An inexact primal-dual deflected subgradient algorithm with augmented Lagrangians

R.S.Burachik¹ A.N.Iusem² J.G. Melo²

¹School of Mathematics and Statistics University of South Australia

²Institute for Pure and Applied Mathematics Rio de Janeiro, Brazil

Fixed-Point Algorithms for Inverse Problems in Science and Engineering Banff International Research Station, Canada November 1-6, 2009

Outline

2 Minimizing the Lagrangian

3 Deflected Subgradient Method

・ロト ・ 同ト ・ ヨト ・ ヨト

3 Deflected Subgradient Method

Burachik, lusem, Melo A primal-dual method with augmented Lagrangians

イロト イポト イヨト イヨト

→ E → < E →</p>

< 🗇 🕨

The Primal Problem The Dual Problem Duality Properties

The Primal Problem

X reflexive Banach space, H a Hilbert space

minimize $\varphi(x)$ s.t. x in X (1)

イロン 不得 とくほ とくほ とうほ

 $\varphi: X \to \mathbb{R}_{+\infty}$ proper, weakly-lsc with weakly compact level sets

The Primal Problem The Dual Problem Duality Properties

The Primal Problem

X reflexive Banach space, H a Hilbert space

minimize $\varphi(x)$ s.t. x in X (1)

<ロ> (四) (四) (三) (三) (三) (三)

 $\varphi: X \to \mathbb{R}_{+\infty}$ proper, weakly-lsc with weakly compact level sets

The Primal Problem The Dual Problem Duality Properties

The Primal Problem

X reflexive Banach space, H a Hilbert space

minimize
$$\varphi(x)$$
 s.t. x in X (1)

イロン 不得 とくほ とくほ とうほ

$arphi: \mathbf{X} ightarrow \mathbb{R}_{+\infty}$ proper, weakly-lsc

with weakly compact level sets

The Primal Problem The Dual Problem Duality Properties

The Primal Problem

X reflexive Banach space, H a Hilbert space

minimize
$$\varphi(x)$$
 s.t. x in X (1)

イロン 不得 とくほ とくほ とうほ

$\varphi: X \to \mathbb{R}_{+\infty}$ proper, weakly-lsc with weakly compact level sets

The Primal Problem The Dual Problem Duality Properties

The Primal Problem

X reflexive Banach space, H a Hilbert space

minimize
$$\varphi(x)$$
 s.t. x in X (1)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

 $\varphi: X \to \mathbb{R}_{+\infty}$ proper, weakly-lsc with weakly compact level sets

The Primal Problem The Dual Problem Duality Properties

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Building up the Dual

Take a duality parameterization for (1), i.e.,

 $g: X \times H \to \mathbb{R}_{\pm \infty}$ such that $g(x, 0) = \varphi(x) \quad \forall x \in X$.

and an augmenting function $\sigma: H \to \mathbb{R}$

proper, w-lsc, level-bounded, and:

 $\sigma(0) = 0, \quad \sigma(y) \ge \|y\| \, \forall y, \quad \text{and } \operatorname*{Argmin}_{y} \sigma(y) = \{0\}$

The Primal Problem The Dual Problem Duality Properties

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Building up the Dual

Take a duality parameterization for (1), i.e.,

 $g: X \times H \to \mathbb{R}_{\pm \infty}$ such that $g(x, 0) = \varphi(x) \quad \forall x \in X$.

and an augmenting function $\sigma: H \to \mathbb{R}$

proper, w-lsc, level-bounded, and:

 $\sigma(0) = 0, \quad \sigma(y) \ge \|y\| \, \forall y, \quad \text{and } \operatorname*{Argmin}_{y} \sigma(y) = \{0\}$

The Primal Problem The Dual Problem Duality Properties

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Building up the Dual

Take a duality parameterization for (1), i.e.,

 $g: X \times H \to \mathbb{R}_{\pm \infty}$ such that $g(x, 0) = \varphi(x) \quad \forall x \in X$.

and an augmenting function $\sigma: H \to \mathbb{R}$

proper, w-lsc, level-bounded, and:

 $\sigma(0) = 0, \quad \sigma(y) \ge \|y\| \, \forall y, \quad \text{and } \operatorname*{Argmin}_{y} \sigma(y) = \{0\}$

The Primal Problem The Dual Problem Duality Properties

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Building up the Dual

Take a duality parameterization for (1), i.e.,

 $g: X imes H o \mathbb{R}_{\pm\infty}$ such that $g(x, 0) = \varphi(x) \quad \forall x \in X.$

and an augmenting function $\sigma: H \to \mathbb{R}$

proper, w-lsc, level-bounded, and:

 $\sigma(0) = 0, \quad \sigma(y) \ge \|y\| \, \forall y, \quad \text{and } \operatorname*{Argmin}_{v} \sigma(y) = \{0\}$

The Primal Problem The Dual Problem Duality Properties

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Building up the Dual

Take a duality parameterization for (1), i.e.,

 $g: X \times H \to \mathbb{R}_{\pm \infty}$ such that $g(x, 0) = \varphi(x) \quad \forall x \in X$.

and an augmenting function $\sigma: H \to \mathbb{R}$

proper, w-lsc, level-bounded, and:

$$\sigma(\mathbf{0}) = \mathbf{0}, \quad \sigma(\mathbf{y}) \ge \|\mathbf{y}\| \, \forall \mathbf{y}, \quad \text{and } \operatorname*{Argmin}_{\mathbf{y}} \sigma(\mathbf{y}) = \{\mathbf{0}\}$$

