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The Newton transform

The Newton transform Nf of a differentiable f : R→ R is

(Nf)(x) := x− f(x)

f ′(x)
.
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The Newton transform

The Newton transform Nf of a differentiable f : R→ R is

(Nf)(x) := x− f(x)

f ′(x)
.

It can be computed symbolically, for example using Maple,

Newton:=proc(f,x); x-f/diff(f,x); end:
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The Newton transform

The Newton transform Nf of a differentiable f : R→ R is

(Nf)(x) := x− f(x)

f ′(x)
.

It can be computed symbolically, for example using Maple,

Newton:=proc(f,x); x-f/diff(f,x); end:

Example:
(

N(x2/3 − 1)3/2
)

(x) = x1/3

simplify(Newton((x^(2/3)-1)^(3/2),x));

x1/3
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The Newton transform

The Newton transform Nf of a differentiable f : R→ R is

(Nf)(x) := x− f(x)

f ′(x)
.

It can be computed symbolically, for example using Maple,

Newton:=proc(f,x); x-f/diff(f,x); end:

Example:
(

N(x2/3 − 1)3/2
)

(x) = x1/3

simplify(Newton((x^(2/3)-1)^(3/2),x));

x1/3

Example: (N exp{−x}) (x) = x + 1

Newton(exp(-x),x);

x + 1
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u = Nf

(a) If f is twice differentiable, then

u′(x) =
f(x)f ′′(x)

f ′(x)2
.
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u = Nf

(a) If f is twice differentiable, then

u′(x) =
f(x)f ′′(x)

f ′(x)2
.

ζ is a zero of order m of f if

f(x) = (x− ζ)m g(x), m > 0, g(ζ) 6= 0

(b) If ζ is a zero of f of order m, then

u′(x) =
m(m− 1)g(x)2 + 2(x− ζ)g′(x) + (x− ζ)2g′′(x)

m2g(x)2 + 2(x− ζ)mg(x)g′(x) + (x− ζ)2g′(x)2
−→ m− 1

m
,

as x→ ζ, provided lim
x→ζ

(x− ζ)g′(x) = lim
x→ζ

(x− ζ)2g′′(x) = 0.
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u = Nf

(a) If f is twice differentiable, then

u′(x) =
f(x)f ′′(x)

f ′(x)2
.

ζ is a zero of order m of f if

f(x) = (x− ζ)m g(x), m > 0, g(ζ) 6= 0

(b) If ζ is a zero of f of order m, then

u′(x) =
m(m− 1)g(x)2 + 2(x− ζ)g′(x) + (x− ζ)2g′′(x)

m2g(x)2 + 2(x− ζ)mg(x)g′(x) + (x− ζ)2g′(x)2
−→ m− 1

m
,

as x→ ζ, provided lim
x→ζ

(x− ζ)g′(x) = lim
x→ζ

(x− ζ)2g′′(x) = 0.

(c) If ζ is a zero of f of order m < 1, then f is not differentiable at

ζ, but u may be defined and differentiable at ζ, with u′(ζ) =
m− 1

m
.
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The inverse Newton transform

The inverse Newton transform N−1u of a function u : R→ R,

is a (differentiable) function f such that Nf = u, or,

x− f(x)

f ′(x)
= u(x).

N−1u is defined up to a constant, since Nf = N(c f) for all c 6= 0
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The inverse Newton transform

The inverse Newton transform N−1u of a function u : R→ R,

is a (differentiable) function f such that Nf = u, or,

x− f(x)

f ′(x)
= u(x).

N−1u is defined up to a constant, since Nf = N(c f) for all c 6= 0

Example:
(

N−1x1/3
)

(x) = (x2/3 − 1)3/2

Example:
(

N−1(x + 1)
)

(x) = exp{−x}

11-a



The inverse Newton transform

The inverse Newton transform N−1u of a function u : R→ R,

is a (differentiable) function f such that Nf = u, or,

x− f(x)

f ′(x)
= u(x).

