The Atomic Model Theorem and Related Model Theoretic Principles

Denis R. Hirschfeldt — University of Chicago

joint work with Richard A. Shore and Theodore A. Slaman

Computability, Reverse Mathematics and Combinatorics / Banff, December 2008

Conventions and Basic Definitions

All our theories T are countable, complete, and consistent.

All our models \mathcal{M} are countable.

We work in a computable language.

Conventions and Basic Definitions

All our theories T are countable, complete, and consistent.

All our models \mathcal{M} are countable.

We work in a computable language.

T is decidable if it is computable.

 ${\cal M}$ is decidable if its elementary diagram is computable.

In reverse mathematics, we identify $\ensuremath{\mathcal{M}}$ with its elementary diagram.

Conventions and Basic Definitions II

A partial type Γ of T is a set of formulas $\{\psi_n(\vec{x})\}_{n\in\omega}$ consistent with T.

 Γ is a (complete) type if it is maximal.

 Γ is principal if there is a consistent φ s.t. $\forall \psi \in \Gamma$ $(T + \varphi \vdash \psi)$.

 \mathcal{M} realizes Γ if $\exists \vec{a} \in \mathcal{M} \ \forall \psi \in \Gamma \ (\mathcal{M} \vDash \psi(\vec{a}))$. Otherwise \mathcal{M} omits Γ .

The type spectrum of $\mathcal M$ is the set of types it realizes.

Small Models

T is atomic if every formula consistent with T can be extended to a principal type of T.

 ${\cal M}$ is atomic if every type it realizes is principal.

 ${\mathcal M}$ is prime if it can be elementarily embedded in every model of ${\mathcal T}$.

Small Models

T is atomic if every formula consistent with T can be extended to a principal type of T.

 ${\cal M}$ is atomic if every type it realizes is principal.

 ${\mathcal M}$ is prime if it can be elementarily embedded in every model of ${\mathcal T}$.

Thm.

- ▶ Any two atomic models of *T* are isomorphic.
- $ightharpoonup \mathcal{M}$ is atomic iff \mathcal{M} is prime.
- ▶ T has an atomic model iff T is atomic.

Small Models and Reverse Mathematics

Thm (HSS). The following are provable in RCA_0 .

- ▶ If T has an atomic model then T is atomic.
- ▶ If \mathcal{M} is prime then \mathcal{M} is atomic.

The following are equivalent to ACA_0 over RCA_0 .

- ▶ If \mathcal{M} is atomic then \mathcal{M} is prime.
- ▶ Any two atomic models of *T* are isomorphic.
- ► Every atomic *T* has a prime model.

The Atomic Model Theorem

Thm. T has an atomic model iff T is atomic.

 $RCA_0 \vdash If T$ has an atomic model then T is atomic.

The Atomic Model Theorem

Thm. T has an atomic model iff T is atomic.

 $RCA_0 \vdash If T$ has an atomic model then T is atomic.

AMT: If T is atomic then T has an atomic model.

The Atomic Model Theorem

Thm. T has an atomic model iff T is atomic.

 $RCA_0 \vdash If T$ has an atomic model then T is atomic.

AMT: If T is atomic then T has an atomic model.

It is easy to check that $ACA_0 \vdash AMT$.

In fact, AMT is considerably weaker than ACA_0 .

Combinatorial Principles Related to RT_2^2

RT²: Let $f: [\mathbb{N}]^2 \to 2$. There is an infinite H s.t. f is constant on $[H]^2$.

Combinatorial Principles Related to RT₂

RT²: Let $f: [\mathbb{N}]^2 \to 2$. There is an infinite H s.t. f is constant on $[H]^2$.

 $f: [\mathbb{N}]^2 \to 2$ is stable if $\forall m \ (\lim_n f(m, n) \text{ exists}).$

SRT₂: Let $f: [\mathbb{N}]^2 \to 2$ be stable. There is an infinite H s.t. f is constant on $[H]^2$.

Combinatorial Principles Related to RT₂²

RT²: Let $f: [\mathbb{N}]^2 \to 2$. There is an infinite H s.t. f is constant on $[H]^2$.

 $f: [\mathbb{N}]^2 \to 2$ is stable if $\forall m \ (\lim_n f(m, n) \text{ exists}).$

SRT²: Let $f: [\mathbb{N}]^2 \to 2$ be stable. There is an infinite H s.t. f is constant on $[H]^2$.

COH: Let $A_0, A_1, \ldots \subseteq \mathbb{N}$. There is an infinite C s.t.

$$\forall i \ (|C \cap A_i| < \infty \ \lor \ |C \cap \overline{A_i}| < \infty).$$

Combinatorial Principles Related to RT₂ II

ADS: Every infinite linear order has an infinite ascending or descending sequence.

Combinatorial Principles Related to RT₂ II

ADS: Every infinite linear order has an infinite ascending or descending sequence.

A linear order is stable if every element has either finitely many predecessors or finitely many successors.

SADS: Every infinite stable linear order has an infinite ascending or descending sequence.

Combinatorial Principles Related to RT₂ II

ADS: Every infinite linear order has an infinite ascending or descending sequence.

