An inverse Newton transform Adi Ben-Israel (Rutgers University)

An inverse Newton transform

Adi Ben-Israel (Rutgers University)

Interdisciplinary Workshop on Fixed-Point Algorithms for
Inverse Problems in Science and Engineering Banff International Research Station, November 2, 2009 Thanks!

An inverse Newton transform

Adi Ben-Israel (Rutgers University)

Interdisciplinary Workshop on Fixed-Point Algorithms for
Inverse Problems in Science and Engineering Banff International Research Station, November 2, 2009 Thanks!

The Newton transform

The Newton transform $\mathbf{N} f$ of a differentiable $f: \mathbb{R} \rightarrow \mathbb{R}$ is

$$
(\mathbf{N} f)(x):=x-\frac{f(x)}{f^{\prime}(x)}
$$

The Newton transform

The Newton transform $\mathbf{N} f$ of a differentiable $f: \mathbb{R} \rightarrow \mathbb{R}$ is

$$
(\mathbf{N} f)(x):=x-\frac{f(x)}{f^{\prime}(x)}
$$

It can be computed symbolically, for example using Maple, Newton: $=\operatorname{proc}(\mathrm{f}, \mathrm{x}) ; \mathrm{x}-\mathrm{f} / \operatorname{diff}(\mathrm{f}, \mathrm{x})$; end:

The Newton transform

The Newton transform $\mathbf{N} f$ of a differentiable $f: \mathbb{R} \rightarrow \mathbb{R}$ is

$$
(\mathbf{N} f)(x):=x-\frac{f(x)}{f^{\prime}(x)}
$$

It can be computed symbolically, for example using Maple,
Newton: $=\operatorname{proc}(\mathrm{f}, \mathrm{x}) ; \mathrm{x}-\mathrm{f} / \operatorname{diff}(\mathrm{f}, \mathrm{x})$; end:
Example: $\left(\mathbf{N}\left(x^{2 / 3}-1\right)^{3 / 2}\right)(x)=x^{1 / 3}$
simplify (Newton $\left.\left(\left(x^{\wedge}(2 / 3)-1\right)^{\wedge}(3 / 2), x\right)\right)$;

$$
x^{1 / 3}
$$

The Newton transform

The Newton transform $\mathbf{N} f$ of a differentiable $f: \mathbb{R} \rightarrow \mathbb{R}$ is

$$
(\mathbf{N} f)(x):=x-\frac{f(x)}{f^{\prime}(x)}
$$

It can be computed symbolically, for example using Maple,
Newton: $=\operatorname{proc}(\mathrm{f}, \mathrm{x}) ; \mathrm{x}-\mathrm{f} / \operatorname{diff}(\mathrm{f}, \mathrm{x})$; end:
Example: $\left(\mathbf{N}\left(x^{2 / 3}-1\right)^{3 / 2}\right)(x)=x^{1 / 3}$
simplify (Newton $\left.\left(\left(x^{\wedge}(2 / 3)-1\right) \wedge(3 / 2), x\right)\right)$;

$$
x^{1 / 3}
$$

Example: $(\mathbf{N} \exp \{-x\})(x)=x+1$
Newton ($\exp (-\mathrm{x}), \mathrm{x})$;

$$
x+1
$$

$$
u=\mathbf{N} f
$$

(a) If f is twice differentiable, then

$$
u^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}} .
$$

$$
u=\mathbf{N} f
$$

(a) If f is twice differentiable, then

$$
u^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}}
$$

ζ is a zero of order m of f if

$$
f(x)=(x-\zeta)^{m} g(x), \quad m>0, g(\zeta) \neq 0
$$

(b) If ζ is a zero of f of order m, then
$u^{\prime}(x)=\frac{m(m-1) g(x)^{2}+2(x-\zeta) g^{\prime}(x)+(x-\zeta)^{2} g^{\prime \prime}(x)}{m^{2} g(x)^{2}+2(x-\zeta) m g(x) g^{\prime}(x)+(x-\zeta)^{2} g^{\prime}(x)^{2}} \longrightarrow \frac{m-1}{m}$,
as $x \rightarrow \zeta$, provided $\lim _{x \rightarrow \zeta}(x-\zeta) g^{\prime}(x)=\lim _{x \rightarrow \zeta}(x-\zeta)^{2} g^{\prime \prime}(x)=0$.

