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Example: (Nexp{—z})(z)=x+1

Newton (exp(-x) ,X) ;

r+1
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u=Nf
(a) If f is twice differentiable, then

fz) " ()
f'(x)?

u' (1) =

( is a zero of order m of f if

fl)=(z—-C()"g(x), m>0, g(C)#0

(b) If ¢ is a zero of f of order m, then

Yy = M= Do) +2(a = ') + (2 = O (a)

m?g(x)? + 2(z — ()mg(x)g'(x) + (z — ¢)*g'(x)?

as x — (, provided lim (z — ¢)g’'(x) = lim (z — ¢)?*g"(x) = 0.
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u=Nf
(a) If f is twice differentiable, then

fz) " ()
f'(x)?

u' (1) =
( is a zero of order m of f if
flo)=(x—=¢)"glx), m>0,g(()#0
(b) If ¢ is a zero of f of order m, then

m(m — 1)g(z)* +2(z — )g'(z) + (z — ¢)*g" ()

) = g+ 2~ Omae)g (@) (&~ O @)

as x — (, provided lin%(ac — g (z) = limg_(zc —{)?g"(x) = 0.
(c) If ¢ is a zero of f of order m < 1, then f is not differentiable at
m — 1

¢, but v may be defined and differentiable at ¢, with v/({) = ——.
m
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N~ 1u is defined up to a constant, since Nf = N(c f) for all ¢ # 0
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The 1nverse Newton transform

The inverse Newton transform N~!'u of a function u : R — R,
is a (differentiable) function f such that Nf = u, or,

— ;,((:3 = u(x).
N~ 1u is defined up to a constant, since Nf = N(c f) for all ¢ # 0
Example: (N_1x1/3) (x) = ($2/3 _ 1)3/2

Example: (N_l(ac + 1)) (x) = exp{—=x}

X

Questions:

Fixed points {u} = Zeros {f} U Singularities { f'}

Attracting fixed points {u} L Zeros {f}

Quadratic convergence of u =Nf7?

11-b



-2

Fixed points of u(x) at 0, +1 Corresponding points of f(x)




Fixed points {u} = Zeros {f}
f(x)
f'(x)

Theorem. Let f be differentiable at ¢, and in (a)—(c), f'({) # 0.

u(xr) =

(a) ¢ is a zero of f if, and only if, it is a fixed point of u.
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differentiable at (, then ( is an attracting fixed point of wu.




Fixed points {u} = Zeros {f}
f(x)
/()

Theorem. Let f be differentiable at ¢, and in (a)—(c), f'({) # 0.

u(x) =

(a) ¢ is a zero of f if, and only if, it is a fixed point of u.

(b) If ¢ is a zero of f, f and u are twice differentiable at (, then (
is a superattracting fixed point of u, and convergence is (at least)

quadratic.

(c) If ¢ is a zero of f of order m > %, and wu is continuously

differentiable at (, then ( is an attracting fixed point of wu.

(d) Let ¢ have a neighborhood where u and f are continuously
differentiable, and f’(x) # 0 except possibly at z = (. If { is an
attracting fixed point of u then it is a zero of f.




An integral form of N!

Theorem. Let u be a function: R — R, D a region where
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An integral form of N!

Theorem. Let u be a function: R — R, D a region where

1
r — u(x)

is integrable. Then in D,

(N_lu)(x):C-exp{/ d },07&0.

r — u(x)

Moreover, if C > 0 then N~ 1u is

a) increasing if x > u(x),

b) decreasing if x < u(x),

(
(
(c) convex if u is differentiable and increasing, or
(

d) concave if u is differentiable and decreasing.




(N“lu)(x) = C - exp { /

Assuming x # u(x),




(N“lu)(x) = C - exp { /

Assuming x # u(x),

f(z)

without loss of generality, C' = 1.
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InverseNewton:=proc(u,x) ;

simplify(exp(int(1/(x-u),x)));end:




-

InverseNewton:=proc(u,x) ;
simplify(exp(int(1/(x-u),x)));end:

Examples:
InverseNewton(Newton (f (x) ,x),x);

f(z)
Newton(InverseNewton(u(x) ,x) ,x);

u(x)

InverseNewton(x"2,x) ;

r—1






f(x)

) — a4

u(x) =x —

InverseNewton (x—-f (x)/(diff (f (x),x)-a(x)*xf(x)),x);

() exp {— / a(x)dx}




f(x)

P —af)’ | L

u(x) =x —

InverseNewton (x—-f (x)/(diff (f (x),x)-a(x)*xf(x)),x);

() exp {— / a(x)dx}

For the Halley method




u has attracting fixed point at 0




For a # 0, N !(au(x)

Corollary. If a # 0 and b are reals, and

f:=N"1(u(az +0b)),

then (N~Y(au+ b))(z) = f (x_b) |

a

Proof.

