An inverse Newton transform Adi Ben-Israel (Rutgers University)

An inverse Newton transform Adi Ben-Israel (Rutgers University)

Interdisciplinary Workshop on Fixed-Point Algorithms for Inverse Problems in Science and Engineering Banff International Research Station, November 2, 2009 Thanks!

An inverse Newton transform

Adi Ben-Israel (Rutgers University)

Interdisciplinary Workshop on Fixed-Point Algorithms for Inverse Problems in Science and Engineering Banff International Research Station, November 2, 2009 Thanks!

The **Newton transform** $\mathbf{N}f$ of a differentiable $f: \mathbb{R} \to \mathbb{R}$ is

$$(\mathbf{N}f)(x) := x - \frac{f(x)}{f'(x)}.$$

The **Newton transform** $\mathbf{N}f$ of a differentiable $f: \mathbb{R} \to \mathbb{R}$ is

$$(\mathbf{N}f)(x) := x - \frac{f(x)}{f'(x)}.$$

It can be computed symbolically, for example using Maple,

Newton:=proc(f,x); x-f/diff(f,x); end:

The **Newton transform** $\mathbf{N}f$ of a differentiable $f: \mathbb{R} \to \mathbb{R}$ is

$$(\mathbf{N}f)(x) := x - \frac{f(x)}{f'(x)}.$$

It can be computed symbolically, for example using Maple,

Newton:=proc(f,x); x-f/diff(f,x); end:

Example: $\left(\mathbf{N}(x^{2/3}-1)^{3/2}\right)(x) = x^{1/3}$

 $simplify(Newton((x^(2/3)-1)^(3/2),x));$

 $x^{1/3}$

The **Newton transform** $\mathbf{N}f$ of a differentiable $f: \mathbb{R} \to \mathbb{R}$ is

$$(\mathbf{N}f)(x) := x - \frac{f(x)}{f'(x)}.$$

It can be computed symbolically, for example using Maple,

Newton:=proc(f,x); x-f/diff(f,x); end:

Example: $\left(\mathbf{N}(x^{2/3}-1)^{3/2}\right)(x) = x^{1/3}$

 $simplify(Newton((x^(2/3)-1)^(3/2),x));$

 $x^{1/3}$

Example: $(N \exp\{-x\})(x) = x + 1$ Newton(exp(-x),x);

$$x + 1$$

 $u = \mathbf{N}f$

(a) If f is twice differentiable, then

$$u'(x) = \frac{f(x)f''(x)}{f'(x)^2}.$$

 $u = \mathbf{N}f$

(a) If f is twice differentiable, then

$$u'(x) = \frac{f(x)f''(x)}{f'(x)^2}$$

 $\boldsymbol{\zeta}$ is a **zero** of **order** m of f if

$$f(x) = (x - \zeta)^m g(x), \quad m > 0, \ g(\zeta) \neq 0$$

(b) If ζ is a zero of f of order m, then

$$u'(x) = \frac{m(m-1)g(x)^2 + 2(x-\zeta)g'(x) + (x-\zeta)^2 g''(x)}{m^2 g(x)^2 + 2(x-\zeta)mg(x)g'(x) + (x-\zeta)^2 g'(x)^2} \longrightarrow \frac{m-1}{m},$$

as
$$x \to \zeta$$
, provided $\lim_{x \to \zeta} (x - \zeta)g'(x) = \lim_{x \to \zeta} (x - \zeta)^2 g''(x) = 0.$

 $u = \mathbf{N}f$

(a) If f is twice differentiable, then

$$u'(x) = \frac{f(x)f''(x)}{f'(x)^2}$$

 $\boldsymbol{\zeta}$ is a **zero** of **order** m of f if

$$f(x) = (x - \zeta)^m g(x), \quad m > 0, \ g(\zeta) \neq 0$$

(b) If ζ is a zero of f of order m, then

$$u'(x) = \frac{m(m-1)g(x)^2 + 2(x-\zeta)g'(x) + (x-\zeta)^2 g''(x)}{m^2 g(x)^2 + 2(x-\zeta)mg(x)g'(x) + (x-\zeta)^2 g'(x)^2} \longrightarrow \frac{m-1}{m},$$

as
$$x \to \zeta$$
, provided $\lim_{x \to \zeta} (x - \zeta)g'(x) = \lim_{x \to \zeta} (x - \zeta)^2 g''(x) = 0.$
(c) If ζ is a zero of f of order $m < 1$, then f is not differentiable at ζ , but u may be defined and differentiable at ζ , with $u'(\zeta) = \frac{m-1}{m}$.