A linear order is stable if every element has either finitely many predecessors or finitely many successors.

SADS: Every infinite stable linear order has an infinite ascending or descending sequence.

CADS: Every infinite linear order has an infinite stable suborder.

Combinatorial Principles Related to RT₂ III

 \Longrightarrow : not reversible

→ : opposite direction open

The Atomic Model Theorem Revisited

AMT: If T is atomic then T has an atomic model.

Recall that $ACA_0 \vdash AMT$.

The Atomic Model Theorem Revisited

AMT: If T is atomic then T has an atomic model.

Recall that $ACA_0 \vdash AMT$.

Thm (HSS). $RCA_0 \vdash SADS \rightarrow AMT$.

The Atomic Model Theorem and Lowness

Thm (Csima). Every decidable atomic T has a low atomic model.

The Atomic Model Theorem and Lowness

Thm (Csima). Every decidable atomic T has a low atomic model.

By iteration, we can build an ω -model of RCA $_0$ + AMT consisting entirely of low sets.

The Atomic Model Theorem and Lowness

Thm (Csima). Every decidable atomic T has a low atomic model.

By iteration, we can build an ω -model of RCA $_0$ + AMT consisting entirely of low sets.

Thus AMT does not imply any principle that does not have low solutions in general, such as SRT_2^2 or CADS.

A degree **d** is atomic bounding if every decidable atomic T has a **d**-decidable atomic model.

Thm (Csima, Hirschfeldt, Knight, and Soare). A Δ_2^0 degree is atomic bounding iff it is nonlow₂.

A degree **d** is atomic bounding if every decidable atomic T has a **d**-decidable atomic model.

Thm (Csima, Hirschfeldt, Knight, and Soare). A Δ_2^0 degree is atomic bounding iff it is nonlow₂.

Thus WKL₀ $\not\vdash$ AMT.

A degree **d** is atomic bounding if every decidable atomic T has a **d**-decidable atomic model.

Thm (Csima, Hirschfeldt, Knight, and Soare). A Δ_2^0 degree is atomic bounding iff it is nonlow₂.

Thus $WKL_0 \nvdash AMT$.

The previous theorems can be combined and iterated to produce an ω -model of RCA $_0$ + AMT whose elements are all computable in a given nonlow $_2$ Δ_2^0 degree.

A degree **d** is atomic bounding if every decidable atomic T has a **d**-decidable atomic model.

Thm (Csima, Hirschfeldt, Knight, and Soare). A Δ_2^0 degree is atomic bounding iff it is nonlow₂.

Thus $WKL_0 \nvdash AMT$.

The previous theorems can be combined and iterated to produce an $\omega\text{-model}$ of RCA $_0$ + AMT whose elements are all computable in a given nonlow_2 Δ_2^0 degree.

Thus $RCA_0 + AMT \not\vdash WKL_0$.

Many principles such as WKL, RT₂, ADS, etc. can be put into the form

$$\forall A \ (\Theta(A) \rightarrow \exists B \ \Phi(A,B)),$$

where Θ is arithmetic and Φ is Σ_3^0 .

Many principles such as WKL, RT₂, ADS, etc. can be put into the form

$$\forall A \ (\Theta(A) \rightarrow \exists B \ \Phi(A,B)),$$

where Θ is arithmetic and Φ is Σ_3^0 .

P is $r-\Pi_2^1$ conservative over Q if every sentence of the above form provable from P+Q is provable from Q.

Many principles such as WKL, RT₂, ADS, etc. can be put into the form

$$\forall A \ (\Theta(A) \rightarrow \exists B \ \Phi(A,B)),$$

where Θ is arithmetic and Φ is Σ^0_3 .

P is $r-\Pi_2^1$ conservative over Q if every sentence of the above form provable from P+Q is provable from Q.

 $r-\Pi_2^1$ conservativity implies Π_1^1 conservativity.

Many principles such as WKL, RT₂, ADS, etc. can be put into the form

$$\forall A \ (\Theta(A) \rightarrow \exists B \ \Phi(A,B)),$$

where Θ is arithmetic and Φ is Σ^0_3 .

P is $r-\Pi_2^1$ conservative over Q if every sentence of the above form provable from P+Q is provable from Q.

 $r-\Pi_2^1$ conservativity implies Π_1^1 conservativity.

Thm (Hirschfeldt and Shore). COH is $r-\Pi_2^1$ conservative over RCA₀.

So $RCA_0 + COH$ cannot prove statements like ADS or even SADS.

Thm (HSS). AMT is $r-\Pi_2^1$ conservative over RCA₀.

So $\mathsf{RCA}_0 + \mathsf{AMT}$ cannot prove statements like ADS or even SADS.

Thm (HSS). AMT is $r-\Pi_2^1$ conservative over RCA₀.

So RCA $_0$ + AMT cannot prove statements like ADS or even SADS.

This result is tight, in that AMT is itself of the form

$$\forall A \ (\Theta(A) \rightarrow \exists B \ \Phi(A,B))$$

with Φ being Π_3^0 .

Thm (HSS). AMT is $r-\Pi_2^1$ conservative over RCA₀.