N−1u is defined up to a constant, since Nf = N(c f) for all c 6= 0

Example:
(

N−1x1/3
)

(x) = (x2/3 − 1)3/2

Example:
(

N−1(x + 1)
)

(x) = exp{−x}
Questions:

Fixed points {u} ?
= Zeros {f} ∪ Singularities {f ′}

Attracting fixed points {u} ?
= Zeros {f}

Quadratic convergence of u = Nf ?
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u(x) = x1/3, f(x) =
(

N−1u
)

(x) = (x2/3 − 1)3/2

Fixed points of u(x) at 0,±1 Corresponding points of f(x)
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Fixed points {u} ?
= Zeros {f}

u(x) = x− f(x)

f ′(x)

Theorem. Let f be differentiable at ζ, and in (a)–(c), f ′(ζ) 6= 0.

(a) ζ is a zero of f if, and only if, it is a fixed point of u.
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Fixed points {u} ?
= Zeros {f}

u(x) = x− f(x)

f ′(x)

Theorem. Let f be differentiable at ζ, and in (a)–(c), f ′(ζ) 6= 0.

(a) ζ is a zero of f if, and only if, it is a fixed point of u.

(b) If ζ is a zero of f , f and u are twice differentiable at ζ, then ζ

is a superattracting fixed point of u, and convergence is (at least)

quadratic.
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Fixed points {u} ?
= Zeros {f}

u(x) = x− f(x)

f ′(x)

Theorem. Let f be differentiable at ζ, and in (a)–(c), f ′(ζ) 6= 0.

(a) ζ is a zero of f if, and only if, it is a fixed point of u.

(b) If ζ is a zero of f , f and u are twice differentiable at ζ, then ζ

is a superattracting fixed point of u, and convergence is (at least)

quadratic.

(c) If ζ is a zero of f of order m > 1

2
, and u is continuously

differentiable at ζ, then ζ is an attracting fixed point of u.
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Fixed points {u} ?
= Zeros {f}

u(x) = x− f(x)

f ′(x)
Theorem. Let f be differentiable at ζ, and in (a)–(c), f ′(ζ) 6= 0.

(a) ζ is a zero of f if, and only if, it is a fixed point of u.

(b) If ζ is a zero of f , f and u are twice differentiable at ζ, then ζ

is a superattracting fixed point of u, and convergence is (at least)

quadratic.

(c) If ζ is a zero of f of order m > 1

2
, and u is continuously

differentiable at ζ, then ζ is an attracting fixed point of u.

(d) Let ζ have a neighborhood where u and f are continuously

differentiable, and f ′(x) 6= 0 except possibly at x = ζ. If ζ is an

attracting fixed point of u then it is a zero of f .
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An integral form of N−1

Theorem. Let u be a function: R→ R, D a region where

1

x− u(x)

is integrable. Then in D,

(N−1u)(x) = C · exp

{
∫

dx

x− u(x)

}

, C 6= 0.
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An integral form of N−1

Theorem. Let u be a function: R→ R, D a region where

1

x− u(x)

is integrable. Then in D,

(N−1u)(x) = C · exp

{
∫

dx

x− u(x)

}

, C 6= 0.

Moreover, if C > 0 then N−1u is

(a) increasing if x > u(x),

(b) decreasing if x < u(x),
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An integral form of N−1

Theorem. Let u be a function: R→ R, D a region where

1

x− u(x)

is integrable. Then in D,

(N−1u)(x) = C · exp

{
∫

dx

x− u(x)

}

, C 6= 0.

