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Conventions and Basic Definitions

All our theories T are countable, complete, and consistent.
All our models M are countable.

We work in a computable language.

T is decidable if it is computable.
M is decidable if its elementary diagram is computable.

In reverse mathematics, we identify M with its elementary diagram.



Conventions and Basic Definitions Il

A partial type I' of T is a set of formulas {1,(X)}necw consistent with T.
Iis a (complete) type if it is maximal.
I is principal if there is a consistent p s.t. Vi) € I (T + ¢ F ).

M realizes I' if 38 € M Vi) € T (M E 1)(3)). Otherwise M omits T

The type spectrum of M is the set of types it realizes.
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T is atomic if every formula consistent with T can be extended to a

principal type of T.
M is atomic if every type it realizes is principal.

M is prime if it can be elementarily embedded in every model of T.



T is atomic if every formula consistent with T can be extended to a

principal type of T.
M is atomic if every type it realizes is principal.

M is prime if it can be elementarily embedded in every model of T.

Thm.

» Any two atomic models of T are isomorphic.
» M is atomic iff M is prime.

» T has an atomic model iff T is atomic.




Small Models and Reverse Mathematics

Thm (HSS). The following are provable in RCAg.

» If T has an atomic model then T is atomic.

» If M is prime then M is atomic.

The following are equivalent to ACAg over RCA.

» If M is atomic then M is prime.
» Any two atomic models of T are isomorphic.

» Every atomic T has a prime model.
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The Atomic Model Theorem

Thm. T has an atomic model iff T is atomic.

RCAg  If T has an atomic model then T is atomic.

AMT: If T is atomic then T has an atomic model.

It is easy to check that ACAg - AMT.

In fact, AMT is considerably weaker than ACAg.
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RT2: Let f : [N]> — 2. There is an infinite H s.t. f is constant on [H]?.

f : [N]? — 2 is stable if Ym (lim, f(m, n) exists).

SRT3: Let f : [N]? — 2 be stable. There is an infinite H s.t. f is constant
on [H]?.

COH: Let Ap, A1, ... € N. There is an infinite C s.t.

Vi (JCNAj| <oo V |[CNA;| < ).
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Combinatorial Principles Related to RT3 Il

ADS: Every infinite linear order has an infinite ascending or descending
sequence.

A linear order is stable if every element has either finitely many
predecessors or finitely many successors.

SADS: Every infinite stable linear order has an infinite ascending or
descending sequence.

CADS: Every infinite linear order has an infinite stable suborder.




Combinatorial Principles Related to RT3 Il

RT3 = SRT3 + COH

ADS = SADS+CADS WKL,

-
\/\/

COH + WKLo —— SADS l

SRT3

CADS

RCA0

= : not reversible —— : opposite direction open



The Atomic Model Theorem Reuvisited

AMT: If T is atomic then T has an atomic model.

Recall that ACAg - AMT.



The Atomic Model Theorem Reuvisited

AMT: If T is atomic then T has an atomic model.

Recall that ACAg - AMT.

Thm (HSS). RCAo - SADS — AMT.
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The Atomic Model Theorem and Lowness

Thm (Csima). Every decidable atomic T has a low atomic model.

By iteration, we can build an w-model of RCAy + AMT consisting entirely
of low sets.

Thus AMT does not imply any principle that does not have low solutions
in general, such as SRT3 or CADS.



The Atomic Model Theorem and Nonlows;ness

A degree d is atomic bounding if every decidable atomic T has a
d-decidable atomic model.

Thm (Csima, Hirschfeldt, Knight, and Soare). A AJ degree is atomic
bounding iff it is nonlows.




The Atomic Model Theorem and Nonlows;ness

A degree d is atomic bounding if every decidable atomic T has a
d-decidable atomic model.

Thm (Csima, Hirschfeldt, Knight, and Soare). A AJ degree is atomic
bounding iff it is nonlows.

Thus WKL ¥ AMT.



The Atomic Model Theorem and Nonlows;ness

A degree d is atomic bounding if every decidable atomic T has a
d-decidable atomic model.

Thm (Csima, Hirschfeldt, Knight, and Soare). A AJ degree is atomic
bounding iff it is nonlows.

Thus WKL ¥ AMT.

The previous theorems can be combined and iterated to produce an
w-model of RCAy + AMT whose elements are all computable in a given
nonlow, A9 degree.



The Atomic Model Theorem and Nonlows;ness

A degree d is atomic bounding if every decidable atomic T has a
d-decidable atomic model.

Thm (Csima, Hirschfeldt, Knight, and Soare). A AJ degree is atomic
bounding iff it is nonlows.