The inverse Newton transform

The **inverse Newton transform** $\mathbf{N}^{-1}u$ of a function $u : \mathbb{R} \to \mathbb{R}$, is a (differentiable) function f such that $\mathbf{N}f = u$, or,

$$x - \frac{f(x)}{f'(x)} = u(x).$$

 $\mathbf{N}^{-1}u$ is defined up to a constant, since $\mathbf{N}f=\mathbf{N}(c\,f)$ for all $c\neq 0$

The inverse Newton transform

The **inverse Newton transform** $N^{-1}u$ of a function $u : \mathbb{R} \to \mathbb{R}$, is a (differentiable) function f such that Nf = u, or,

$$x - \frac{f(x)}{f'(x)} = u(x).$$

 $\mathbf{N}^{-1}u$ is defined up to a constant, since $\mathbf{N}f = \mathbf{N}(c f)$ for all $c \neq 0$ **Example:** $(\mathbf{N}^{-1}x^{1/3})(x) = (x^{2/3} - 1)^{3/2}$ **Example:** $(\mathbf{N}^{-1}(x+1))(x) = \exp\{-x\}$

The inverse Newton transform

The **inverse Newton transform** $\mathbf{N}^{-1}u$ of a function $u : \mathbb{R} \to \mathbb{R}$, is a (differentiable) function f such that $\mathbf{N}f = u$, or,

$$x - \frac{f(x)}{f'(x)} = u(x).$$

 $\mathbf{N}^{-1}u$ is defined up to a constant, since $\mathbf{N}f = \mathbf{N}(cf)$ for all $c \neq 0$ Example: $(\mathbf{N}^{-1}x^{1/3})(x) = (x^{2/3} - 1)^{3/2}$ Example: $(\mathbf{N}^{-1}(x+1))(x) = \exp\{-x\}$

 $\mathbf{Questions}:$

Fixed points $\{u\} \stackrel{?}{=} \operatorname{Zeros} \{f\} \cup \operatorname{Singularities} \{f'\}$ Attracting fixed points $\{u\} \stackrel{?}{=} \operatorname{Zeros} \{f\}$

Quadratic convergence of $u = \mathbf{N}f$?

Fixed points
$$\{u\} \stackrel{?}{=} \operatorname{Zeros} \{f\}$$

 $u(x) = x - \frac{f(x)}{f'(x)}$

Theorem. Let f be differentiable at ζ , and in (a)–(c), $f'(\zeta) \neq 0$. (a) ζ is a zero of f if, and only if, it is a fixed point of u.

Fixed points
$$\{u\} \stackrel{?}{=} \operatorname{Zeros} \{f\}$$

 $u(x) = x - \frac{f(x)}{f'(x)}$

Theorem. Let f be differentiable at ζ , and in (a)–(c), $f'(\zeta) \neq 0$.

(a) ζ is a zero of f if, and only if, it is a fixed point of u.

(b) If ζ is a zero of f, f and u are twice differentiable at ζ , then ζ is a superattracting fixed point of u, and convergence is (at least) quadratic.

Fixed points
$$\{u\} \stackrel{?}{=} \mathbf{Zeros} \{f\}$$

 $u(x) = x - \frac{f(x)}{f'(x)}$

Theorem. Let f be differentiable at ζ , and in (a)–(c), $f'(\zeta) \neq 0$.

(a) ζ is a zero of f if, and only if, it is a fixed point of u.

(b) If ζ is a zero of f, f and u are twice differentiable at ζ , then ζ is a superattracting fixed point of u, and convergence is (at least) quadratic.

