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Abstract

Recently, researchers have examine the question of how to smoothly transform
one function into another. This is, given functions fy and f;, how can we build
a "well-behaved” parameterized function F(x, p) such that F(x,0) = fo(x) and
F(x,1) = fi(x)? For convex functions the idea of a " proximal average” has
been shown to be highly effective. We explore the proximal average, provide
some previous results regarding convex functions, and develop a method to
extend these results to non-convex functions. In doing so we develop a new
version of the proximal average, which is more complicated but provides

stronger stability results.
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Our question

Given fy and f; how can we create
F(x,A)

such that
F(Xv 0) = fO(X) F(X7 1) = fl(X)

and F is well behaved in A7



Title Outline Introduction Proximal Envelopes Para-PR Conclusions

One Reason and Approach

One reason is multi-objective optimization

mXin{ﬂ)(X) and fl(X)}
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One Reason and Approach

One reason is multi-objective optimization

mXin{fb(X) and fl(X)}

The common method in this case to set

F(x,\) = (1 = N)fo(x) + Mr(x)

Conclusions
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One Reason and Approach

One reason is multi-objective optimization

mXin{fb(X) and fl(X)}

The common method in this case to set
F(x,\) = (1 = N)fo(x) + Mr(x)

But if
domfy Ndomf; # domf;

this does not “behave well”
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An alternate approach

In 2008, Bauschke, Lucet, & Trienis proposed the Proximal
Average

PA(x,\) = <(1 ~ ) (fo + ;q)* + A <f1 + ;q>*>* (x) = %q(X)

where
f*(y) == sgp{<xay> —f(x)}

and
q(x) = ||x|]?
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7/771 Behaves Well

Theorem:

Let fy and f; be proper convex Isc.
Then for A € [0,1],

o PA is a well-defined and convex
@ PA(x,0) = fy(x) and PA(x,1) = fi(x)
Q@ PAis epi-continuous in A

F is Epi-cont in X if
epiF (-, A\k) = {(x,a) : a > F(x, A\¢)}
converges setwise to epiF (-, A) as Ay — .



Title Outline Introduction Proximal Envelopes Para-PR Conclusions

Proximal Average for nonconvex functions

Can a Proximal Average work if f; are nonconvex?



Proximal Envelopes

Proximal Envelopes and the NC-Proximal
Average



Proximal Envelopes

Relation to Proximal Envelopes

The Proximal Envelope® and Proximal Point Mapping

e f(x) = ir}!/f{f(y) + %\y—x\z}

) r
P, f(x) := argmin, {f(y) + §|y —x|2}

We call r the prox-parameter and x the prox-center
f is prox-bounded if e,f is well-defined for some r > 0

threshold of prox-boundedness = greatest lower bound on such r



Proximal Envelopes

Relation to Proximal Envelopes

The Proximal Envelope® and Proximal Point Mapping

e f(x) = ir}!/f{f(y) + %\y—x\z}

) r
P, f(x) := argmin, {f(y) + §|y —x|2}

We call r the prox-parameter and x the prox-center
f is prox-bounded if e,f is well-defined for some r > 0
threshold of prox-boundedness = greatest lower bound on such r

* Moreau Envelope, Yosida Regularization, Tikhonov Regularization, etc...
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Relation to Proximal Envelopes

Proximal Envelopes are related to conjugate functions via
royx r
(f + §q> (rx) = (—erf + Eq) (x)
Using this, we see
PAx,N) = ((1=N)(h+319) +A(h+1a)) (x) - a(x)
= —el(—(l — )\)elfb — )\elfl)(x)
So

PA(x,0) = —e;(—erfo)(x) and PA(x,1) = —ey(—e1f1)(x)
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Insight

PA(x,0) = —er(—erfo)(x) and PA(x,1) = —er(—e1fi)(x)

Why /when does f; = —ej(—e1f;)?



Proximal Envelopes

Insight

PA(x,0) = —er(—erfo)(x) and PA(x,1) = —er(—e1f1)(x)

Why /when does f; = —ej(—e1f;)?

[Rockafellar & Wets, ‘98]

—e(—ef)=f & f+ %q is convex and Isc
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Proximal-Average

This suggests a new, broader, form for the proximal average

PA(x,A) =—e (—(1—Nefo— e f1)(x)
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Another interesting fact

[Rockafellar & Wets, ‘98]

Let f be proper, Isc, and prox-bounded with threshold r
If o > r >r, then
—e,(—e,f) e CMT

Conclusions
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NC Proximal-Average

These two insights suggest a new NC-Proximal Average:

PA(x,A) = —eraa-x(—(1 = Nerfo — Aefi)(x)
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Basic Results

PA(x,A) = —eraq-x(—(1 = Aerfo — Aerfr)(x)

Implies
PA(x,i) = —e/(—ef;) fori=0,1

so
PA(x,i)=f if fi + %q is convex and Isc
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Basic Results

PA(x,A) = —e,aq-n)(—(1 = Nerfo — Aerfr)(x)

has
“rp, >n" when \e€(0,1)

so
if f; is proper, Isc, and prox-bounded, then for fixed A € (0, 1)