$$
u=\mathbf{N} f
$$

(a) If f is twice differentiable, then

$$
u^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}}
$$

ζ is a zero of order m of f if

$$
f(x)=(x-\zeta)^{m} g(x), \quad m>0, g(\zeta) \neq 0
$$

(b) If ζ is a zero of f of order m, then
$u^{\prime}(x)=\frac{m(m-1) g(x)^{2}+2(x-\zeta) g^{\prime}(x)+(x-\zeta)^{2} g^{\prime \prime}(x)}{m^{2} g(x)^{2}+2(x-\zeta) m g(x) g^{\prime}(x)+(x-\zeta)^{2} g^{\prime}(x)^{2}} \longrightarrow \frac{m-1}{m}$,
as $x \rightarrow \zeta$, provided $\lim _{x \rightarrow \zeta}(x-\zeta) g^{\prime}(x)=\lim _{x \rightarrow \zeta}(x-\zeta)^{2} g^{\prime \prime}(x)=0$.
(c) If ζ is a zero of f of order $m<1$, then f is not differentiable at ζ, but u may be defined and differentiable at ζ, with $u^{\prime}(\zeta)=\frac{m-1}{m}$.

The inverse Newton transform

The inverse Newton transform $\mathbf{N}^{-1} u$ of a function $u: \mathbb{R} \rightarrow \mathbb{R}$, is a (differentiable) function f such that $\mathbf{N} f=u$, or,

$$
x-\frac{f(x)}{f^{\prime}(x)}=u(x)
$$

$\mathbf{N}^{-1} u$ is defined up to a constant, since $\mathbf{N} f=\mathbf{N}(c f)$ for all $c \neq 0$

The inverse Newton transform

The inverse Newton transform $\mathbf{N}^{-1} u$ of a function $u: \mathbb{R} \rightarrow \mathbb{R}$, is a (differentiable) function f such that $\mathbf{N} f=u$, or,

$$
x-\frac{f(x)}{f^{\prime}(x)}=u(x)
$$

$\mathbf{N}^{-1} u$ is defined up to a constant, since $\mathbf{N} f=\mathbf{N}(c f)$ for all $c \neq 0$
Example: $\left(\mathbf{N}^{-1} x^{1 / 3}\right)(x)=\left(x^{2 / 3}-1\right)^{3 / 2}$
Example: $\left(\mathbf{N}^{-1}(x+1)\right)(x)=\exp \{-x\}$

The inverse Newton transform

The inverse Newton transform $\mathbf{N}^{-1} u$ of a function $u: \mathbb{R} \rightarrow \mathbb{R}$, is a (differentiable) function f such that $\mathbf{N} f=u$, or,

$$
x-\frac{f(x)}{f^{\prime}(x)}=u(x)
$$

$\mathbf{N}^{-1} u$ is defined up to a constant, since $\mathbf{N} f=\mathbf{N}(c f)$ for all $c \neq 0$
Example: $\left(\mathbf{N}^{-1} x^{1 / 3}\right)(x)=\left(x^{2 / 3}-1\right)^{3 / 2}$
Example: $\left(\mathbf{N}^{-1}(x+1)\right)(x)=\exp \{-x\}$
Questions:
Fixed points $\{u\} \stackrel{?}{=}$ Zeros $\{f\} \cup$ Singularities $\left\{f^{\prime}\right\}$
Attracting fixed points $\{u\} \stackrel{?}{=}$ Zeros $\{f\}$
Quadratic convergence of $u=\mathbf{N} f$?

$$
\mathbf{u}(\mathbf{x})=\mathbf{x}^{1 / 3}, \mathbf{f}(\mathbf{x})=\left(\mathbf{N}^{-1} \mathbf{u}\right)(\mathbf{x})=\left(\mathbf{x}^{2 / 3}-1\right)^{3 / 2}
$$

Fixed points of $u(x)$ at $0, \pm 1$

Corresponding points of $f(x)$

Fixed points $\{u\} \stackrel{?}{=}$ Zeros $\{f\}$
 $$
u(x)=x-\frac{f(x)}{f^{\prime}(x)}
$$