The Primal Problem The Dual Problem Duality Properties

イロト 不得 とくほ とくほう

The "augmented" Dual

The augmented Lagrangian

 $L: X \times H \times \mathbb{R}_+ \to \mathbb{R}_{\pm \infty}$

$$L(x, y, r) := \inf_{z \in H} \{ g(x, z) - \langle z, y \rangle + r\sigma(z) \}$$

The dual function: $q: H \times \mathbb{R}_+ \to \mathbb{R}_{-\infty}$

$$q(y,r) = \inf_{x \in X} L(x,y,r)$$

with dual problem:

maximize q(y,r) s.t. (y,r) in $H imes \mathbb{R}_+$

The Primal Problem The Dual Problem Duality Properties

・ロト ・ ア・ ・ ヨト ・ ヨト

The "augmented" Dual

The augmented Lagrangian

 $L: X \times H \times \mathbb{R}_+ \to \mathbb{R}_{\pm \infty}$

$$L(x, y, r) := \inf_{z \in H} \{g(x, z) - \langle z, y \rangle + r\sigma(z)\}$$

The dual function: $q: H \times \mathbb{R}_+ \to \mathbb{R}_{-\infty}$

$$q(y,r) = \inf_{x \in X} L(x,y,r)$$

with dual problem:

maximize q(y,r) s.t. (y,r) in $H imes \mathbb{R}_+$

The Primal Problem The Dual Problem Duality Properties

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

The "augmented" Dual

The augmented Lagrangian

$$L: X \times H \times \mathbb{R}_+ \to \mathbb{R}_{\pm \infty}$$
$$L(x, y, r) := \inf_{z \in H} \{g(x, z) - \langle z, y \rangle + r\sigma(z)\}$$

The dual function: $q: H \times \mathbb{R}_+ \to \mathbb{R}_{-\infty}$

$$q(y,r) = \inf_{x \in X} L(x,y,r)$$

with dual problem:

maximize q(y,r) s.t. (y,r) in $H imes \mathbb{R}_+$

The Primal Problem The Dual Problem Duality Properties

イロト 不得 とくほ とくほとう

э

The "augmented" Dual

The augmented Lagrangian

$$L: X \times H \times \mathbb{R}_+ \to \mathbb{R}_{\pm \infty}$$

$$L(x, y, r) := \inf_{z \in H} \{g(x, z) - \langle z, y \rangle + r\sigma(z)\}$$

The dual function: $q: H \times \mathbb{R}_+ \to \mathbb{R}_{-\infty}$

$$q(y,r) = \inf_{x \in X} L(x,y,r)$$

with dual problem:

maximize q(y,r) s.t. (y,r) in $H imes \mathbb{R}_+$

The Primal Problem The Dual Problem Duality Properties

イロト 不得 とくほと くほとう

э

The "augmented" Dual

The augmented Lagrangian

$$L: X \times H \times \mathbb{R}_+ \to \mathbb{R}_{\pm \infty}$$

$$L(x, y, r) := \inf_{z \in H} \{g(x, z) - \langle z, y \rangle + r\sigma(z)\}$$

The dual function: $q: H \times \mathbb{R}_+ \to \mathbb{R}_{-\infty}$

$$q(y,r) = \inf_{x \in X} L(x,y,r)$$

with dual problem:

maximize q(y,r) s.t. (y,r) in $H imes \mathbb{R}_+$

The Primal Problem The Dual Problem Duality Properties

ヘロト ヘワト ヘビト ヘビト

The "augmented" Dual

The augmented Lagrangian

$$L: X \times H \times \mathbb{R}_+ \to \mathbb{R}_{\pm \infty}$$

$$L(x, y, r) := \inf_{z \in H} \{g(x, z) - \langle z, y \rangle + r\sigma(z)\}$$

The dual function: $q: H \times \mathbb{R}_+ \to \mathbb{R}_{-\infty}$

$$q(y,r) = \inf_{x \in X} L(x,y,r)$$

with dual problem:

maximize
$$q(y,r)$$
 s.t. (y,r) in $H imes \mathbb{R}_+$

The Primal Problem The Dual Problem Duality Properties

The "augmented" Dual

The augmented Lagrangian

$$L: X \times H \times \mathbb{R}_+ \to \mathbb{R}_{\pm \infty}$$

$$L(x, y, r) := \inf_{z \in H} \{g(x, z) - \langle z, y \rangle + r\sigma(z)\}$$

The dual function: $q: H \times \mathbb{R}_+ \to \mathbb{R}_{-\infty}$

$$q(y,r) = \inf_{x \in X} L(x,y,r)$$

with dual problem:

maximize
$$q(y,r)$$
 s.t. (y,r) in $H imes \mathbb{R}_+$

(D)

The Primal Problem The Dual Problem Duality Properties

Duality Properties

Augmented Lagrangians proposed by Rockafellar and Wets, 1997:

- Strong duality: dual optimal value = primal optimal value
- Saddle point properties: get primal solution using dual one
- Dual problem is convex: use known solution techniques

The Primal Problem The Dual Problem Duality Properties

Duality Properties

Augmented Lagrangians proposed by Rockafellar and Wets, 1997:

Strong duality: dual optimal value = primal optimal value
Saddle point properties: get primal solution using dual one
Dual problem is convex: use known solution techniques

The Primal Problem The Dual Problem Duality Properties

Duality Properties

Augmented Lagrangians proposed by Rockafellar and Wets, 1997:

• Strong duality: dual optimal value = primal optimal value

- Saddle point properties: get primal solution using dual one
- Dual problem is convex: use known solution techniques

The Primal Problem The Dual Problem Duality Properties

Duality Properties

Augmented Lagrangians proposed by Rockafellar and Wets, 1997:

- Strong duality: dual optimal value = primal optimal value
- Saddle point properties: get primal solution using dual one
- Dual problem is convex: use known solution techniques

