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Pigeonhole principles

RT1: If f : N→ k then there is a c ≤ k and an infinite set
H such that ∀n ∈ H f (n) = c.

TT1: For any finite coloring of 2<N, there is a monochro-
matic subtree order-isomorphic to 2<N.



A proof of TT1

Lef FIN denote the set of finite subsets of N.

A version of Hindman’s theorem:

Finite Union Theorem (FUT): If f : FIN → k then there
is a c ≤ k and an infinite increasing sequence 〈Hi〉i∈N of
elements of FIN such that for every F ∈ FIN

f (∪i∈FHi) = c.

Claim: TT1 is an easy consequence of FUT.
Sketch: Identify finite sets with sequences.



Question: Do we need FUT to prove TT1?
Answer: No.
Reverse mathematics is often useful for answering this sort
of question.

Brief overview of reverse mathematics
Reverse mathematics uses a hierarchy of axiom systems for
second order arithmetic to analyze the relative strength of
mathematical theorems.

RCA0 : basic arithmetic axioms, induction for Σ0
1 formulas,

comprehension for computable sets

ACA0 : RCA0 plus comprehension for sets defined by arith-
metical formulas



Theorem [BHS] (RCA0) FUT implies ACA0.

Theorem [CHM] (RCA0) The least element principle for Σ0
2

formulas (Σ0
2 − IND) implies TT1.

Sketch: Find a smallest set of colors such that for some
node, every extension has a color in the set.

Corollary: The natural numbers together with the com-
putable sets form a model of RCA0 and TT1 that is not a
model FUT.

Related computability theoretic result: Every computable
coloring of 2<N has a computable monochromatic subtree
order isomorphic to 2<N.



In reverse mathematics, equivalence results are optimal.
The preceding results could be improved.

Question: Do we need Σ0
2 − IND to prove TT1?

Recent progress: RCA0 plus RT1 does not prove TT1 [CGM].

Question: Does ACA0 prove FUT?

Answer: Maybe. The best known result is that the stronger
system ACA+

0 proves FUT [BHS].



More about Hindman’s Theorem (FUT)

An ultrafilter U on N is an almost downward translation
invariant ultrafilter (adti-uf) if

∀X ∈ U ∃x ∈ X (x 6= 0 ∧X − x ∈ U)

Hindman proved (over CH) that the existence of an adti-uf
is equivalent to Hindman’s Theorem. Later, Glazer used a
topological argument to directly construct an adti-uf.

Question: Can Glazer’s proof of Hindman’s Theorem be
adapted to a countable setting?

Theorem (RCA0): An iterated version of Hindman’s the-
orem is equivalent to the assertion that every countable
downward translation algebra has an adti-uf.



Some more results on Ramsey’s theorem

RTn
k : If f : [N]n → k then there is a c and an infinite

H ⊂ N such that f ([H ]n) = c.

RTn: ∀kRTn
k

RT: ∀nRTn

Sample reverse mathematics

• RCA0 ` RT1↔ BΠ0
1

• RCA0 6` RT2
2 (Specker) WKL0 6` RT2

2 (Jockusch)

• For n ≥ 3 and k ≥ 2, RCA0 ` RTn
k ↔ ACA0

(Simpson)

• RCA0 ` RT↔ ACA′0 (Mileti)



TTn
k parallels RTn

k

TTn
k : For any k coloring of the n-tuples of comparable

nodes in 2<N, there is a color and a subtree order-isomorphic
to 2<N in which all n-tuples of comparable nodes have the
specified color.

Note: RTn
k is an easy consequence of TTn

k

• For n ≥ 3 and k ≥ 2, RCA0 ` TTn
k ↔ ACA0 [CHM].

• RCA0 ` TT↔ ACA′0. [AH plus Mileti]

Cholak, Jockusch, and Slaman showed RCA0 +RT2
2 6` RT2.

Does RCA0 + TT2
2 ` TT2?

Does RCA0 + TT2
2 ` RT2?



Polarized partitions

Work with Damir Dzhafarov [DH]:

[IPTn
k :] If f : [N]n → k then there is a c and a sequence

of infinite sets H1 . . . Hn such that for any x1 < · · · < xn

(with xi ∈ Hi for all i) we have f (x1 . . . xn) = c.

Note: IPTn
k is an easy consequence of RTn

k .

Theorem: If n ≥ 3 and k ≥ 2, RCA0 ` IPTn
k ↔ ACA0.

Theorem: RCA0 ` IPT↔ ACA′0.



IPT2

f : [N]2→ k is stable if limm f (n, m) exists for every n.

SRT2 is RT2 for stable partitions.

SIPT2 is IPT2 for stable partitions.

Theorem: RCA0 ` SIPT2 → RT1

Theorem: RCA0 ` SIPT2 ↔ SRT2

Consequence: RCA0 ` RT2→ IPT2→ SRT2

Question: Which of the converses hold?



Results contributed by: Cholak, Dzhafarov, Hirschfeldt, Hirst, Jockusch, Kjos-Hanssen, Lempp, Slaman, and Shore



Questions

1. Do we need Σ0
2 − IND to prove TT1?

2. Does ACA0 prove FUT (Hindman’s Theorem)?

3. Can Glazer’s proof of Hindman’s Theorem be adapted
to a countable setting?

4. Does RCA0 + TT2
2 ` TT2?

5. Does RCA0 + TT2
2 ` RT2?

6. Does SRT2 imply IPT2?

7. Does IPT2 imply RT2?
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