Theorem. Let f be differentiable at ζ, and in (a)-(c), $f^{\prime}(\zeta) \neq 0$.
(a) ζ is a zero of f if, and only if, it is a fixed point of u.

$$
\begin{gathered}
\text { Fixed points }\{u\} \stackrel{?}{=} \text { Zeros }\{f\} \\
u(x)=x-\frac{f(x)}{f^{\prime}(x)}
\end{gathered}
$$

Theorem. Let f be differentiable at ζ, and in (a)-(c), $f^{\prime}(\zeta) \neq 0$. (a) ζ is a zero of f if, and only if, it is a fixed point of u.
(b) If ζ is a zero of f, f and u are twice differentiable at ζ, then ζ is a superattracting fixed point of u, and convergence is (at least) quadratic.

$$
\begin{gathered}
\text { Fixed points }\{u\} \stackrel{?}{=} \text { Zeros }\{f\} \\
u(x)=x-\frac{f(x)}{f^{\prime}(x)}
\end{gathered}
$$

Theorem. Let f be differentiable at ζ, and in (a)-(c), $f^{\prime}(\zeta) \neq 0$.
(a) ζ is a zero of f if, and only if, it is a fixed point of u.
(b) If ζ is a zero of f, f and u are twice differentiable at ζ, then ζ is a superattracting fixed point of u, and convergence is (at least) quadratic.
(c) If ζ is a zero of f of order $m>\frac{1}{2}$, and u is continuously differentiable at ζ, then ζ is an attracting fixed point of u.

$$
\begin{gathered}
\text { Fixed points }\{u\} \stackrel{?}{=} \text { Zeros }\{f\} \\
u(x)=x-\frac{f(x)}{f^{\prime}(x)}
\end{gathered}
$$

Theorem. Let f be differentiable at ζ, and in (a)-(c), $f^{\prime}(\zeta) \neq 0$.
(a) ζ is a zero of f if, and only if, it is a fixed point of u.
(b) If ζ is a zero of f, f and u are twice differentiable at ζ, then ζ is a superattracting fixed point of u, and convergence is (at least) quadratic.
(c) If ζ is a zero of f of order $m>\frac{1}{2}$, and u is continuously differentiable at ζ, then ζ is an attracting fixed point of u.
(d) Let ζ have a neighborhood where u and f are continuously differentiable, and $f^{\prime}(x) \neq 0$ except possibly at $x=\zeta$. If ζ is an attracting fixed point of u then it is a zero of f.

An integral form of \mathbf{N}^{-1}

Theorem. Let u be a function: $\mathbb{R} \rightarrow \mathbb{R}, D$ a region where

$$
\frac{1}{x-u(x)}
$$

is integrable. Then in D,

$$
\left(\mathbf{N}^{-1} u\right)(x)=C \cdot \exp \left\{\int \frac{d x}{x-u(x)}\right\}, C \neq 0
$$

An integral form of \mathbf{N}^{-1}

Theorem. Let u be a function: $\mathbb{R} \rightarrow \mathbb{R}, D$ a region where

$$
\frac{1}{x-u(x)}
$$

is integrable. Then in D,

$$
\left(\mathbf{N}^{-1} u\right)(x)=C \cdot \exp \left\{\int \frac{d x}{x-u(x)}\right\}, C \neq 0
$$

Moreover, if $C>0$ then $\mathbf{N}^{-1} u$ is
(a) increasing if $x>u(x)$,
(b) decreasing if $x<u(x)$,

An integral form of \mathbf{N}^{-1}

Theorem. Let u be a function: $\mathbb{R} \rightarrow \mathbb{R}, D$ a region where

$$
\frac{1}{x-u(x)}
$$

is integrable. Then in D,

$$
\left(\mathbf{N}^{-1} u\right)(x)=C \cdot \exp \left\{\int \frac{d x}{x-u(x)}\right\}, C \neq 0
$$

Moreover, if $C>0$ then $\mathbf{N}^{-1} u$ is
(a) increasing if $x>u(x)$,
(b) decreasing if $x<u(x)$,
(c) convex if u is differentiable and increasing, or
(d) concave if u is differentiable and decreasing.

$$
\left(\mathbf{N}^{-\mathbf{1}} \mathbf{u}\right)(\mathbf{x})=\mathbf{C} \cdot \exp \left\{\int \frac{\mathbf{d x}}{\mathbf{x}-\mathbf{u}(\mathbf{x})}\right\}
$$