(c) If ζ is a zero of f of order $m > \frac{1}{2}$, and u is continuously differentiable at ζ , then ζ is an attracting fixed point of u.

Fixed points
$$\{u\} \stackrel{?}{=} \operatorname{Zeros} \{f\}$$

 $u(x) = x - \frac{f(x)}{f'(x)}$

Theorem. Let f be differentiable at ζ , and in (a)–(c), $f'(\zeta) \neq 0$.

(a) ζ is a zero of f if, and only if, it is a fixed point of u.

(b) If ζ is a zero of f, f and u are twice differentiable at ζ , then ζ is a superattracting fixed point of u, and convergence is (at least) quadratic.

(c) If ζ is a zero of f of order $m > \frac{1}{2}$, and u is continuously differentiable at ζ , then ζ is an attracting fixed point of u.

(d) Let ζ have a neighborhood where u and f are continuously differentiable, and $f'(x) \neq 0$ except possibly at $x = \zeta$. If ζ is an attracting fixed point of u then it is a zero of f.

An integral form of N^{-1}

Theorem. Let u be a function: $\mathbb{R} \to \mathbb{R}$, D a region where

$$\frac{1}{x - u(x)}$$

is integrable. Then in D,

$$(\mathbf{N}^{-1}u)(x) = C \cdot \exp\left\{\int \frac{dx}{x - u(x)}\right\}, \ C \neq 0.$$

An integral form of N^{-1}

Theorem. Let u be a function: $\mathbb{R} \to \mathbb{R}$, D a region where

$$\frac{1}{x - u(x)}$$

is integrable. Then in D,

$$(\mathbf{N}^{-1}u)(x) = C \cdot \exp\left\{\int \frac{dx}{x - u(x)}\right\}, \ C \neq 0.$$

Moreover, if C > 0 then $\mathbf{N}^{-1}u$ is

- (a) increasing if x > u(x),
- (b) decreasing if x < u(x),

An integral form of N^{-1}

Theorem. Let u be a function: $\mathbb{R} \to \mathbb{R}$, D a region where

$$\frac{1}{x - u(x)}$$

is integrable. Then in D,

$$(\mathbf{N}^{-1}u)(x) = C \cdot \exp\left\{\int \frac{dx}{x - u(x)}\right\}, \ C \neq 0.$$

Moreover, if C > 0 then $\mathbf{N}^{-1}u$ is

- (a) increasing if x > u(x),
- (b) decreasing if x < u(x),

(c) convex if u is differentiable and increasing, or

(d) concave if u is differentiable and decreasing.

$$(\mathbf{N^{-1}u})(\mathbf{x}) = \mathbf{C} \cdot \exp\left\{\int \frac{\mathbf{dx}}{\mathbf{x} - \mathbf{u}(\mathbf{x})}\right\}$$

Assuming $x \neq u(x)$,

$$u(x) = x - \frac{f(x)}{f'(x)} \implies \frac{f'(x)}{f(x)} = \frac{1}{x - u(x)}$$

$$(\mathbf{N}^{-1}\mathbf{u})(\mathbf{x}) = \mathbf{C} \cdot \exp\left\{\int \frac{\mathbf{d}\mathbf{x}}{\mathbf{x} - \mathbf{u}(\mathbf{x})}\right\}$$

Assuming $x \neq u(x)$,

$$u(x) = x - \frac{f(x)}{f'(x)} \implies \frac{f'(x)}{f(x)} = \frac{1}{x - u(x)}$$

$$\therefore \ln f(x) = \int \frac{dx}{x - u(x)} + C$$

$$\therefore f(x) = C \exp\left\{\int \frac{dx}{x - u(x)}\right\}$$

without loss of generality, C = 1.