PA(x,\) € C* as a function of x
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Basic Results

PA(x,A) = —e,aq-n)(—(1 = Nerfo — Aerfr)(x)

has
r+X1—X)>r when Xe(0,1)

so
if f; is proper, Isc, and prox-bounded, then for fixed A € (0, 1)

PA(x,\) € C* as a function of x
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L ower-C2

f is lower-C2 on O if

for all x € O there exists p > 0 such that f + gq is convex on O
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Basic Results Revisited

Theorem:
fo, f1 Isc, proper, prox-bounded

r be greater than the threshold of prox-boundedness for fy and f;
Then

@ for all A € [0,1] PA is proper (in x)
@ forall A € (0,1) PA is lower-C2 and C1T (in x)
Q if f; + 5q is convex, then PA,(x,i) = fi(x)



Para-PR

Parametric Prox-regularity
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Sub-differentials

In this talk we will assume regularity, so

Of (x) :={w: f(x) > f(x)+ (w,x — X) + o(|x — X])
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Prox-regular

f is prox-regular (PR) at x for v € 0f(x) if
f is locally Isc at X and there exist p > 0 such that

f(x") > f(x)+ (v,x' — x) — §|X/ — x?

whenever x, x" near x, f(x) near f(x), v € Of(x) near v

Convex = lower-C? = prox-regular
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Parametric Prox-regular

f(x,A) is parametrically prox-regular (para-PR) at X
with compatible parameterization in A at A € domf(x,-)
for v € Oxf(x,\)
if there exits p > 0 such that

F(X,N) > F(x,A) + (v, X' — x) — gyx’ — X2
whenever x, x’ near X, A near )\, f(x, ) near f(x, ), v € 9f(x)
near v
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Example of Parametric PR

Lemma:
fo, fi lower-C? near x
Define
F(x,A) := (1 = N)fo(x) + Mi(x)

Then F is para-PR at X with compatible parameterization in A at
any A € [0,1]
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Example of Parametric PR

Lemma:
fo, fi lower-C? near x
Define
F(x,A) := (1 = N)fo(x) + Mi(x)

Then F is para-PR at X with compatible parameterization in A at
any A € [0,1]

Question: True for f, g PR?



Para-PR

Corollary

Lemma:
fo, f1 Isc, proper, prox-bounded
r be greater than the threshold of prox-boundedness
Then
F(x,A) := —(1 = Nefo(x) — Ae fi(x)

is para-PR at any X with compatible parameterization in A at any
A e 0,1]
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Tool

Theorem [H. & Poliquin, ‘07]

F(x,A) prox-bounded and para-PR at x with compatible
parameterization in A at \

Suppose:

Q (0,y) € O°F ()?,5\) =y=0,
@ (0,)\) € D*(0«F) (%, A\|¥) (0) = X =0,
© there exists p > 0 such that
(X', X') € D*(0«F) (x, A7) (V), v/ #£ 0= (xX,V) > —p|V/|%,
@ 0.F(x,-) has a continuous selection near X,

Then for ¥ and K sufficiently large
PrFx(x) is single-valued, with

[PrFA(x) = P F(X)| < K|(r(x = %) = F'(x" = %), A= X, r = )],

near (X + (1/r)v, A\, F)
(Fx(x) = F(x;A))
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Stability of NC-Proximal Average

fo, f1 Isc, proper, prox-bounded
Suppose P, fy and P, f; are Lipschitz with

lip{r(A\P,fo+ (1= NP — 1} <r,

then, for r sufficiently large and X\ € (0,1) we have
i. PA,isCt in x,
ii. PA, is locally Lipschitz continuous in A, and
iii. VxPA, is locally Lipschitz continuous in A.

If for either i = 0 or i = 1 one has that f; + 5q is convex, then
PA(x,i) = fi(x) for all x

Cororllary: If fy + 59 and fi + 5q are convex then all of the
above holds
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Pretty Pictures
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PA and PA of fo(x) = |x|, A(x) = —|x|

pa pa extended
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* Figures thanks to Yves Lucet

Conclusions
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PA and PA of fy(x) = |x|, A(x) = ||

pa pa extended
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* Figures thanks to Yves Lucet
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Conclusions

Conclusions and Future Directions



Conclusions

Conclusions

Smoothly transforming one function into another is more
challenging than it looks.

One method is the Proximal Average
PA=—ei(—(1— Neifo — Aeth)(x)
Another method is the NC-Proximal Average
PAMx,A) = —erpag—n(—(1 = ANefo — Aerf1)(x)

This NC-Proximal Average enjoys stronger stability, but may
have other drawbacks
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One research direction

What is
minPA,? argminP.A?
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One research direction

What is
minPA,? argminP.A?

Example:

Let fp = ia and f; = ig, where A and B are convex sets.
Then

min P.A, = min {% ((1 — N)dist?(y, A) + Adist?(y, B))}
y

y



Results

(O <Fr <=

«E»

v
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Results

CMS: Windsor Dec 6th, 2009



Thank You
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