Assuming $x \neq u(x)$,

$$
u(x)=x-\frac{f(x)}{f^{\prime}(x)} \quad \Longrightarrow \quad \frac{f^{\prime}(x)}{f(x)}=\frac{1}{x-u(x)}
$$

$$
\left(\mathbf{N}^{-\mathbf{1}} \mathbf{u}\right)(\mathbf{x})=\mathbf{C} \cdot \exp \left\{\int \frac{\mathbf{d x}}{\mathbf{x}-\mathbf{u}(\mathbf{x})}\right\}
$$

Assuming $x \neq u(x)$,

$$
\begin{aligned}
& u(x)= x-\frac{f(x)}{f^{\prime}(x)} \Longrightarrow \frac{f^{\prime}(x)}{f(x)}=\frac{1}{x-u(x)} \\
& \therefore \ln f(x)=\int \frac{d x}{x-u(x)}+C \\
& \therefore f(x)=C \exp \left\{\int \frac{d x}{x-u(x)}\right\}
\end{aligned}
$$

without loss of generality, $C=1$.

$$
\begin{aligned}
& \mathbf{f}(\mathbf{x})=\exp \left\{\int \frac{\mathbf{d x}}{\mathbf{x}-\mathbf{u}(\mathbf{x})}\right\} \\
& \therefore f^{\prime}(x)=\frac{1}{x-u(x)} \exp \left\{\int \frac{d x}{x-u(x)}\right\} \\
& \therefore f^{\prime \prime}(x)=\frac{u^{\prime}(x)}{(x-u(x))^{2}} \exp \left\{\int \frac{d x}{x-u(x)}\right\}
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{f}(\mathbf{x})=\exp \left\{\int \frac{\mathbf{d x}}{\mathbf{x}-\mathbf{u}(\mathbf{x})}\right\} \\
\therefore f^{\prime}(x)=\frac{1}{x-u(x)} \exp \left\{\int \frac{d x}{x-u(x)}\right\} \\
\therefore f^{\prime \prime}(x)=\frac{u^{\prime}(x)}{(x-u(x))^{2}} \exp \left\{\int \frac{d x}{x-u(x)}\right\} \\
x>u(x) \Longrightarrow \quad f^{\prime}(x)>0 \\
u^{\prime}(x)>0 \quad \Longrightarrow \quad f^{\prime \prime}(x)>0
\end{gathered}
$$

$$
\left(\mathbf{N}^{-1} \mathbf{u}\right)(\mathbf{x})=\exp \left\{\int \frac{\mathbf{d x}}{\mathbf{x}-\mathbf{u}(\mathbf{x})}\right\}
$$

InverseNewton: $=\operatorname{proc}(\mathrm{u}, \mathrm{x})$; simplify $(\exp (\operatorname{int}(1 /(x-u), x)))$;end:

$$
\left(\mathbf{N}^{-\mathbf{1}} \mathbf{u}\right)(\mathbf{x})=\exp \left\{\int \frac{\mathbf{d x}}{\mathbf{x}-\mathbf{u}(\mathbf{x})}\right\}
$$

InverseNewton:=proc(u,x);
simplify $(\exp (\operatorname{int}(1 /(x-u), x)))$; end:
Examples:
InverseNewton(Newton($\mathrm{f}(\mathrm{x}), \mathrm{x}$) , x) ;

$$
f(x)
$$

Newton(InverseNewton(u(x), $x), x$;

$$
u(x)
$$

InverseNewton($\mathrm{x}^{\wedge} 2, \mathrm{x}$);

$$
\frac{x}{x-1}
$$

$$
\mathbf{u}(\mathbf{x})=\mathbf{x}-\frac{\mathbf{f}(\mathbf{x})}{\mathbf{f}^{\prime}(\mathbf{x})-\mathbf{a}(\mathbf{x}) \mathbf{f}(\mathbf{x})}, \quad \mathbf{N}^{-\mathbf{1}} \mathbf{u}=?
$$

$$
\mathbf{u}(\mathbf{x})=\mathbf{x}-\frac{\mathbf{f}(\mathbf{x})}{\mathbf{f}^{\prime}(\mathbf{x})-\mathbf{a}(\mathbf{x}) \mathbf{f}(\mathbf{x})}, \quad \mathbf{N}^{-\mathbf{1}} \mathbf{u}=?
$$