The Primal Problem The Dual Problem Duality Properties

Duality Properties

Augmented Lagrangians proposed by Rockafellar and Wets, 1997:

- Strong duality: dual optimal value = primal optimal value
- Saddle point properties: get primal solution using dual one
- Dual problem is convex: use known solution techniques

The Primal Problem The Dual Problem Duality Properties

Duality Properties

Augmented Lagrangians proposed by Rockafellar and Wets, 1997:

- Strong duality: dual optimal value = primal optimal value
- Saddle point properties: get primal solution using dual one
- Dual problem is convex: use known solution techniques

The Primal Problem The Dual Problem Duality Properties

Duality Properties

Augmented Lagrangians proposed by Rockafellar and Wets, 1997:

- Strong duality: dual optimal value = primal optimal value
- Saddle point properties: get primal solution using dual one
- Dual problem is convex: use known solution techniques

The subproblem Approximate solutions ϵ -subgradients

The subproblem

Fix (y, r) a dual variable, and $\varepsilon \ge 0$, find:

 $(\tilde{x},\tilde{z})\in X_{\varepsilon}(y,r)$

where

 $X_{\varepsilon}(\mathbf{y},\mathbf{r}) := \{(x,z) \in X \times H : g(x,z) - \langle z, y \rangle + r\sigma(z) \le q(y,r) + \varepsilon\}$

The subproblem Approximate solutions ϵ -subgradients

The subproblem

Fix (y, r) a dual variable, and $\varepsilon \ge 0$, find:

 $(\tilde{x}, \tilde{z}) \in X_{\varepsilon}(\mathbf{y}, \mathbf{r})$

where

 $X_{\varepsilon}(\mathbf{y},\mathbf{r}) := \{(x,z) \in X \times H : g(x,z) - \langle z, y \rangle + r\sigma(z) \le q(y,r) + \varepsilon\}$

The subproblem Approximate solutions ϵ -subgradients

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

The subproblem

Fix (y, r) a dual variable, and $\varepsilon \ge 0$, find:

 $(\tilde{x}, \tilde{z}) \in X_{\varepsilon}(\mathbf{y}, \mathbf{r})$

where

$$X_{\varepsilon}(\mathbf{y},\mathbf{r}) := \{(\mathbf{x},\mathbf{z}) \in \mathbf{X} \times \mathbf{H} : \mathbf{g}(\mathbf{x},\mathbf{z}) - \langle \mathbf{z},\mathbf{y} \rangle + \mathbf{r}\sigma(\mathbf{z}) \leq \mathbf{q}(\mathbf{y},\mathbf{r}) + \varepsilon\}$$

The subproblem Approximate solutions ϵ -subgradients

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

The subproblem

Fix (y, r) a dual variable, and $\varepsilon \ge 0$, find:

 $(\tilde{x},\tilde{z})\in X_{\varepsilon}(y,r)$

where

$$X_{\varepsilon}(\mathbf{y},\mathbf{r}) := \{(\mathbf{x},\mathbf{z}) \in \mathbf{X} \times \mathbf{H} : \mathbf{g}(\mathbf{x},\mathbf{z}) - \langle \mathbf{z},\mathbf{y} \rangle + \mathbf{r}\sigma(\mathbf{z}) \leq \mathbf{q}(\mathbf{y},\mathbf{r}) + \varepsilon\}$$

The subproblem Approximate solutions ϵ -subgradients

ϵ -solutions

Let
$$M_P := \inf_{x \in X} \varphi(x)$$
 \rightarrow optimal primal value
and $M_D := \sup_{(y,r) \in H \times \mathbb{R}_+} q(y,r)$ \rightarrow optimal dual value
Dual solutions= D_*
Fix $\epsilon_* \ge 0$:
 $x_* \in X$ is ϵ_* -primal solution if $\varphi(x_*) \le M_P + \epsilon_*$

 $(y_*, c_*) \in H imes \mathbb{R}_+$ is ϵ_* -dual solution if

$$q(y_*, c_*) \geq M_D - \epsilon_*$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The subproblem Approximate solutions ϵ -subgradients

ϵ -solutions

Let
$$M_P := \inf_{x \in X} \varphi(x) \to \text{optimal primal value}$$

and $M_D := \sup_{(y,r) \in H \times \mathbb{R}_+} q(y,r) \to \text{optimal dual value}$

Fix $\epsilon_{+} > 0$.

 $x_* \in X$ is ϵ_* -primal solution if $\varphi(x_*) \leq M_P + \epsilon_*$

 $(y_*, c_*) \in H \times \mathbb{R}_+$ is ϵ_* -dual solution if

$$q(y_*, c_*) \geq M_D - \epsilon_*$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 - のへで

The subproblem Approximate solutions ϵ -subgradients

ϵ -solutions

Let
$$M_P := \inf_{x \in X} \varphi(x) \longrightarrow \text{optimal primal value}$$

and $M_D := \sup_{(y,r) \in H \times \mathbb{R}_+} q(y,r) \longrightarrow \text{optimal dual value}$

Dual solutions= D_*

Fix $\epsilon_* \geq 0$:

 $x_* \in X$ is ϵ_* -primal solution if $\varphi(x_*) \leq M_P + \epsilon_*$

 $(y_*, c_*) \in H \times \mathbb{R}_+$ is ϵ_* -dual solution if

$$q(y_*, c_*) \geq M_D - \epsilon_*$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

The subproblem Approximate solutions ϵ -subgradients

ϵ -solutions

Let
$$M_P := \inf_{x \in X} \varphi(x) \longrightarrow \text{optimal primal value}$$

and $M_D := \sup_{(y,r) \in H \times \mathbb{R}_+} q(y,r) \longrightarrow \text{optimal dual value}$