Moreover, if C > 0 then N−1u is

(a) increasing if x > u(x),

(b) decreasing if x < u(x),

(c) convex if u is differentiable and increasing, or

(d) concave if u is differentiable and decreasing.
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(N−1u)(x) = C · exp

{
∫

dx

x− u(x)

}

Assuming x 6= u(x),

u(x) = x− f(x)

f ′(x)
=⇒ f ′(x)

f(x)
=

1

x− u(x)
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(N−1u)(x) = C · exp

{
∫

dx

x− u(x)

}

Assuming x 6= u(x),

u(x) = x− f(x)

f ′(x)
=⇒ f ′(x)

f(x)
=

1

x− u(x)

∴ ln f(x) =

∫

dx

x− u(x)
+ C

∴ f(x) = C exp

{
∫

dx

x− u(x)

}

without loss of generality, C = 1.
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f(x) = exp

{
∫

dx

x− u(x)

}

∴ f ′(x) =
1

x− u(x)
exp

{
∫

dx

x− u(x)

}

∴ f ′′(x) =
u′(x)

(x− u(x))2
exp

{
∫

dx

x− u(x)

}
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f(x) = exp

{
∫

dx

x− u(x)

}

∴ f ′(x) =
1

x− u(x)
exp

{
∫

dx

x− u(x)

}

∴ f ′′(x) =
u′(x)

(x− u(x))2
exp

{
∫

dx

x− u(x)

}

x > u(x) =⇒ f ′(x) > 0

u′(x) > 0 =⇒ f ′′(x) > 0
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(N−1u)(x) = exp

{
∫

dx

x− u(x)

}

InverseNewton:=proc(u,x);

simplify(exp(int(1/(x-u),x)));end:
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(N−1u)(x) = exp

{
∫

dx

x− u(x)

}

InverseNewton:=proc(u,x);

simplify(exp(int(1/(x-u),x)));end:

Examples:

InverseNewton(Newton(f(x),x),x);

f(x)

Newton(InverseNewton(u(x),x),x);

u(x)

InverseNewton(x^2,x);
x

x− 1
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u(x) = x− f(x)

f ′(x)− a(x)f(x)
, N−1u =?

26



u(x) = x− f(x)

f ′(x)− a(x)f(x)
, N−1u =?

InverseNewton(x-f(x)/(diff(f(x),x)-a(x)*f(x)),x);

f(x) exp

{

−
∫

a(x)dx

}
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u(x) = x− f(x)

f ′(x)− a(x)f(x)
, N−1u =?

InverseNewton(x-f(x)/(diff(f(x),x)-a(x)*f(x)),x);

f(x) exp

{

−
∫

a(x)dx

}

For the Halley method

H(x) := x− f(x)

f ′(x)− f ′′(x)f(x)

2f ′(x)

(

N−1H
)

(x) =
f(x)√

f ′x
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u(x) = x− 1

2
x3, f(x) = (N−1u)(x) = exp

{

− 1

x2

}

u has attracting fixed point at 0 f (k)(0) = 0, ∀ k
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For a 6= 0, N−1(au(x) + b) = ?

Corollary. If a 6= 0 and b are reals, and

f := N−1(u(a x + b)),

then (N−1(a u + b))(x) = f

(

x− b

a

)

.

Proof.
∫

dx

x− (a u(x) + b)
=

∫

dx

a

((

x− b

a

)

− u(x)

) , etc.
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For a 6= 0, N−1(au(x) + b) = ?

Corollary. If a 6= 0 and b are reals, and

f := N−1(u(a x + b)),

then (N−1(a u + b))(x) = f

(

x− b

a

)

.

Proof.
∫

dx

x− (a u(x) + b)
=

∫

dx

a

((

x− b

a

)

− u(x)

) , etc.

Equivalently, if

φ(x) = ax + b, a 6= 0

then

N−1(φu) = φ−1N−1(uφ),
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Reverse iteration

If u is monotone then x+ := u(x) is reversed by x := u−1(x+)

Corollary. Let u be monotone and differentiable, and let,

f(x) := exp

{
∫

u′(x) dx

u(x)− x

}

Then

(N−1(u−1))(x) = f(u−1(x)).

