatible topologies
(c) Let T be a compatible topology on B∗, {bγ} and {aγ} be nets of elements of B,
b∗ ∈ B∗, ι(bγ)→ b∗ in T and ‖aγ − bγ‖ → 0. Then ι(aγ)→ b∗ in T .

Main theorem
(
(c)=⇒(a)

)
Let T be a compatible topology on B∗, q̃ be T –continuous, A be a maximally q–positive
subset of B, Φι(A) ≥ q̃ on B∗ and b∗ ∈ AG . Then ∃ a net {aγ} of elements of A
such that ι(aγ)→ b∗ in T .

End of proof. So far, we know that ΦA is a VZ function,
ι(bγ)→ b∗ in T and (ΦA − q)(bγ)→ 0.

Since ΦA ∈ PCLSC(B), for all γ, dist
(
bγ ,Pq(ΦA)

)
≤
√

2
√

(ΦA − q)(bγ), and so

dist
(
bγ ,Pq(ΦA)

)
→ 0.

Since Pq(ΦA) = A, ∃ aγ ∈ A such that ‖aγ − bγ‖ → 0. From property (c) of T ,
ι(aγ)→ b∗ in T . �
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p-density criterion for a VZ function
Let f ∈ PCLSC(B). Then f is a VZ function ⇐⇒ f ≥ q on B and Pq(f) is
p–dense in B.

The function ΨA

Define ΨA:B → ]−∞,∞ ] by ΨA := supb∗∈B∗

[
〈·, b∗〉 − Φι(A)(b∗)

]
.

(a) ΨA ≤ q on A. So ΨA ∈ PCLSC(B). Further, Φι(A) ≥ ΨA
∗ on B∗.

(b) Let f ∈ PCLSC(B), f ≥ q on B and A = Pq(f). Then ΨA ≥ f on B∗ and
Pq(ΨA) = Pq(f).
(c) Let f ∈ PCLSC(B), f be a VZ function and A = Pq(f). Then ΨA is a VZ function
and Φι(A) ≥ ΨA

∗ on B∗.

Proof. (a) Let b∗ ∈ B∗. Note that Φι(A)(b∗) = supι(A)

[⌈
b∗, ·

⌉
− q̃
]

= supA
[
〈·, b∗〉−q

]
.

Consequently 〈·, b∗〉 − Φι(A)(b∗) ≤ q on A. Take the supremum over b∗.
Now let b∗ ∈ B∗ and b ∈ B. Then ΨA(b) ≥ 〈b, b∗〉−Φι(A)(b∗). Consequently Φι(A)(b∗) ≥
〈b, b∗〉 −ΨA(b). Take the supremum over b.
(b) Let b∗ ∈ B∗. From (a), Φι(A)(b∗) = supι(A)

[⌈
b∗, ·

⌉
− q̃
]

= supA
[
〈·, b∗〉 − q

]
=

supA
[
〈·, b∗〉 − f

]
≤ supB

[
〈·, b∗〉 − f

]
= f∗(b∗). Thus the Fenchel–Moreau theorem

gives ΨA = supb∗∈B∗

[
〈·, b∗〉 − Φι(A)(b∗)

]
≥ supb∗∈B∗

[
〈·, b∗〉 − f∗(b∗)

]
= f . So

ΨA ≥ f ≥ q on B∗, from which Pq(ΨA) ⊂ Pq(f) = A. Combining with (a), ΨA = q
on A, consequently A ⊂ Pq(ΨA).
(c) This is immediate from the p–density criterion, (b) and (a). �
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Dictionary for Example (e)

• B = E × E∗,⌊
(x, x∗), (y, y∗)

⌋
:= 〈x, y∗〉+ 〈y, x∗〉 and q(x, x∗) = 〈x, x∗〉.∥∥(x, x∗)

∥∥ :=
√
‖x‖2 + ‖x∗‖2.

• B∗ = E∗ × E∗∗ under the pairing
〈
(x, x∗), (y∗, y∗∗)

〉
:= 〈x, y∗〉+ 〈x∗, y∗∗〉

(B∗)∗ = E∗∗×E∗∗∗ under the pairing
〈
(y∗, y∗∗), (w∗∗, w∗∗∗)

〉
:= 〈y∗, w∗∗〉+〈y∗∗, w∗∗∗〉.(

E∗ × E∗∗, d·, ·e, ‖ · ‖
)

is a Banach SSD dual of
(
E × E∗, b·, ·c, ‖ · ‖

)
.