Dual solutions= D_*

Fix $\epsilon_* \geq 0$:

 $x_* \in X$ is ϵ_* -primal solution if $\varphi(x_*) \leq M_P + \epsilon_*$

 $(y_*, c_*) \in H \times \mathbb{R}_+$ is ϵ_* -dual solution if

$$q(y_*, c_*) \geq M_D - \epsilon_*$$

<ロ>

The subproblem Approximate solutions ϵ -subgradients

ϵ -solutions

Let
$$M_P := \inf_{x \in X} \varphi(x)$$
 \rightarrow optimal primal value
and $M_D := \sup_{(y,r) \in H \times \mathbb{R}_+} q(y,r)$ \rightarrow optimal dual value

Dual solutions=D_{*}

Fix $\epsilon_* \geq 0$:

 $x_* \in X$ is ϵ_* -primal solution if $\varphi(x_*) \leq M_P + \epsilon_*$

 $(y_*, c_*) \in H \times \mathbb{R}_+$ is ϵ_* -dual solution if

$$q(y_*, c_*) \geq M_D - \epsilon_*$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The subproblem Approximate solutions ϵ -subgradients

ϵ -solutions

Let
$$M_P := \inf_{x \in X} \varphi(x)$$
 \rightarrow optimal primal value
and $M_D := \sup_{(y,r) \in H \times \mathbb{R}_+} q(y,r)$ \rightarrow optimal dual value

Dual solutions= D_*

Fix $\epsilon_* \geq 0$:

 $x_* \in X$ is ϵ_* -primal solution if $\varphi(x_*) \leq M_P + \epsilon_*$

 $(y_*, c_*) \in H imes \mathbb{R}_+$ is ϵ_* -dual solution if

$$\mathsf{if} \quad q(y_*, c_*) \geq M_D - \epsilon_*$$

The subproblem Approximate solutions ϵ -subgradients

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

An *e*-subgradient method

Update rule: Given current $w_k := (u_k, c_k)$, search along ϵ -subgradient direction $g_k \in \partial_{\epsilon}q(w_k)$:

 $W_{k+1} = W_k + S_k g_k$

where step-size $s_k > 0$. An ϵ -subgradient of q at w_k is

 $g_k = (-z_k, \sigma(z_k))$

where

 $(x_k, z_k) \in X_{\epsilon}(u_k, c_k)$

The subproblem Approximate solutions ϵ -subgradients

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

An *e*-subgradient method

Update rule: Given current $w_k := (u_k, c_k)$, search along ϵ -subgradient direction $g_k \in \partial_{\epsilon} q(w_k)$:

 $W_{k+1} = W_k + S_k g_k$

where step-size $s_k > 0$. An ϵ -subgradient of q at w_k is

 $g_k = (-z_k, \sigma(z_k))$

where

 $(x_k, z_k) \in X_\epsilon(u_k, c_k)$

The subproblem Approximate solutions ϵ -subgradients

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

An *e*-subgradient method

Update rule: Given current $w_k := (u_k, c_k)$, search along ϵ -subgradient direction $g_k \in \partial_{\epsilon} q(w_k)$:

 $W_{k+1} = W_k + S_k g_k$

where step-size $s_k > 0$. An ϵ -subgradient of q at w_k is

 $g_k = (-z_k, \sigma(z_k))$

where

 $(x_k, z_k) \in X_{\epsilon}(u_k, c_k)$

The subproblem Approximate solutions ϵ -subgradients

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

An *e*-subgradient method

Update rule: Given current $w_k := (u_k, c_k)$, search along ϵ -subgradient direction $g_k \in \partial_{\epsilon} q(w_k)$:

 $W_{k+1} = W_k + S_k g_k$

where step-size $s_k > 0$. An ϵ -subgradient of q at w_k is

 $g_k = (-z_k, \sigma(z_k))$

where

 $(x_k, z_k) \in X_{\epsilon}(u_k, c_k)$

The subproblem Approximate solutions ϵ -subgradients

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

An *e*-subgradient method

Update rule: Given current $w_k := (u_k, c_k)$, search along ϵ -subgradient direction $g_k \in \partial_{\epsilon} q(w_k)$:

 $W_{k+1} = W_k + S_k \, \underline{g}_k$

where step-size $s_k > 0$. An ϵ -subgradient of q at w_k is

 $g_k = (-z_k, \sigma(z_k))$

where

 $(x_k, z_k) \in X_\epsilon(u_k, c_k)$

The subproblem Approximate solutions ϵ -subgradients

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

An *e*-subgradient method

Update rule: Given current $w_k := (u_k, c_k)$, search along ϵ -subgradient direction $g_k \in \partial_{\epsilon}q(w_k)$:

 $W_{k+1} = W_k + S_k g_k$

where step-size $s_k > 0$. An ϵ -subgradient of q at w_k is

 $g_k = (-z_k, \sigma(z_k))$

where

 $(x_k, z_k) \in X_\epsilon(u_k, c_k)$

The subproblem Approximate solutions ϵ -subgradients

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

An *e*-subgradient method

Update rule: Given current $w_k := (u_k, c_k)$, search along ϵ -subgradient direction $g_k \in \partial_{\epsilon} q(w_k)$:

 $W_{k+1} = W_k + S_k g_k$

where step-size $s_k > 0$. An ϵ -subgradient of q at w_k is

 $g_k = (-z_k, \sigma(z_k))$

where

 $(x_k, z_k) \in X_{\epsilon}(u_k, c_k)$

Convergence Result: Results - I Results II

Deflected Subgradient Method

```
Let \alpha > 0, \delta \in (0, 1), \epsilon_* > 0
```