Proof. The inverse Newton transform of u−1 is

(N−1(u−1))(x+) = exp

{
∫

dx+

x+ − u−1(x+)

}

changing variables to x = u−1(x+) we get

(N−1(u−1))(u(x)) = exp

{
∫

u′(x) dx

u(x)− x

}

proving the corollary. 2
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(N−1(u−1))(x) = f(u−1(x))

f(x) := exp

{

∫ u′(x)dx

u(x)− x

}

ReverseNewton:=proc(u,x);

simplify(exp(int(diff(u,x)/(u-x),x)));end:

Example. u(x) = x3, u−1(x) = x1/3.

subs(x=x^(1/3),ReverseNewton(x^3,x));

(x1/3 − 1)3/2 (x1/3 + 1)3/2

again
(

N−1(x1/3)
)

(x) = (x2/3 − 1)3/2
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The logistic iteration

u(x) = µx (1− x), 0 ≤ x ≤ 1, 1 ≤ µ ≤ 4

expand(InverseNewton(µ*x*(1-x),x));

(1− µ + µx)(−1+µ)−1

x(−1+µ)−1

(a) ∴ f(x) = (N−1u) (x) =

(

x− µ−1
µ

x

)
1

µ−1

(b) Fixed points {u} =
{

0, µ−1
µ

}

(c) The fixed point µ−1
µ

is attracting for 1 ≤ µ < 3

(d) f(x) is convex [concave] for x < 1
2

[x > 1
2
]
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u(x) = µx (1− x)

The logistic function with µ = 0.5, 1, 2, 3, 4
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Chaos

100 iterates of the logistic function for selected values of 2 ≤ µ ≤ 4
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Chaos explained

The inverse Newton transform of u(x) = µx (1− x)

(N−1u) (x) =

(

x− µ−1
µ

x

)
1

µ−1

µ = 2.0 µ = 3.74
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5–cycle for µ = 3.74

Starting at and returning to .9349453234
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Ping pong – 1
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Ping pong – 2
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Ping pong – 3
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Ping pong – 4
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Ping pong – 5
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Complex Newton iteration: Geometry

z+ := z− f(z)

f ′(z)
, f ′(z) 6= 0
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Complex Newton iteration: Geometry

z+ := z− f(z)

f ′(z)
, f ′(z) 6= 0

(A) Let

z = x + i y ←→ (x, y)

be the natural correspondence between C and R2, and let

F (x, y) := f(z) for z ←→ (x, y).
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Complex Newton iteration: Geometry

z+ := z− f(z)

f ′(z)
, f ′(z) 6= 0

(A) Let

z = x + i y ←→ (x, y)

be the natural correspondence between C and R2, and let

F (x, y) := f(z) for z ←→ (x, y).

(B) Let T ⊂ R3 be the plane tangent to the graph of |F | at the

point (x, y, |F (x, y)|), and let L be the line of intersection of T and

the (x, y)–plane (L is nonempty by the assumption that f ′(z) 6= 0.)
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Complex Newton iteration: Geometry

z+ := z− f(z)

f ′(z)
, f ′(z) 6= 0

(A) Let

z = x + i y ←→ (x, y)

be the natural correspondence between C and R2, and let

F (x, y) := f(z) for z ←→ (x, y).

(B) Let T ⊂ R3 be the plane tangent to the graph of |F | at the

point (x, y, |F (x, y)|), and let L be the line of intersection of T and

the (x, y)–plane (L is nonempty by the assumption that f ′(z) 6= 0.)

(C) Then

z+ ←→ (x+, y+),

the perpendicular projection of (x, y) on L.
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Illustration

ζx

y

2

z

T

L

y

x

k

k

k

k+1
z

∆

ζ1

|f(z)|
|f(z)|

|f(z  )|
k

k|f|(z  )
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z4 = 1

Level sets of |z4 − 1| and iterates converging to i
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The Mandelbrot set

M := {c : {zk : zk+1 := z2

k
+ c, z0 = 0} is bounded}

InverseNewton(z^2+c,z);

exp

{

− 2√
4 c− 1

arctan

(

2 z − 1√
4 c− 1

)}

InverseNewton(z^2+(1/4),z);

exp

{

2

2z − 1

}

InverseNewton(z^2,z);
z

z − 1
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0 ∈M

Level sets of |N−1(z2)|
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i ∈M

Level sets of |N−1(z2 + i)|
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More in

http://benisrael.net/Newton.html
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