Thus WKL ¥ AMT.

The previous theorems can be combined and iterated to produce an
w-model of RCAy + AMT whose elements are all computable in a given
nonlow, A9 degree.

Thus RCAg + AMT ¥ WKLy.
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Many principles such as WKL, RT3, ADS, etc. can be put into the form
VA (©(A) — 3B ®(A, B)),
where © is arithmetic and ® is Zg.

P is r-M} conservative over Q if every sentence of the above form provable
from P + Q is provable from Q.

r-M3 conservativity implies M} conservativity.
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Restricted I3 Conservativity of AMT

Thm (HSS). AMT is -1} conservative over RCAg.

So RCAg + AMT cannot prove statements like ADS or even SADS.
This result is tight, in that AMT is itself of the form

VA (©6(A) — 3B (A, B))
with ® being I_Ig.

The r-M} conservativity of COH and AMT come from their connection
with forcing notions.
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Restricted M3 Conservativity and Forcing: COH

Thm (Cholak, Jockusch, and Slaman). Let N FE RCA( be countable.
Let G be Mathias 1-generic over NV

» Then every sequence in N has a cohesive set in N[G].

Thm (Hirschfeldt and Shore). Let A/ = RCAq be countable.
Let G be Mathias 2-generic over \V.

Let ®(A,B) be £ and A€ N best. VB € N (N F —®(A, B)).
> Then VB € N[G] (N[G] £ ~®(A, B)).

So by iterating the CJS result, we get the r-M} conservativity of COH.
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Restricted M3 Conservativity and Forcing: AMT

Thm (HSS). Let NV £ RCAq be countable and let G be Cohen 2-generic
over N.

» Then every atomic T in A has an atomic model in N[G].

> Let $(A,B) be £ and A€ N bes.t. VB € N (N E —~d(A, B)).
Then VB € N[G] (N[G] £ =®(A, B)).

So by iteration, we get the r—I‘I% conservativity of AMT.

We can combine the two kinds of forcing to obtain r-M3} conservativity of
COH + AMT.
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Cohen 2-genericity is more than we need to prove AMT.

MYG: Let (D;)icw be uniformly N? dense subsets of 2<“. There is a G s.t.
Vi 3n (G | ne D).

It is easy to see that RCAq - MG — AMT.

Thm (Conidis). RCAg + 1X5 - AMT — MYG.

The use of X5 cannot be dispensed with.
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Thm(HSS). AMT is N} conservative over RCAq + BXo.

Thm(HSS). RCAq - NG + BT, — |55,

Thus AMT does not imply M9G over RCAq (or even RCAg + BX,).

Thm(HSS). AMT is M} conservative over RCAq + IZ5.
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Omitting Partial Types and Hyperimmunity

OPT: Let S be a set of partial types of T.
There is a model of T omitting all nonprincipal types in S.

HYP: For every X there is a function not dominated by any
X-computable function.

Thm (HSS). RCAq - OPT « HYP.




A Weak Form of AMT

Partial types I' and A of T are equivalent if they imply the same formulas
over T.
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Partial types I and A of T are equivalent if they imply the same formulas
over T.

(Ap)new is a subenumeration of the partial types of T if for every partial
type [ of T thereis an ns.t. [ and A, are equivalent.

AST: If T is atomic and its partial types have a subenumeration, then T
has an atomic model.

Thm (HSS). RCAq F AST < VX 3Y (Y g X).




= : not reversible — : opposite direction open






Completing the Picture

Does COH (or CADS) imply AMT over RCAy?
Does CADS imply OPT over RCAq?

Is AMT r—I'I% conservative over BX»?
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M is homogeneous if for 3, b € M of the same type, (M, 3) = (M, b).

Goncharov gave closure conditions on a set of types S of T necessary and
sufficient for S to be the type spectrum of a homogeneous model of T.

» Closure under permutations of variables.
» Closure under subtypes.

» Closure under unions of types on disjoint sets of variables.
» Closure under type / type amalgamation.

>

Closure under type / formula amalgamation.

HMT: If S satisfies the Goncharov conditions, then there is a
homogeneous model of T with type spectrum S.
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The Homogeneous Model Theorem and AMT

Computability theoretic results suggest that HMT behaves like AMT.

For example:

Thm (Lange). TFAE for a A9 degree d.

For every computable S satisfying the Goncharov conditions, there is a
d-decidable homogeneous model of T with type spectrum S.

d is nonlows.

Lange has shown that AMT implies HMT computability-theoretically.

Open Question: Are HMT and AMT equivalent over RCAg?
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