$$\mathbf{f}(\mathbf{x}) = \exp\left\{\int \frac{\mathbf{d}\mathbf{x}}{\mathbf{x} - \mathbf{u}(\mathbf{x})}\right\}$$

$$\therefore f'(x) = \frac{1}{x - u(x)} \exp\left\{\int \frac{dx}{x - u(x)}\right\}$$
$$\therefore f''(x) = \frac{u'(x)}{(x - u(x))^2} \exp\left\{\int \frac{dx}{x - u(x)}\right\}$$

$$\mathbf{f}(\mathbf{x}) = \exp\left\{\int \frac{\mathbf{d}\mathbf{x}}{\mathbf{x} - \mathbf{u}(\mathbf{x})}\right\}$$

$$\therefore f'(x) = \frac{1}{x - u(x)} \exp\left\{\int \frac{dx}{x - u(x)}\right\}$$
$$\therefore f''(x) = \frac{u'(x)}{(x - u(x))^2} \exp\left\{\int \frac{dx}{x - u(x)}\right\}$$

$$\begin{aligned} x > u(x) &\implies f'(x) > 0 \\ u'(x) > 0 &\implies f''(x) > 0 \end{aligned}$$

$$(\mathbf{N^{-1}u})(\mathbf{x}) = \exp\left\{\int \frac{d\mathbf{x}}{\mathbf{x} - \mathbf{u}(\mathbf{x})}\right\}$$

InverseNewton:=proc(u,x);
simplify(exp(int(1/(x-u),x)));end:

$$(\mathbf{N^{-1}u})(\mathbf{x}) = \exp\left\{\int \frac{\mathbf{dx}}{\mathbf{x} - \mathbf{u}(\mathbf{x})}\right\}$$

InverseNewton:=proc(u,x);
simplify(exp(int(1/(x-u),x)));end:

Examples:

InverseNewton(Newton(f(x),x),x);

Newton(InverseNewton(u(x),x),x);

u(x)

f(x)

InverseNewton(x^2,x);

$$\frac{x}{x-1}$$

$$\mathbf{u}(\mathbf{x}) = \mathbf{x} - \frac{\mathbf{f}(\mathbf{x})}{\mathbf{f}'(\mathbf{x}) - \mathbf{a}(\mathbf{x})\mathbf{f}(\mathbf{x})}, \quad \mathbf{N}^{-1}\mathbf{u} = ?$$

$$\begin{split} \mathbf{u}(\mathbf{x}) &= \mathbf{x} - \frac{\mathbf{f}(\mathbf{x})}{\mathbf{f}'(\mathbf{x}) - \mathbf{a}(\mathbf{x})\mathbf{f}(\mathbf{x})}, \quad \mathbf{N}^{-1}\mathbf{u} = ? \\ \\ \text{InverseNewton}(\mathbf{x} - \mathbf{f}(\mathbf{x}) / (\text{diff}(\mathbf{f}(\mathbf{x}), \mathbf{x}) - \mathbf{a}(\mathbf{x}) * \mathbf{f}(\mathbf{x})), \mathbf{x}); \end{split}$$

$$f(x) \exp\left\{-\int a(x)dx\right\}$$

$$\mathbf{u}(\mathbf{x}) = \mathbf{x} - \frac{\mathbf{f}(\mathbf{x})}{\mathbf{f}'(\mathbf{x}) - \mathbf{a}(\mathbf{x})\mathbf{f}(\mathbf{x})}, \quad \mathbf{N}^{-1}\mathbf{u} = ?$$

InverseNewton(x-f(x)/(diff(f(x),x)-a(x)*f(x)),x);

$$f(x) \exp\left\{-\int a(x)dx\right\}$$

For the **Halley method**

$$H(x) := x - \frac{f(x)}{f'(x) - \frac{f''(x)f(x)}{2f'(x)}}$$
$$\left(\mathbf{N}^{-1}H\right)(x) = \frac{f(x)}{\sqrt{f'x}}$$

For
$$a \neq 0$$
, $\mathbf{N}^{-1}(\mathbf{au}(\mathbf{x}) + \mathbf{b}) = ?$
Corollary. If $a \neq 0$ and b are reals, and
 $f := \mathbf{N}^{-1}(u(a x + b)),$
then $(\mathbf{N}^{-1}(a u + b))(x) = f\left(\frac{x - b}{a}\right).$

Proof.

$$\int \frac{dx}{x - (a u(x) + b)} = \int \frac{dx}{a \left(\left(\frac{x - b}{a} \right) - u(x) \right)}, \text{ etc.}$$

