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Duality Properties

The Primal Problem

X reflexive Banach space, H a Hilbert space

minimize ϕ(x) s.t. x in X (1)

ϕ : X → R+∞ proper, weakly-lsc

with weakly compact level sets

For constructing the dual, we need the following ingredients...
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Building up the Dual

Take a duality parameterization for (1), i.e.,

g : X × H → R±∞ such that g(x ,0) = ϕ(x) ∀x ∈ X .

and an augmenting function σ : H → R

proper, w-lsc, level-bounded, and:

σ(0) = 0, σ(y) ≥ ‖y‖ ∀y , and Argmin
y

σ(y) = {0}
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The “augmented” Dual

The augmented Lagrangian

L : X × H × R+ → R±∞

L(x , y , r) := inf
z∈H
{g(x , z)− 〈z, y〉+ rσ(z)}

The dual function: q : H × R+ → R−∞

q(y , r) = infx∈X L(x , y , r)

with dual problem:

maximize q(y , r) s.t. (y , r) in H × R+ (D)
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Duality Properties

Augmented Lagrangians proposed by Rockafellar and Wets,
1997:

Strong duality: dual optimal value = primal optimal value
Saddle point properties: get primal solution using dual one
Dual problem is convex: use known solution techniques

Also true in infinite dimensions [Burachik-Rubinov, 2007]
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The subproblem

Fix (y , r) a dual variable, and ε ≥ 0, find:

(x̃ , z̃) ∈ Xε (y , r)

where

Xε (y , r) := {(x , z) ∈ X×H : g(x , z)−〈z, y〉+rσ(z) ≤ q(y , r)+ε}

Fact: (−z̃, σ(z̃))∈ ∂εq (y , r)
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ε-solutions

Let MP := infx∈X ϕ(x) → optimal primal value

and MD := sup(y ,r)∈H×R+
q(y , r) → optimal dual value

Dual solutions=D∗

Fix ε∗ ≥ 0:

x∗ ∈ X is ε∗−primal solution if ϕ(x∗) ≤ MP + ε∗

(y∗, c∗) ∈ H × R+ is ε∗−dual solution if q(y∗, c∗) ≥ MD − ε∗
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An ε-subgradient method

Update rule: Given current wk := (uk , ck ), search along
ε-subgradient direction gk∈ ∂εq(wk ):

wk+1 = wk + sk gk

where step-size sk > 0. An ε-subgradient of q at wk is

gk = (−zk , σ(zk ))

where
(xk , zk ) ∈ Xε(uk , ck )
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Results - I
Results II

Deflected Subgradient Method

Let α > 0, δ ∈ (0,1), ε∗ > 0

Step 0 Choose (u0, c0) with c0≥ 0 and choose εk ↓ 0.
Step k Given (uk , ck ):

Step k .1 Find (xk , zk ) ∈ Xεk (uk , ck ) . If zk = 0 and εk ≤ ε∗, STOP
Step k .2 If zk = 0 and εk > ε∗, set εk = δεk GOTO Step k .1
Step k .3

Set
{

uk+1 := uk − sk zk ,
ck+1 := ck + sk (1 + αk )σ(zk ),

where sk > 0αk∈ (0, α)

10—13
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Let α > 0, δ ∈ (0,1), ε∗ > 0

Step 0 Choose (u0, c0) with c0≥ 0 and choose εk ↓ 0.
Step k Given (uk , ck ):

Step k .1 Find (xk , zk ) ∈ Xεk (uk , ck ) . If zk = 0 and εk ≤ ε∗, STOP
Step k .2 If zk = 0 and εk > ε∗, set εk = δεk GOTO Step k .1
Step k .3

Set
{

uk+1 := uk − sk zk ,
ck+1 := ck + sk (1 + αk )σ(zk ),

where sk > 0αk∈ (0, α)

(Gasimov 2002; Gasimov & Ismayilova 2004)
(Burachik & Gasimov & Ismayilova & Kaya, 2006, Burachik & Kaya 2007,
Burachik & Kaya & Mammadov, 2009)
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Bounded Stepsize

Take β > η > 0 and ηk := min{η, ‖zk‖}, βk := min{β, σ(zk )}

Choose sk ∈ [ηk , βk ]

If εk ≤ MD − q(uk , ck ) + Rσ(zk ) and D∗ 6= ∅, then

Call qk := q(uk , ck )

{qk} converges to MD

{(uk , ck )} converges weakly to a dual solution
If 0 < αk < ᾱ, {xk} bded and accumulation points are
primal solutions
Dual sequence bded iff dual solutions exist
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Unbounded Stepsize

Take β > 0 and a sequence {θk} ⊂ [0, β),
∑
θk =∞

Define ηk := θk
σ(zk ) , βk := β

σ(zk )

Choose sk ∈ [ηk , βk ]

Assume εk ≤ MD − q(yk , ck ) + Rσ(zk )

Dual sequence bded iff dual solutions exist
If D∗ 6= ∅ we have finite termination, at ε∗-primal-dual
optimal solution
If the algorithm generates an infinite sequence (which
implies D∗ = ∅), then

{qk} converges to MD
{xk} bded and accumulation points are primal solutions
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