InverseNewton($\mathrm{x}-\mathrm{f}(\mathrm{x}) /(\operatorname{diff}(\mathrm{f}(\mathrm{x}), \mathrm{x})-\mathrm{a}(\mathrm{x}) * \mathrm{f}(\mathrm{x})), \mathrm{x})$;

$$
f(x) \exp \left\{-\int a(x) d x\right\}
$$

$$
\mathbf{u}(\mathbf{x})=\mathbf{x}-\frac{\mathbf{f}(\mathbf{x})}{\mathbf{f}^{\prime}(\mathbf{x})-\mathbf{a}(\mathbf{x}) \mathbf{f}(\mathbf{x})}, \quad \mathbf{N}^{-\mathbf{1}} \mathbf{u}=?
$$

InverseNewton($x-f(x) /(\operatorname{diff}(f(x), x)-a(x) * f(x)), x) ;$

$$
f(x) \exp \left\{-\int a(x) d x\right\}
$$

For the Halley method

$$
\begin{gathered}
H(x):=x-\frac{f(x)}{f^{\prime}(x)-\frac{f^{\prime \prime}(x) f(x)}{2 f^{\prime}(x)}} \\
\left(\mathbf{N}^{-1} H\right)(x)=\frac{f(x)}{\sqrt{f^{\prime} x}}
\end{gathered}
$$

$$
u(x)=x-\frac{1}{2} x^{3}, \quad f(x)=\left(N^{-1} u\right)(x)=\exp \left\{-\frac{1}{x^{2}}\right\}
$$

u has attracting fixed point at 0
$f^{(k)}(0)=0, \forall k$

For $\mathbf{a} \neq 0, \quad \mathbf{N}^{-1}(\mathrm{au}(\mathrm{x})+\mathrm{b})=?$

Corollary. If $a \neq 0$ and b are reals, and

$$
f:=\mathbf{N}^{-1}(u(a x+b)),
$$

then $\quad\left(\mathbf{N}^{-1}(a u+b)\right)(x)=f\left(\frac{x-b}{a}\right)$.
Proof.

$$
\int \frac{d x}{x-(a u(x)+b)}=\int \frac{d x}{a\left(\left(\frac{x-b}{a}\right)-u(x)\right)}, \text { etc. }
$$

For $\mathbf{a} \neq 0, \quad \mathbf{N}^{-1}(\mathrm{au}(\mathrm{x})+\mathrm{b})=?$

Corollary. If $a \neq 0$ and b are reals, and

$$
\begin{array}{r}
f:=\mathbf{N}^{-1}(u(a x+b)), \\
\text { then } \quad\left(\mathbf{N}^{-1}(a u+b)\right)(x)=f\left(\frac{x-b}{a}\right) .
\end{array}
$$

Proof.

$$
\int \frac{d x}{x-(a u(x)+b)}=\int \frac{d x}{a\left(\left(\frac{x-b}{a}\right)-u(x)\right)}, \text { etc. }
$$

Equivalently, if

$$
\phi(x)=a x+b, a \neq 0
$$

then

$$
\mathbf{N}^{-1}(\phi u)=\phi^{-1} \mathbf{N}^{-1}(u \phi),
$$

Reverse iteration

If u is monotone then $x_{+}:=u(x)$ is reversed by $x:=u^{-1}\left(x_{+}\right)$
Corollary. Let u be monotone and differentiable, and let,

$$
f(x):=\exp \left\{\int \frac{u^{\prime}(x) d x}{u(x)-x}\right\}
$$

Then

$$
\left(\mathbf{N}^{-1}\left(u^{-1}\right)\right)(x)=f\left(u^{-1}(x)\right)
$$

Proof. The inverse Newton transform of u^{-1} is

$$
\left(\mathbf{N}^{-1}\left(u^{-1}\right)\right)\left(x_{+}\right)=\exp \left\{\int \frac{d x_{+}}{x_{+}-u^{-1}\left(x_{+}\right)}\right\}
$$

changing variables to $x=u^{-1}\left(x_{+}\right)$we get

$$
\left(\mathbf{N}^{-1}\left(u^{-1}\right)\right)(u(x))=\exp \left\{\int \frac{u^{\prime}(x) d x}{u(x)-x}\right\}
$$

proving the corollary.