/x<aifx>+b>/a((



For a # 0, N !(au(x)

Corollary. If a # 0 and b are reals, and

f:=N"1(u(az +0b)),

then (N“'(au+b))(z) = f(

Proof.

/:U — (aizgx) +b)

Equivalently, if
o(x)=ax+0b, a#0

then
N~ (pu) = 7' N~ (ug),



Reverse iteration

If u is monotone then x := u(x) is reversed by z := u~(z, )
Corollary. Let u be monotone and differentiable, and let,

s = ([ Ga)

(NTHu™)(@) = f(u"(2)).

Proof. The inverse Newton transform of ! is

N ) as) =esp { [0

Ty —um ()

Then

changing variables to z = u~!(xz,) we get

o (z) da }

u(z) —x

(N~ (1)) (u(x)) = exp { /

proving the corollary.




ReverseNewton:=proc(u,x);
simplify(exp(int(diff (u,x)/(u-x),x)));end:

Example. u(z) = 22, ' (z) = 2/3.

subs (x=x"(1/3) ,ReverseNewton(x~3,x));
(331/3 o 1)3/2 (331/3 4 1)3/2

again

(N—l(acl/?))) () = (22 — 1)3/2




The logistic iteration
ux)=pux(1—-x), 0<x<1,1<u<4

expand (InverseNewton (u*x*(1-x) ,x)) ;

(1—p+px)

x(—l—ku)_l

(a) - fz) = (N"Tu) (z) = (

(b) Fixed points {u} = {07 M—_l}

7

(c¢) The fixed point ”T_l is attracting for 1 < u < 3

(d) f(x) is convex [concave] for z < 3 [z > 7]




The logistic function with y =0.5,1,2, 3,4
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Chaos explained

The inverse Newton transform of u(z) = px (1 — x)

(N1u) (2) = ()




5—cycle for = 3.74

1_

Starting at and returning to .9349453234




Ping pong — 1




Ping pong — 2




Ping pong — 3




Ping pong — 4




Ping pong — 5




Complex Newton iteration: (Geometry
f(z)
f'(z)

f'(z) #0

Z_|_ =7 —
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(A) Let
z=x iy« (2,y)

be the natural correspondence between C and R?, and let

F(x,y) = f(z) for z «— (z,y).




Complex Newton iteration: (Geometry
f(z)
f'(z)

f'(z) #0

2, — 7 —
(A) Let
z=x iy« (2,y)
be the natural correspondence between C and R?, and let
P(a,y) = f(2) for z — (z,y).

(B) Let T'C R? be the plane tangent to the graph of |F| at the
point (z,y, |F(z,y)|), and let L be the line of intersection of 7" and

the (x,y)—plane (L is nonempty by the assumption that f'(z) # 0.)




Complex Newton iteration: (Geometry

() o
f’(Z)7 f( )#O

Z_|_ =7 —

(A) Let

z=x iy« (2,y)

be the natural correspondence between C and R?, and let

F(x,y) = f(z) for z «— (z,y).

(B) Let T'C R? be the plane tangent to the graph of |F| at the
point (z,y, |F(z,y)|), and let L be the line of intersection of 7" and

the (z,y)—plane (L is nonempty by the assumption that f/(z) # 0.)

(C) Then
2y (T4, Y4),

the perpendicular projection of (x,y) on L.




Illustration

Vifltz)




Level sets of |z* — 1] and iterates converging to i




The Mandelbrot set
M :={c: {zy: 21,1 =27 + ¢, zg = 0} is bounded}

InverseNewton(z"2+c,z) ;

2 22z—1
e — arcta
Xp{: vdc—1 ' Il(v4c——1)}

InverseNewton(z"2+(1/4) ,z);
=
exp

InverseNewton(z"2,z) ;




Level sets of [N71(22)|




Level sets of [IN71(22 + 1)
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