For
$$a \neq 0$$
, $N^{-1}(au(x) + b) = ?$
Corollary. If $a \neq 0$ and b are reals, and
 $f := N^{-1}(u(a x + b)),$
then $(N^{-1}(a u + b))(x) = f\left(\frac{x - b}{a}\right).$

Proof.

$$\int \frac{dx}{x - (a u(x) + b)} = \int \frac{dx}{a \left(\left(\frac{x - b}{a} \right) - u(x) \right)}, \text{ etc.}$$

Equivalently, if

$$\phi(x) = ax + b, \ a \neq 0$$

then

$$\mathbf{N}^{-1}(\phi u) = \phi^{-1} \mathbf{N}^{-1}(u\phi),$$

Reverse iteration

If u is monotone then $x_+ := u(x)$ is reversed by $x := u^{-1}(x_+)$ Corollary. Let u be monotone and differentiable, and let,

$$f(x) := \exp\left\{\int \frac{u'(x)\,dx}{u(x) - x}\right\}$$

Then

$$(\mathbf{N}^{-1}(u^{-1}))(x) = f(u^{-1}(x)).$$

Proof. The inverse Newton transform of u^{-1} is

$$(\mathbf{N}^{-1}(u^{-1}))(x_{+}) = \exp\left\{\int \frac{dx_{+}}{x_{+} - u^{-1}(x_{+})}\right\}$$

changing variables to $x = u^{-1}(x_+)$ we get

$$(\mathbf{N}^{-1}(u^{-1}))(u(x)) = \exp\left\{\int \frac{u'(x)\,dx}{u(x) - x}\right\}$$

proving the corollary.

$$\begin{aligned} (\mathbf{N}^{-1}(\mathbf{u}^{-1}))(\mathbf{x}) &= \mathbf{f}(\mathbf{u}^{-1}(\mathbf{x})) \\ \mathbf{f}(\mathbf{x}) &:= \exp\left\{\int \frac{\mathbf{u}'(\mathbf{x}) \, \mathbf{d}\mathbf{x}}{\mathbf{u}(\mathbf{x}) - \mathbf{x}}\right\} \end{aligned}$$

ReverseNewton:=proc(u,x); simplify(exp(int(diff(u,x)/(u-x),x)));end:

Example. $u(x) = x^3$, $u^{-1}(x) = x^{1/3}$. subs(x=x^(1/3), ReverseNewton(x^3,x));

$$(x^{1/3} - 1)^{3/2} (x^{1/3} + 1)^{3/2}$$

again

$$\left(\mathbf{N}^{-1}(x^{1/3})\right)(x) = (x^{2/3} - 1)^{3/2}$$

$$\begin{aligned} & \text{The logistic iteration} \\ \mathbf{u}(\mathbf{x}) &= \mu \, \mathbf{x} \, (\mathbf{1} - \mathbf{x}), \ \mathbf{0} \leq \mathbf{x} \leq \mathbf{1}, \ \mathbf{1} \leq \mu \leq \mathbf{4} \\ \text{expand(InverseNewton($\mu*\mathbf{x}*(1-\mathbf{x}),\mathbf{x})$);} \\ & \frac{(1 - \mu + \mu \, x)^{(-1+\mu)^{-1}}}{x^{(-1+\mu)^{-1}}} \\ \text{(a)} \therefore f(x) &= (\mathbf{N}^{-1}u) \, (x) = \left(\frac{x - \frac{\mu - 1}{\mu}}{x}\right)^{\frac{1}{\mu - 1}} \\ \text{(b) Fixed points } \{u\} &= \left\{0, \ \frac{\mu - 1}{\mu}\right\} \\ \text{(c) The fixed point } \frac{\mu - 1}{\mu} \text{ is attracting for } 1 \leq \mu < 3 \\ \text{(d) } f(x) \text{ is convex [concave] for } x < \frac{1}{2} \, [x > \frac{1}{2}] \end{aligned}$$