• D = B∗,⌈
(x∗, x∗∗), (y∗, y∗∗)

⌉
:= 〈y∗, x∗∗〉+ 〈x∗, y∗∗〉 and q̃(y∗, y∗∗) = 〈y∗, y∗∗〉.

‖(y∗, y∗∗)‖ :=
√
‖y∗‖2 + ‖y∗∗‖2.

• ι(x, x∗) = (x∗, x̂) and ι̃(y∗, y∗∗) = (y∗∗, ŷ∗).

• ι(E × E∗) is p̃–dense in E∗ × E∗∗.

• If (a, a∗) ∈ B and (y∗, y∗∗) ∈ B∗ then
q̃
(
ι(a, a∗)− (y∗, y∗∗)

)
= q̃
(
(a∗, â)− (y∗, y∗∗)

)
= q̃(a∗− y∗, â− y∗∗) = 〈a∗− y∗, â− y∗∗〉.

• Consequently, if A is a nonempty q–positive subset of B = E × E∗ then
inf q̃

(
ι(A)− (y∗, y∗∗)

)
= inf(a,a∗)∈A〈a∗ − y∗, â− y∗∗〉.
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• Consequently, if A is a nonempty q–positive subset of B = E × E∗ then
inf q̃

(
ι(A)− (y∗, y∗∗)

)
= inf(a,a∗)∈A〈a∗ − y∗, â− y∗∗〉.

• ι(A) is a q̃–positive subset of B∗ = E∗ × E∗∗ and,
∀ (y∗, y∗∗) ∈ B∗, Φι(A)(y∗, y∗∗) = q̃(y∗, y∗∗)− inf q̃

(
ι(A)− (y∗, y∗∗)

)
. . . . ( )

• Let A ⊂ B = E × E∗. A is maximally monotone of type (NI) if A is maximally
monotone and, ∀ (y∗, y∗∗) ∈ B∗, inf(a,a∗)∈A〈a∗ − y∗, â− y∗∗〉 ≤ 0.

SSD characterization of type (NI)
Let A ⊂ B = E × E∗. A is maximally monotone of type (NI) ⇐⇒ A is maximally
monotone and Φι(A) ≥ q̃ on B∗.
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• We had: A maximally q–positive =⇒ ΦA ≥ q on B and Pq(ΦA) = A.

Half–sandwich property
Φι(A)

@ ≥ ΦA∗ ≥ Φι(A) on B∗.

SSD characterization of type (NI)
Let A ⊂ B = E × E∗. A is maximally monotone of type (NI) ⇐⇒ A is maximally
monotone and Φι(A) ≥ q̃ on B∗.

• Let A ⊂ B = E × E∗. A is strongly representable if ∃ f ∈ PCLSC(B) such that f
is an MAS function and A = Pq(f).

A result of Marques Alves and Svaiter
Let A ⊂ B = E × E∗. Then

A is maximally monotone of type (NI) ⇐⇒ A is strongly representable.

Proof. (=⇒) We have ΦA ≥ q on B and ΦA∗ ≥ Φι(A) ≥ q̃ on B∗ and so ΦA is
an MAS function. Since Pq(ΦA) = A, A is strongly representable.
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• Let A ⊂ B = E × E∗. A is strongly representable if ∃ f ∈ PCLSC(B) such that f
is an MAS function and A = Pq(f).

MASVZ theorem

Let f ∈ PC(E × E∗). Then f is an MAS function ⇐⇒ f is a VZ function.

SSD characterization of type (NI)
Let A ⊂ B = E × E∗. A is maximally monotone of type (NI) ⇐⇒ A is maximally
monotone and Φι(A) ≥ q̃ on B∗.

The function ΨA

(c) Let f ∈ PCLSC(B), f be a VZ function and A = Pq(f). Then ΨA is a VZ function
and Φι(A) ≥ ΨA

∗ on B∗.