Step 0 Choose (u_0, c_0) with $c_0 \ge 0$ and choose $\epsilon_k \downarrow 0$. Step k Given (u_k, c_k) :

Since $\mathcal{O}_{i_{1}}$ and $(\alpha_{i_{1}}, \alpha_{i_{2}}) \in \mathcal{X}_{i_{1}}(\alpha_{i_{1}}, \alpha_{i_{2}}) \cup [1, \alpha_{i_{2}} = 0 \text{ and } \alpha_{i_{1}} \leq \alpha_{i_{1}} \text{ STOP}$ Since $\mathcal{O}_{i_{2}}$ and $(\alpha_{i_{2}}, \alpha_{i_{2}}, \alpha_{i_{2}}, \alpha_{i_{2}}) \in \mathcal{O}_{i_{2}}$ (SOTO Step $\mathcal{I}_{i_{2}}$) Since $\mathcal{O}_{i_{2}}$

 $\operatorname{Set} = \left\{ \begin{array}{ccc} a_{k+1} & \cdots & a_k = 3 a_{k+1} \\ a_{k+1} & \cdots & a_{k+1} \cdot a_k (1+a_k) \sigma(a_k), \\ a_{k+1} & \cdots & a_{k+1} \cdot a_k (1+a_k) \sigma(a_k), \end{array} \right.$

Convergence Results Results - I Results II

Deflected Subgradient Method

Let $\alpha > 0, \delta \in (0, 1), \epsilon_* > 0$

Step **0** Choose (u_0, c_0) with $c_0 \ge 0$ and choose $\epsilon_k \downarrow 0$. Step *k* Given (u_k, c_k) :

Step *k*.1 Find $(x_k, z_k) \in X_{\epsilon_k}(u_k, c_k)$. If $z_k = 0$ and $\epsilon_k \le \epsilon_*$, STOP Step *k*.2 If $z_k = 0$ and $\epsilon_k > \epsilon_*$, set $\epsilon_k = \delta \epsilon_k$ GOTO Step *k*.1 Step *k*.3

 $\operatorname{Set} \quad \left\{ \begin{array}{ll} u_{k+1} & := & u_k - s_k z_k \ , \\ c_{k+1} & := & c_k + s_k (1 + \alpha_k) \sigma(z_k), \end{array} \right.$

Convergence Results Results - I Results II

Deflected Subgradient Method

Let $\alpha > 0, \delta \in (0, 1), \epsilon_* > 0$

Step 0 Choose (u_0, c_0) with $c_0 \ge 0$ and choose $\epsilon_k \downarrow 0$.

Step **k** Given (u_k, c_k) :

Step *k*.1 Find $(x_k, z_k) \in X_{\epsilon_k}(u_k, c_k)$. If $z_k = 0$ and $\epsilon_k \le \epsilon_*$, STOP Step *k*.2 If $z_k = 0$ and $\epsilon_k > \epsilon_*$, set $\epsilon_k = \delta \epsilon_k$ GOTO Step *k*.1 Step *k*.3

Set $\begin{cases} u_{k+1} &:= u_k - s_k z_k ,\\ c_{k+1} &:= c_k + s_k (1 + \alpha_k) \sigma(z_k), \end{cases}$

Convergence Result: Results - I Results II

Deflected Subgradient Method

Let $\alpha > 0, \delta \in (0, 1), \epsilon_* > 0$

Step 0 Choose (u_0, c_0) with $c_0 \ge 0$ and choose $\epsilon_k \downarrow 0$. Step *k* Given (u_k, c_k) :

Step *k*.1 Find $(x_k, z_k) \in X_{\epsilon_k}(u_k, c_k)$. If $z_k = 0$ and $\epsilon_k \le \epsilon_*$, STOP Step *k*.2 If $z_k = 0$ and $\epsilon_k > \epsilon_*$, set $\epsilon_k = \delta \epsilon_k$ GOTO Step *k*.1 Step *k*.3

Set
$$\begin{cases} u_{k+1} := u_k - s_k z_k ,\\ c_{k+1} := c_k + s_k (1 + \alpha_k) \sigma(z_k), \end{cases}$$

Convergence Result Results - I Results II

Deflected Subgradient Method

Let $\alpha > 0, \delta \in (0, 1), \epsilon_* > 0$

Step 0 Choose (u_0, c_0) with $c_0 \ge 0$ and choose $\epsilon_k \downarrow 0$.

Step *k* Given (u_k, c_k) : Step *k*.1 Find $(x_k, z_k) \in X_{\epsilon_k}(u_k, c_k)$. If $z_k = 0$ and $\epsilon_k \le \epsilon_*$, STOP Step *k*.2 If $z_k = 0$ and $\epsilon_k > \epsilon_*$, set $\epsilon_k = \delta \epsilon_k$ GOTO Step *k*.1 Step *k*.3

Set
$$\begin{cases} u_{k+1} := u_k - s_k Z_k ,\\ c_{k+1} := c_k + s_k (1 + \alpha_k) \sigma(Z_k), \end{cases}$$

Convergence Result Results - I Results II

Deflected Subgradient Method

Let $\alpha > 0, \delta \in (0, 1), \epsilon_* > 0$

Step 0 Choose (u_0, c_0) with $c_0 \ge 0$ and choose $\epsilon_k \downarrow 0$.