Chaos explained

The inverse Newton transform of $u(x) = \mu x (1 - x)$ $\left(\mathbf{N}^{-1}u\right)(x) = \left(\frac{x - \frac{\mu - 1}{\mu}}{x}\right)^{\frac{1}{\mu - 1}}$ 2 -1.5-1.5 y 1y 1 0.5 0.5 0 + 0 0 -0 0.8 0.2 0.2 0.4 0.4 0.6 0.8 0.6 1 $\mu = 3.74$ $\mu = 2.0$

$\begin{array}{ll} \textbf{Complex Newton iteration: Geometry} \\ \mathbf{z}_+:=\mathbf{z}-\frac{\mathbf{f}(\mathbf{z})}{\mathbf{f}'(\mathbf{z})}, \ \mathbf{f}'(\mathbf{z})\neq \mathbf{0} \end{array}$

(A) Let

$$z = x + i \, y \longleftrightarrow (x, y)$$

be the natural correspondence between \mathbb{C} and \mathbb{R}^2 , and let

$$F(x,y) := f(z) \text{ for } z \longleftrightarrow (x,y).$$

(A) Let

$$z = x + i \, y \longleftrightarrow (x, y)$$

be the natural correspondence between \mathbb{C} and \mathbb{R}^2 , and let

$$F(x,y) := f(z) \text{ for } z \longleftrightarrow (x,y).$$

(B) Let $T \subset \mathbb{R}^3$ be the plane tangent to the graph of |F| at the point (x, y, |F(x, y)|), and let L be the line of intersection of T and the (x, y)-plane (L is nonempty by the assumption that $f'(z) \neq 0$.)

(A) Let

$$z = x + i \, y \longleftrightarrow (x, y)$$

be the natural correspondence between \mathbb{C} and \mathbb{R}^2 , and let

$$F(x,y) := f(z) \text{ for } z \longleftrightarrow (x,y).$$

(B) Let $T \subset \mathbb{R}^3$ be the plane tangent to the graph of |F| at the point (x, y, |F(x, y)|), and let L be the line of intersection of T and the (x, y)-plane (L is nonempty by the assumption that $f'(z) \neq 0$.) (C) Then

$$z_+ \longleftrightarrow (x_+, y_+),$$

the perpendicular projection of (x, y) on L.

Level sets of $|z^4 - 1|$ and iterates converging to i

$$\begin{array}{l} The \ Mandelbrot \ set \\ \mathcal{M}:=\{c: \ \{z_k: \ z_{k+1}:=z_k^2+c, \ z_0=0\} \ \mathrm{is \ bounded}\} \end{array}$$

InverseNewton(z^2+c,z);

$$\exp\left\{-\frac{2}{\sqrt{4\,c-1}}\,\arctan\left(\frac{2\,z-1}{\sqrt{4\,c-1}}\right)\right\}$$

InverseNewton($z^2+(1/4), z$);

$$\exp\left\{\frac{2}{2z-1}\right\}$$

InverseNewton(z^2,z);

$$\frac{z}{z-1}$$

References

A. B–I, An inverse Newton transform,

http://benisrael.net/NEWTON-SEP-13-09.pdf

A. B–I, Newton's method with modified functions, Contemp. Math.
204(1997), 39–50

S. Gorn, Maximal convergence intervals and a Gibbs type phenomenon for Newton's approximation procedure, *The Annals of Mathematics* (Second Series) **59**(1954), 463–476

B. Mandelbrot, Fractal aspects of the iteration of $z \mapsto \lambda z(1-z)$ for complex λ, z , Annals NY Acad. Sci. **357**(1980), 249–259

A.M. Ostrwoski, Solutions of Equations in Euclidean and Banach Spaces, 3rd Edition, Academic Press, 1973

L. Yau and A. B–I, The Newton and Halley methods for complex roots, *Amer. Math. Monthly* **105**(1998), 806–818

http://benisrael.net/Newton.html

http://benisrael.net/Newton.html

Thanks for your kind attention

http://benisrael.net/Newton.html

Thanks for your kind attention

Questions?

http://benisrael.net/Newton.html

Thanks for your kind attention

Questions?

mailto:adi.benisrael@gmail.com