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Conventions and Basic Definitions

All our theories T are countable, complete, and consistent.

All our models M are countable.

We work in a computable language.

T is decidable if it is computable.

M is decidable if its elementary diagram is computable.

In reverse mathematics, we identify M with its elementary diagram.
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Conventions and Basic Definitions II

A partial type Γ of T is a set of formulas {ψn(~x)}n∈ω consistent with T .

Γ is a (complete) type if it is maximal.

Γ is principal if there is a consistent ϕ s.t. ∀ψ ∈ Γ (T + ϕ ` ψ).

M realizes Γ if ∃~a ∈M ∀ψ ∈ Γ (M � ψ(~a)). Otherwise M omits Γ.

The type spectrum of M is the set of types it realizes.



Small Models

T is atomic if every formula consistent with T can be extended to a
principal type of T .

M is atomic if every type it realizes is principal.

M is prime if it can be elementarily embedded in every model of T .

Thm.

I Any two atomic models of T are isomorphic.

I M is atomic iff M is prime.

I T has an atomic model iff T is atomic.
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Small Models and Reverse Mathematics

Thm (HSS). The following are provable in RCA0.

I If T has an atomic model then T is atomic.

I If M is prime then M is atomic.

The following are equivalent to ACA0 over RCA0.

I If M is atomic then M is prime.

I Any two atomic models of T are isomorphic.

I Every atomic T has a prime model.



The Atomic Model Theorem

Thm. T has an atomic model iff T is atomic.

RCA0 ` If T has an atomic model then T is atomic.

AMT: If T is atomic then T has an atomic model.

It is easy to check that ACA0 ` AMT.

In fact, AMT is considerably weaker than ACA0.
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Combinatorial Principles Related to RT2
2

RT2
2: Let f : [N]2 → 2. There is an infinite H s.t. f is constant on [H]2.

f : [N]2 → 2 is stable if ∀m (limn f (m, n) exists).

SRT2
2: Let f : [N]2 → 2 be stable. There is an infinite H s.t. f is constant

on [H]2.

COH: Let A0,A1, . . . ⊆ N. There is an infinite C s.t.

∀i (|C ∩ Ai | <∞ ∨ |C ∩ Ai | <∞).
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Combinatorial Principles Related to RT2
2 II

ADS: Every infinite linear order has an infinite ascending or descending
sequence.

A linear order is stable if every element has either finitely many
predecessors or finitely many successors.

SADS: Every infinite stable linear order has an infinite ascending or
descending sequence.

CADS: Every infinite linear order has an infinite stable suborder.
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Combinatorial Principles Related to RT2
2 III

RT2
2 = SRT2

2 + COH
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The Atomic Model Theorem Revisited

AMT: If T is atomic then T has an atomic model.

Recall that ACA0 ` AMT.

Thm (HSS). RCA0 ` SADS → AMT.
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The Atomic Model Theorem and Lowness

Thm (Csima). Every decidable atomic T has a low atomic model.

By iteration, we can build an ω-model of RCA0 + AMT consisting entirely
of low sets.

Thus AMT does not imply any principle that does not have low solutions
in general, such as SRT2

2 or CADS.
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The Atomic Model Theorem and Nonlow2ness

A degree d is atomic bounding if every decidable atomic T has a
d-decidable atomic model.

Thm (Csima, Hirschfeldt, Knight, and Soare). A ∆0
2 degree is atomic

bounding iff it is nonlow2.

Thus WKL0 0 AMT.

The previous theorems can be combined and iterated to produce an
ω-model of RCA0 + AMT whose elements are all computable in a given
nonlow2 ∆0

2 degree.

Thus RCA0 + AMT 0 WKL0.
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Restricted Π1
2 Conservativity

Many principles such as WKL, RT2
2, ADS, etc. can be put into the form

∀A (Θ(A)→ ∃B Φ(A,B)),

where Θ is arithmetic and Φ is Σ0
3.

P is r-Π1
2 conservative over Q if every sentence of the above form provable

from P + Q is provable from Q.

r-Π1
2 conservativity implies Π1

1 conservativity.

Thm (Hirschfeldt and Shore). COH is r-Π1
2 conservative over RCA0.

So RCA0 + COH cannot prove statements like ADS or even SADS.
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Restricted Π1
2 Conservativity of AMT

Thm (HSS). AMT is r-Π1
2 conservative over RCA0.

So RCA0 + AMT cannot prove statements like ADS or even SADS.

This result is tight, in that AMT is itself of the form

∀A (Θ(A)→ ∃B Φ(A,B))

with Φ being Π0
3.

The r-Π1
2 conservativity of COH and AMT come from their connection

with forcing notions.
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Restricted Π1
2 Conservativity and Forcing: COH

Thm (Cholak, Jockusch, and Slaman). Let N � RCA0 be countable.
Let G be Mathias 1-generic over N .

I Then every sequence in N has a cohesive set in N [G ].

Thm (Hirschfeldt and Shore). Let N � RCA0 be countable.
Let G be Mathias 2-generic over N .
Let Φ(A,B) be Σ0

3 and A ∈ N be s.t. ∀B ∈ N (N � ¬Φ(A,B)).

I Then ∀B ∈ N [G ] (N [G ] � ¬Φ(A,B)).