$$
\begin{aligned}
& \left(\mathbf{N}^{-\mathbf{1}}\left(\mathbf{u}^{-\mathbf{1}}\right)\right)(\mathbf{x})=\mathbf{f}\left(\mathbf{u}^{-\mathbf{1}}(\mathbf{x})\right) \\
& \mathbf{f}(\mathbf{x}):=\exp \left\{\int \frac{\mathbf{u}^{\prime}(\mathbf{x}) \mathbf{d x}}{\mathbf{u}(\mathbf{x})-\mathbf{x}}\right\}
\end{aligned}
$$

ReverseNewton:=proc(u,x); simplify (exp(int(diff(u,x)/(u-x), x)));end:

Example. $u(x)=x^{3}, u^{-1}(x)=x^{1 / 3}$. subs ($\mathrm{x}=\mathrm{x}^{\wedge}(1 / 3)$, ReverseNewton($\left.\mathrm{x}^{\wedge} 3, \mathrm{x}\right)$);

$$
\left(x^{1 / 3}-1\right)^{3 / 2}\left(x^{1 / 3}+1\right)^{3 / 2}
$$

again

$$
\left(\mathbf{N}^{-1}\left(x^{1 / 3}\right)\right)(x)=\left(x^{2 / 3}-1\right)^{3 / 2}
$$

The logistic iteration

$$
\mathbf{u}(\mathbf{x})=\mu \mathbf{x}(\mathbf{1}-\mathbf{x}), \mathbf{0} \leq \mathbf{x} \leq \mathbf{1}, \mathbf{1} \leq \mu \leq \mathbf{4}
$$

expand (InverseNewton $(\mu * \mathrm{x} *(1-\mathrm{x}), \mathrm{x})$);

$$
\frac{(1-\mu+\mu x)^{(-1+\mu)^{-1}}}{x^{(-1+\mu)^{-1}}}
$$

(a) $\therefore f(x)=\left(\mathbf{N}^{-1} u\right)(x)=\left(\frac{x-\frac{\mu-1}{\mu}}{x}\right)^{\frac{1}{\mu-1}}$
(b) Fixed points $\{u\}=\left\{0, \frac{\mu-1}{\mu}\right\}$
(c) The fixed point $\frac{\mu-1}{\mu}$ is attracting for $1 \leq \mu<3$
(d) $f(x)$ is convex [concave] for $x<\frac{1}{2}\left[x>\frac{1}{2}\right]$

$$
\mathbf{u}(\mathbf{x})=\mu \mathbf{x}(\mathbf{1}-\mathbf{x})
$$

The logistic function with $\mu=0.5,1,2,3,4$

Chaos

100 iterates of the logistic function for selected values of $2 \leq \mu \leq 4$

Chaos explained

The inverse Newton transform of $u(x)=\mu x(1-x)$

$$
\left(\mathbf{N}^{-1} u\right)(x)=\left(\frac{x-\frac{\mu-1}{\mu}}{x}\right)^{\frac{1}{\mu-1}}
$$

$\mu=2.0$

$\mu=3.74$

5-cycle for $\mu=3.74$

Starting at and returning to . 9349453234

Ping pong - 1

Ping pong - 2

Ping pong - 3

Ping pong - 4

Ping pong - 5

Complex Newton iteration: Geometry
 $$
\mathbf{z}_{+}:=\mathbf{z}-\frac{\mathbf{f}(\mathbf{z})}{\mathbf{f}^{\prime}(\mathbf{z})}, \mathbf{f}^{\prime}(\mathbf{z}) \neq \mathbf{0}
$$

Complex Newton iteration: Geometry

$$
\mathbf{z}_{+}:=\mathbf{z}-\frac{\mathbf{f}(\mathbf{z})}{\mathbf{f}^{\prime}(\mathbf{z})}, \mathbf{f}^{\prime}(\mathbf{z}) \neq \mathbf{0}
$$