A result of Marques Alves and Svaiter
Let A ⊂ B = E × E∗. Then

A is maximally monotone of type (NI) ⇐⇒ A is strongly representable.

Proof. (⇐=) Suppose that f ∈ PCLSC(B), f is an MAS function and A = Pq(f).
The MASVZ theorem implies that f is a VZ function. From the theorem on lower
semicontinuous VZ functions and (c) above, A is maximally monotone, ΨA is a VZ
function and Φι(A) ≥ ΨA

∗ on B∗. The MASVZ theorem now implies that ΨA is an
MAS function, and so ΨA

∗ ≥ q̃ on B∗. Thus Φι(A) ≥ q̃ on B∗, from which A is
of type (NI). �
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• The Gossez extension of A is the set AG =
{
b∗ ∈ B∗: Φι(A)(b∗) ≤ q̃(b∗)

}
.

• ι(A) is a q̃–positive subset of B∗ = E∗ × E∗∗ and,
∀ (y∗, y∗∗) ∈ B∗, Φι(A)(y∗, y∗∗) = q̃(y∗, y∗∗)− inf q̃

(
ι(A)− (y∗, y∗∗)

)
. . . . ( )

• Consequently, if A is a nonempty q–positive subset of B = E × E∗ then
inf q̃

(
ι(A)− (y∗, y∗∗)

)
= inf(a,a∗)∈A〈a∗ − y∗, â− y∗∗〉.

The Gossez extension in Example (e)
(y∗, y∗∗) ∈ AG ⇐⇒ inf(a,a∗)∈A〈a∗ − y∗, â− y∗∗〉 ≥ 0.

• In the situation of Example (e), A is normally written instead of AG .
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SSD characterization of type (NI)
Let A ⊂ B = E × E∗. A is maximally monotone of type (NI) ⇐⇒ A is maximally
monotone and Φι(A) ≥ q̃ on B∗.

Main theorem in Example (e)

Let T be a compatible topology on B∗ = E∗ × E∗∗, q̃ be T –continuous and A be a
maximally monotone subset of B = E × E∗. Then the conditions (a)–(c) below are
equivalent.

(a) ∀ b∗ ∈ AG , ∃ a net {aγ} of elements of A such that ι(aγ)→ b∗ in T .

(b) ∀ b∗ ∈ AG , inf q̃
(
ι(A)− b∗

)
≤ 0.

(c) Φι(A) ≥ q̃ on B∗.

Theorem on TD(B∗)
TD(B∗) is a compatible topology on B∗ and q̃ is TD(B∗)–continuous.

Corollary

Let A be a maximally monotone subset of B = E ×E∗ of type (NI). Then, ∀ b∗ ∈ AG ,
∃ a net {aγ} of elements of A such that ι(aγ)→ b∗ in TD(B∗).
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The Gossez extension in Example (e)
(y∗, y∗∗) ∈ AG ⇐⇒ inf(a,a∗)∈A〈a∗ − y∗, â− y∗∗〉 ≥ 0.

Corollary

Let A be a maximally monotone subset of B = E ×E∗ of type (NI). Then, ∀ b∗ ∈ AG ,
∃ a net {aγ} of elements of A such that ι(aγ)→ b∗ in TD(B∗).

• Various classes of maximally monotone sets have been discussed since Gossez
introduced type (D) and dense type.
• In chronological order, we mention here type (NI), type (WD), and type (ED).
• The easy implications are that, for maximally monotone sets,

type (ED) =⇒ dense type =⇒ type (D) =⇒ type (WD) =⇒ type (NI).
• Marques Alves and Svaiter proved recently that type (NI) =⇒ type (D).
• The Corollary above gives the stronger result that type (NI) =⇒ type (ED), so
all of the above five classes are identical.
• It is already known that maximally monotone sets of type (ED) are of type (FP)
(= locally maximally monotone), type (FPV) (= maximally monotone locally) and
strongly maximally monotone, and that they possess strong Brøndsted–Rockafellar
properties and properties related to the surjectivity of approximate resolvents.
• As we have already observed, a set is maximally monotone of type (NI) ⇐⇒ it is
strongly representable. Thus we are led to new results about strongly representable
sets, as well as some new proofs of known results.
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