Step **k** Given (u_k, c_k) :

Step *k*.1 Find $(x_k, z_k) \in X_{\epsilon_k}(u_k, c_k)$. If $z_k = 0$ and $\epsilon_k \le \epsilon_*$, STOP Step *k*.2 If $z_k = 0$ and $\epsilon_k > \epsilon_*$, set $\epsilon_k = \delta \epsilon_k$ GOTO Step *k*.1 Step *k*.3

Set
$$\begin{cases} u_{k+1} := u_k - s_k z_k ,\\ c_{k+1} := c_k + s_k (1 + \alpha_k) \sigma(z_k), \end{cases}$$

Convergence Result Results - I Results II

Deflected Subgradient Method

Let $\alpha > 0, \delta \in (0, 1), \epsilon_* > 0$

Step 0 Choose (u_0, c_0) with $c_0 \ge 0$ and choose $\epsilon_k \downarrow 0$.

Step **k** Given (u_k, c_k) :

Step k.1 Find $(x_k, z_k) \in X_{\epsilon_k}(u_k, c_k)$. If $z_k = 0$ and $\epsilon_k \le \epsilon_*$, STOP Step k.2 If $z_k = 0$ and $\epsilon_k > \epsilon_*$, set $\epsilon_k = \delta \epsilon_k$ GOTO Step k.1 Step k.3

Set
$$\begin{cases} u_{k+1} := u_k - s_k z_k, \\ c_{k+1} := c_k + s_k (1 + \alpha_k) \sigma(z_k), \end{cases}$$

Convergence Resuli Results - I Results II

Deflected Subgradient Method

Let $\alpha > 0, \delta \in (0, 1), \epsilon_* > 0$

Step 0 Choose (u_0, c_0) with $c_0 \ge 0$ and choose $\epsilon_k \downarrow 0$.

Step **k** Given (u_k, c_k) :

Step k.1 Find $(x_k, z_k) \in X_{\epsilon_k}(u_k, c_k)$. If $z_k = 0$ and $\epsilon_k \le \epsilon_*$, STOP Step k.2 If $z_k = 0$ and $\epsilon_k > \epsilon_*$, set $\epsilon_k = \delta \epsilon_k$ GOTO Step k.1 Step k.3

Set
$$\begin{cases} u_{k+1} := u_k - s_k z_k, \\ c_{k+1} := c_k + s_k (1 + \alpha_k) \sigma(z_k), \end{cases}$$

where $s_k > 0 \alpha_k \in (0, \alpha)$

(Gasimov 2002; Gasimov & Ismayilova 2004) (Burachik & Gasimov & Ismayilova & Kaya, 2006, Burachik & Kaya 2007, Burachik & Kaya & Mammadov, 2009)

Basic Result

Convergence Results Results - I Results II

For every choice of s_k, α_k

If stops at iteration k, then

 x_k is ϵ_* -primal optimal, and

Basic Result

Convergence Results Results - I Results II

For every choice of s_k, α_k

If stops at iteration k, then

 x_k is ϵ_* -primal optimal, and

Basic Result

Convergence Results Results - I Results II

For every choice of s_k, α_k

If stops at iteration k, then

 x_k is ϵ_* -primal optimal, and

Basic Result

Convergence Results Results - I Results II

イロン 不得 とくほ とくほう 一日

For every choice of s_k, α_k

If stops at iteration k, then

 x_k is ϵ_* -primal optimal, and

Convergence Results Results - I Results II

Bounded Stepsize

Take $\beta > \eta > 0$ and $\eta_k := \min\{\eta, \|z_k\|\}, \ \beta_k := \min\{\beta, \sigma(z_k)\}$

Choose $s_k \in [\eta_k, \beta_k]$

If $\epsilon_k \leq M_D - q(u_k, c_k) + R\sigma(z_k)$ and $D_* \neq \emptyset$, then

- $\{q_k\}$ converges to M_D
- $\{(u_k, c_k)\}$ converges weakly to a dual solution
- If 0 < α_k < α

 {x_k} bded and accumulation points are primal solutions
- Dual sequence bded iff dual solutions exist

Convergence Results Results - I Results II

Bounded Stepsize

Take $\beta > \eta > 0$ and $\eta_k := \min\{\eta, \|z_k\|\}, \ \beta_k := \min\{\beta, \sigma(z_k)\}$

Choose $s_k \in [\eta_k, \beta_k]$

If $\epsilon_k \leq M_D - q(u_k, c_k) + R\sigma(z_k)$ and $D_* \neq \emptyset$, then

- $\{q_k\}$ converges to M_D
- $\{(u_k, c_k)\}$ converges weakly to a dual solution
- If 0 < α_k < α

 (x_k) bded and accumulation points are primal solutions
- Dual sequence bded iff dual solutions exist

Convergence Results Results - I Results II

Bounded Stepsize

Take $\beta > \eta > 0$ and $\eta_k := \min\{\eta, \|z_k\|\}, \ \beta_k := \min\{\beta, \sigma(z_k)\}$

Choose $s_k \in [\eta_k, \beta_k]$

If $\epsilon_k \leq M_D - q(u_k, c_k) + R\sigma(z_k)$ and $D_* \neq \emptyset$, then

- $\{q_k\}$ converges to M_D
- $\{(u_k, c_k)\}$ converges weakly to a dual solution
- If 0 < α_k < α

 {x_k} bded and accumulation points are primal solutions
- Dual sequence bded iff dual solutions exist

Convergence Results Results - I Results II

Bounded Stepsize

Take $\beta > \eta > 0$ and $\eta_k := \min\{\eta, \|z_k\|\}, \ \beta_k := \min\{\beta, \sigma(z_k)\}$

Choose $s_k \in [\eta_k, \beta_k]$

If $\epsilon_k \leq M_D - q(u_k, c_k) + R\sigma(z_k)$ and $D_* \neq \emptyset$, then