(A) Let

$$
z=x+i y \longleftrightarrow(x, y)
$$

be the natural correspondence between \mathbb{C} and \mathbb{R}^{2}, and let

$$
F(x, y):=f(z) \text { for } z \longleftrightarrow(x, y) .
$$

Complex Newton iteration: Geometry

$$
\mathbf{z}_{+}:=\mathbf{z}-\frac{\mathbf{f}(\mathbf{z})}{\mathbf{f}^{\prime}(\mathbf{z})}, \mathbf{f}^{\prime}(\mathbf{z}) \neq \mathbf{0}
$$

(A) Let

$$
z=x+i y \longleftrightarrow(x, y)
$$

be the natural correspondence between \mathbb{C} and \mathbb{R}^{2}, and let

$$
F(x, y):=f(z) \text { for } z \longleftrightarrow(x, y) .
$$

(B) Let $T \subset \mathbb{R}^{3}$ be the plane tangent to the graph of $|F|$ at the point $(x, y,|F(x, y)|)$, and let L be the line of intersection of T and the (x, y)-plane (L is nonempty by the assumption that $f^{\prime}(z) \neq 0$.)

Complex Newton iteration: Geometry

$$
\mathbf{z}_{+}:=\mathbf{z}-\frac{\mathbf{f}(\mathbf{z})}{\mathbf{f}^{\prime}(\mathbf{z})}, \mathbf{f}^{\prime}(\mathbf{z}) \neq \mathbf{0}
$$

(A) Let

$$
z=x+i y \longleftrightarrow(x, y)
$$

be the natural correspondence between \mathbb{C} and \mathbb{R}^{2}, and let

$$
F(x, y):=f(z) \text { for } z \longleftrightarrow(x, y) .
$$

(B) Let $T \subset \mathbb{R}^{3}$ be the plane tangent to the graph of $|F|$ at the point $(x, y,|F(x, y)|)$, and let L be the line of intersection of T and the (x, y)-plane (L is nonempty by the assumption that $f^{\prime}(z) \neq 0$.) (C) Then

$$
z_{+} \longleftrightarrow\left(x_{+}, y_{+}\right),
$$

the perpendicular projection of (x, y) on L.

Illustration

$$
z^{4}=1
$$

Level sets of $\left|z^{4}-1\right|$ and iterates converging to i

The Mandelbrot set
 $$
\mathcal{M}:=\left\{\mathbf{c}:\left\{\mathbf{z}_{\mathbf{k}}: \mathbf{z}_{\mathbf{k}+1}:=\mathbf{z}_{\mathbf{k}}^{2}+\mathbf{c}, \mathbf{z}_{\mathbf{0}}=\mathbf{0}\right\} \text { is bounded }\right\}
$$

InverseNewton ($z^{\wedge} 2+c, z$);

$$
\exp \left\{-\frac{2}{\sqrt{4 c-1}} \arctan \left(\frac{2 z-1}{\sqrt{4 c-1}}\right)\right\}
$$

InverseNewton($\left.z^{\wedge} 2+(1 / 4), z\right)$;

$$
\exp \left\{\frac{2}{2 z-1}\right\}
$$

InverseNewton (z^2,z);

$$
\frac{z}{z-1}
$$

Level sets of $\left|\mathbf{N}^{-1}\left(z^{2}\right)\right|$

References

A. B-I, An inverse Newton transform, http://benisrael.net/NEWTON-SEP-13-09.pdf
A. B-I, Newton's method with modified functions, Contemp. Math. 204(1997), 39-50
S. Gorn, Maximal convergence intervals and a Gibbs type phenomenon for Newton's approximation procedure, The Annals of Mathematics (Second Series) 59(1954), 463-476
B. Mandelbrot, Fractal aspects of the iteration of $z \mapsto \lambda z(1-z)$ for complex λ, z, Annals NY Acad. Sci. 357(1980), 249-259
A.M. Ostrwoski, Solutions of Equations in Euclidean and Banach Spaces, 3rd Edition, Academic Press, 1973
L. Yau and A. B-I, The Newton and Halley methods for complex roots, Amer. Math. Monthly 105(1998), 806-818

More in

http://benisrael.net/Newton.html

More in

http://benisrael.net/Newton.html

Thanks for your kind attention

More in

http://benisrael.net/Newton.html

Thanks for your kind attention

Questions?

More in

http://benisrael.net/Newton.html

Thanks for your kind attention

Questions?
mailto:adi.benisrael@gmail.com