So by iterating the CJS result, we get the r-Π1
2 conservativity of COH.
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Restricted Π1
2 Conservativity and Forcing: AMT

Thm (HSS). Let N � RCA0 be countable and let G be Cohen 2-generic
over N .

I Then every atomic T in N has an atomic model in N [G ].

I Let Φ(A,B) be Σ0
3 and A ∈ N be s.t. ∀B ∈ N (N � ¬Φ(A,B)).

Then ∀B ∈ N [G ] (N [G ] � ¬Φ(A,B)).

So by iteration, we get the r-Π1
2 conservativity of AMT.

We can combine the two kinds of forcing to obtain r-Π1
2 conservativity of

COH + AMT.
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AMT and Genericity

Cohen 2-genericity is more than we need to prove AMT.

Π0
1G: Let (Di )i∈ω be uniformly Π0

1 dense subsets of 2<ω. There is a G s.t.
∀i ∃n (G � n ∈ Di ).

It is easy to see that RCA0 ` Π0
1G → AMT.

Thm (Conidis). RCA0 + IΣ2 ` AMT → Π0
1G.

The use of IΣ2 cannot be dispensed with.
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AMT and Genericity: Further Conservativity Results

Thm(HSS). AMT is Π1
1 conservative over RCA0 + BΣ2.

Thm(HSS). RCA0 ` Π0
1G + BΣ2 → IΣ2.

Thus AMT does not imply Π0
1G over RCA0 (or even RCA0 + BΣ2).

Thm(HSS). AMT is Π1
1 conservative over RCA0 + IΣ2.
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Omitting Partial Types

Thm (Millar). The following hold in RCA0.

Let A be a set of complete types of T .
There is a model of T omitting all nonprincipal types in A.

Let B be a set of nonprincipal partial types of T .
There is a model of T omitting all partial types in B.

OPT: Let S be a set of partial types of T .
There is a model of T omitting all nonprincipal types in S .
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Omitting Partial Types and Hyperimmunity

OPT: Let S be a set of partial types of T .
There is a model of T omitting all nonprincipal types in S .

HYP: For every X there is a function not dominated by any
X -computable function.

Thm (HSS). RCA0 ` OPT ↔ HYP.
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A Weak Form of AMT

Partial types Γ and ∆ of T are equivalent if they imply the same formulas
over T .

(∆n)n∈ω is a subenumeration of the partial types of T if for every partial
type Γ of T there is an n s.t. Γ and ∆n are equivalent.

AST: If T is atomic and its partial types have a subenumeration, then T
has an atomic model.

Thm (HSS). RCA0 ` AST ↔ ∀X ∃Y (Y 
T X ).
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Open Questions
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Does COH (or CADS) imply AMT over RCA0?

Does CADS imply OPT over RCA0?

Is AMT r-Π1
2 conservative over BΣ2?



The Homogeneous Model Theorem

M is homogeneous if for ~a,~b ∈M of the same type, (M,~a) ∼= (M,~b).

Goncharov gave closure conditions on a set of types S of T necessary and
sufficient for S to be the type spectrum of a homogeneous model of T .

I Closure under permutations of variables.

I Closure under subtypes.

I Closure under unions of types on disjoint sets of variables.

I Closure under type / type amalgamation.

I Closure under type / formula amalgamation.

HMT: If S satisfies the Goncharov conditions, then there is a
homogeneous model of T with type spectrum S .
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The Homogeneous Model Theorem and AMT

Computability theoretic results suggest that HMT behaves like AMT.

For example:

Thm (Lange). TFAE for a ∆0
2 degree d.

For every computable S satisfying the Goncharov conditions, there is a
d-decidable homogeneous model of T with type spectrum S .

d is nonlow2.

Lange has shown that AMT implies HMT computability-theoretically.

Open Question: Are HMT and AMT equivalent over RCA0?



The Homogeneous Model Theorem and AMT

Computability theoretic results suggest that HMT behaves like AMT.

For example:

Thm (Lange). TFAE for a ∆0
2 degree d.

For every computable S satisfying the Goncharov conditions, there is a
d-decidable homogeneous model of T with type spectrum S .

d is nonlow2.

Lange has shown that AMT implies HMT computability-theoretically.

Open Question: Are HMT and AMT equivalent over RCA0?



The Homogeneous Model Theorem and AMT

Computability theoretic results suggest that HMT behaves like AMT.

For example:

Thm (Lange). TFAE for a ∆0
2 degree d.

For every computable S satisfying the Goncharov conditions, there is a
d-decidable homogeneous model of T with type spectrum S .

d is nonlow2.

Lange has shown that AMT implies HMT computability-theoretically.

Open Question: Are HMT and AMT equivalent over RCA0?



References

I C.J. Conidis, Classifying model-theoretic properties, JSL 73 (2008)
885–905.

I D.R. Hirschfeldt and R.A. Shore, Combinatorial Principles Weaker
than Ramsey’s Theorem for Pairs, JSL 72 (2007) 171–206.

I D.R. Hirschfeldt, R.A. Shore, and T.A. Slaman, The Atomic Model
Theorem and Type Omitting, to appear in TAMS.

I K. Lange, The Degree Spectra of Homogeneous Models, JSL 73
(2008), 1009–1028.