- $\{q_k\}$ converges to M_D
- {(uk, ck)} converges weakly to a dual solution
- If 0 < α_k < α
 < , {x_k} bded and accumulation points are primal solutions
- Dual sequence bded iff dual solutions exist

Convergence Results Results - I Results II

Bounded Stepsize

Take
$$\beta > \eta > 0$$
 and $\eta_k := \min\{\eta, \|z_k\|\}, \ \beta_k := \min\{\beta, \sigma(z_k)\}$

Choose $s_k \in [\eta_k, \beta_k]$

If $\epsilon_k \leq M_D - q(u_k, c_k) + R\sigma(z_k)$ and $D_* \neq \emptyset$, then

- $\{q_k\}$ converges to M_D
- $\{(u_k, c_k)\}$ converges weakly to a dual solution
- If 0 < α_k < α
 < , {x_k} bded and accumulation points are primal solutions
- Dual sequence bded iff dual solutions exist

Convergence Results Results - I Results II

Bounded Stepsize

Take
$$\beta > \eta > 0$$
 and $\eta_k := \min\{\eta, \|z_k\|\}, \ \beta_k := \min\{\beta, \sigma(z_k)\}$

Choose $s_k \in [\eta_k, \beta_k]$

If $\epsilon_k \leq M_D - q(u_k, c_k) + R\sigma(z_k)$ and $D_* \neq \emptyset$, then

- $\{q_k\}$ converges to M_D
- $\{(u_k, c_k)\}$ converges weakly to a dual solution
- If 0 < α_k < α
 , {x_k} bded and accumulation points are primal solutions
- Dual sequence bded iff dual solutions exist

Convergence Results Results - I Results II

Bounded Stepsize

Take
$$\beta > \eta > 0$$
 and $\eta_k := \min\{\eta, \|z_k\|\}, \ \beta_k := \min\{\beta, \sigma(z_k)\}$

Choose $s_k \in [\eta_k, \beta_k]$

If $\epsilon_k \leq M_D - q(u_k, c_k) + R\sigma(z_k)$ and $D_* \neq \emptyset$, then

- $\{q_k\}$ converges to M_D
- $\{(u_k, c_k)\}$ converges weakly to a dual solution
- If 0 < α_k < α
 , {x_k} bded and accumulation points are primal solutions
- Dual sequence bded iff dual solutions exist

Convergence Results Results - I Results II

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Bounded Stepsize

Take
$$\beta > \eta > 0$$
 and $\eta_k := \min\{\eta, \|z_k\|\}, \ \beta_k := \min\{\beta, \sigma(z_k)\}$

Choose $s_k \in [\eta_k, \beta_k]$

If $\epsilon_k \leq M_D - q(u_k, c_k) + R\sigma(z_k)$ and $D_* \neq \emptyset$, then

- $\{q_k\}$ converges to M_D
- $\{(u_k, c_k)\}$ converges weakly to a dual solution
- If 0 < α_k < α
 , {x_k} bded and accumulation points are primal solutions
- Dual sequence bded iff dual solutions exist

Convergence Results Results - I Results II

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Bounded Stepsize

Take
$$\beta > \eta > 0$$
 and $\eta_k := \min\{\eta, \|z_k\|\}, \ \beta_k := \min\{\beta, \sigma(z_k)\}$

Choose $s_k \in [\eta_k, \beta_k]$

If $\epsilon_k \leq M_D - q(u_k, c_k) + R\sigma(z_k)$ and $D_* \neq \emptyset$, then

- $\{q_k\}$ converges to M_D
- $\{(u_k, c_k)\}$ converges weakly to a dual solution
- If 0 < α_k < α
 , {x_k} bded and accumulation points are primal solutions
- Dual sequence bded iff dual solutions exist

Convergence Results Results - I Results II

Unbounded Stepsize

Take $\beta > 0$ and a sequence $\{\theta_k\} \subset [0, \beta), \sum \theta_k = \infty$

- Define $\eta_k := \frac{\theta_k}{\sigma(z_k)}, \ \beta_k := \frac{\beta}{\sigma(z_k)}$
- Choose $s_k \in [\eta_k, \beta_k]$

- Dual sequence bded iff dual solutions exist
- If D_{*} ≠ Ø we have finite termination, at ε_{*}-primal-dual optimal solution
- If the algorithm generates an infinite sequence (which implies D_{*} = ∅), then
 - $\circ \{g_k\}$ converges to M_D
 - < ロ > < 四 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Convergence Results Results - I Results II

Unbounded Stepsize

Take $\beta > 0$ and a sequence $\{\theta_k\} \subset [0, \beta), \sum \theta_k = \infty$

Define $\eta_k := \frac{\theta_k}{\sigma(z_k)}, \ \beta_k := \frac{\beta}{\sigma(z_k)}$

Choose $s_k \in [\eta_k, \beta_k]$

- Dual sequence bded iff dual solutions exist
- If D_{*} ≠ Ø we have finite termination, at ε_{*}-primal-dual optimal solution
- If the algorithm generates an infinite sequence (which implies D_{*} = ∅), then
 - $\circ \{q_k\}$ converges to M_D
 - < ロ > (@ > < 注 > < 注 > 、 注

Convergence Results Results - I Results II

Unbounded Stepsize

Take $\beta > 0$ and a sequence $\{\theta_k\} \subset [0, \beta), \sum \theta_k = \infty$

Define
$$\eta_k := \frac{\theta_k}{\sigma(z_k)}, \ \beta_k := \frac{\beta}{\sigma(z_k)}$$

Choose $s_k \in [\eta_k, \beta_k]$

- Dual sequence bded iff dual solutions exist
- If D_{*} ≠ Ø we have finite termination, at ε_{*}-primal-dual optimal solution
- If the algorithm generates an infinite sequence (which implies D_{*} = ∅), then
 - $\sim \{q_k\}$ converges to M_D
 - < ロ > < 四 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Convergence Results Results - I Results II

Unbounded Stepsize

Take $\beta > 0$ and a sequence $\{\theta_k\} \subset [0, \beta), \sum \theta_k = \infty$

Define
$$\eta_k := \frac{\theta_k}{\sigma(z_k)}, \ \beta_k := \frac{\beta}{\sigma(z_k)}$$

Choose $s_k \in [\eta_k, \beta_k]$

- Dual sequence bded iff dual solutions exist
- If D_{*} ≠ Ø we have finite termination, at ε_{*}-primal-dual optimal solution
- If the algorithm generates an infinite sequence (which implies D_{*} = ∅), then
 - $\sim \{q_k\}$ converges to M_D
 - < ロ > < 四 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = <

Convergence Results Results - I Results II

Unbounded Stepsize

Take $\beta > 0$ and a sequence $\{\theta_k\} \subset [0, \beta), \sum \theta_k = \infty$

Define
$$\eta_k := \frac{\theta_k}{\sigma(z_k)}, \ \beta_k := \frac{\beta}{\sigma(z_k)}$$

Choose $s_k \in [\eta_k, \beta_k]$

- Dual sequence bded iff dual solutions exist
- If D_{*} ≠ Ø we have finite termination, at ε_{*}-primal-dual optimal solution
- If the algorithm generates an infinite sequence (which implies D_{*} = ∅), then
 - $\sim \{q_k\}$ converges to M_D
 - < ロ > < 四 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = <

Convergence Results Results - I Results II

Unbounded Stepsize

Take $\beta > 0$ and a sequence $\{\theta_k\} \subset [0, \beta), \sum \theta_k = \infty$

Define
$$\eta_k := \frac{\theta_k}{\sigma(z_k)}, \ \beta_k := \frac{\beta}{\sigma(z_k)}$$

Choose $s_k \in [\eta_k, \beta_k]$

Assume
$$\epsilon_k \leq M_D - q(y_k, c_k) + R\sigma(z_k)$$

Dual sequence bded iff dual solutions exist

- If D_{*} ≠ Ø we have finite termination, at e_{*}-primal-dual optimal solution
- If the algorithm generates an infinite sequence (which implies *D*_{*} = ∅), then
 - $\{q_k\}$ converges to M_D
 - $\{x_k\}$ bded and accumulation points are primal solutions

Convergence Results Results - I Results II

Unbounded Stepsize

Take $\beta > 0$ and a sequence $\{\theta_k\} \subset [0, \beta), \sum \theta_k = \infty$

Define
$$\eta_k := \frac{\theta_k}{\sigma(z_k)}, \ \beta_k := \frac{\beta}{\sigma(z_k)}$$

Assume
$$\epsilon_k \leq M_D - q(y_k, c_k) + R\sigma(z_k)$$

- Dual sequence bded iff dual solutions exist
- If D_{*} ≠ Ø we have finite termination, at ϵ_{*}-primal-dual optimal solution
- If the algorithm generates an infinite sequence (which implies *D*_{*} = ∅), then
 - $\{q_k\}$ converges to M_D
 - {x_k} bded and accumulation points are primal solutions

Convergence Results Results - I Results II

Unbounded Stepsize

Take $\beta > 0$ and a sequence $\{\theta_k\} \subset [0, \beta), \sum \theta_k = \infty$

Define
$$\eta_k := \frac{\theta_k}{\sigma(z_k)}, \ \beta_k := \frac{\beta}{\sigma(z_k)}$$

Assume
$$\epsilon_k \leq M_D - q(y_k, c_k) + R\sigma(z_k)$$

- Dual sequence bded iff dual solutions exist
- If D_{*} ≠ Ø we have finite termination, at ϵ_{*}-primal-dual optimal solution
- If the algorithm generates an infinite sequence (which implies D_{*} = ∅), then
 - $\{q_k\}$ converges to M_D
 - $\{x_k\}$ bded and accumulation points are primal solutions

Convergence Results Results - I Results II

Unbounded Stepsize

Take $\beta > 0$ and a sequence $\{\theta_k\} \subset [0, \beta), \sum \theta_k = \infty$

Define
$$\eta_k := \frac{\theta_k}{\sigma(z_k)}, \ \beta_k := \frac{\beta}{\sigma(z_k)}$$

Assume
$$\epsilon_k \leq M_D - q(y_k, c_k) + R\sigma(z_k)$$

- Dual sequence bded iff dual solutions exist
- If D_{*} ≠ Ø we have finite termination, at ϵ_{*}-primal-dual optimal solution
- If the algorithm generates an infinite sequence (which implies *D*_{*} = ∅), then
 - $\{q_k\}$ converges to M_D
 - $\{x_k\}$ bded and accumulation points are primal solutions

Convergence Results Results - I Results II

Unbounded Stepsize

Take $\beta > 0$ and a sequence $\{\theta_k\} \subset [0, \beta), \sum \theta_k = \infty$

Define
$$\eta_k := \frac{\theta_k}{\sigma(z_k)}, \ \beta_k := \frac{\beta}{\sigma(z_k)}$$

Assume
$$\epsilon_k \leq M_D - q(y_k, c_k) + R\sigma(z_k)$$

- Dual sequence bded iff dual solutions exist
- If D_{*} ≠ Ø we have finite termination, at ϵ_{*}-primal-dual optimal solution
- If the algorithm generates an infinite sequence (which implies *D*_{*} = ∅), then
 - $\{q_k\}$ converges to M_D
 - $\{x_k\}$ bded and accumulation points are primal solutions