So $RCA_0 + AMT$ cannot prove statements like ADS or even SADS.

This result is tight, in that AMT is itself of the form

$$\forall A \ (\Theta(A) \rightarrow \exists B \ \Phi(A,B))$$

with Φ being Π_3^0 .

The r- Π_2^1 conservativity of COH and AMT come from their connection with forcing notions.

Restricted Π_2^1 Conservativity and Forcing: COH

Thm (Cholak, Jockusch, and Slaman). Let $\mathcal{N} \models \mathsf{RCA}_0$ be countable. Let G be Mathias 1-generic over \mathcal{N} .

▶ Then every sequence in \mathcal{N} has a cohesive set in $\mathcal{N}[G]$.

Restricted Π_2^1 Conservativity and Forcing: COH

Thm (Cholak, Jockusch, and Slaman). Let $\mathcal{N} \models \mathsf{RCA}_0$ be countable. Let G be Mathias 1-generic over \mathcal{N} .

▶ Then every sequence in \mathcal{N} has a cohesive set in $\mathcal{N}[G]$.

Thm (Hirschfeldt and Shore). Let $\mathcal{N} \vDash \mathsf{RCA}_0$ be countable. Let G be Mathias 2-generic over \mathcal{N} . Let $\Phi(A, B)$ be Σ_0^3 and $A \in \mathcal{N}$ be s.t. $\forall B \in \mathcal{N} \ (\mathcal{N} \vDash \neg \Phi(A, B))$.

▶ Then $\forall B \in \mathcal{N}[G] \ (\mathcal{N}[G] \vDash \neg \Phi(A, B)).$

Restricted Π_2^1 Conservativity and Forcing: COH

Thm (Cholak, Jockusch, and Slaman). Let $\mathcal{N} \models \mathsf{RCA}_0$ be countable. Let G be Mathias 1-generic over \mathcal{N} .

▶ Then every sequence in \mathcal{N} has a cohesive set in $\mathcal{N}[G]$.

Thm (Hirschfeldt and Shore). Let $\mathcal{N} \vDash \mathsf{RCA}_0$ be countable. Let G be Mathias 2-generic over \mathcal{N} . Let $\Phi(A, B)$ be Σ_3^0 and $A \in \mathcal{N}$ be s.t. $\forall B \in \mathcal{N} \ (\mathcal{N} \vDash \neg \Phi(A, B))$.

▶ Then $\forall B \in \mathcal{N}[G] \ (\mathcal{N}[G] \vDash \neg \Phi(A, B))$.

So by iterating the CJS result, we get the r- Π_2^1 conservativity of COH.

Restricted Π_2^1 Conservativity and Forcing: AMT

Thm (HSS). Let $\mathcal{N} \models \mathsf{RCA}_0$ be countable and let G be Cohen 2-generic over \mathcal{N} .

- ▶ Then every atomic T in \mathcal{N} has an atomic model in $\mathcal{N}[G]$.
- ▶ Let $\Phi(A, B)$ be Σ_3^0 and $A \in \mathcal{N}$ be s.t. $\forall B \in \mathcal{N} \ (\mathcal{N} \models \neg \Phi(A, B))$. Then $\forall B \in \mathcal{N}[G] \ (\mathcal{N}[G] \models \neg \Phi(A, B))$.

Restricted Π_2^1 Conservativity and Forcing: AMT

Thm (HSS). Let $\mathcal{N} \models \mathsf{RCA}_0$ be countable and let G be Cohen 2-generic over \mathcal{N} .

- ▶ Then every atomic T in \mathcal{N} has an atomic model in $\mathcal{N}[G]$.
- Let $\Phi(A, B)$ be Σ_3^0 and $A \in \mathcal{N}$ be s.t. $\forall B \in \mathcal{N} \ (\mathcal{N} \models \neg \Phi(A, B))$. Then $\forall B \in \mathcal{N}[G] \ (\mathcal{N}[G] \models \neg \Phi(A, B))$.

So by iteration, we get the r- Π_2^1 conservativity of AMT.

Restricted Π_2^1 Conservativity and Forcing: AMT

Thm (HSS). Let $\mathcal{N} \models \mathsf{RCA}_0$ be countable and let G be Cohen 2-generic over \mathcal{N} .

- ▶ Then every atomic T in \mathcal{N} has an atomic model in $\mathcal{N}[G]$.
- Let $\Phi(A, B)$ be Σ_3^0 and $A \in \mathcal{N}$ be s.t. $\forall B \in \mathcal{N} \ (\mathcal{N} \models \neg \Phi(A, B))$. Then $\forall B \in \mathcal{N}[G] \ (\mathcal{N}[G] \models \neg \Phi(A, B))$.

So by iteration, we get the r- Π_2^1 conservativity of AMT.

We can combine the two kinds of forcing to obtain r- Π_2^1 conservativity of COH + AMT.

Cohen 2-genericity is more than we need to prove AMT.

 Π_1^0 **G**: Let $(D_i)_{i\in\omega}$ be uniformly Π_1^0 dense subsets of $2^{<\omega}$. There is a G s.t. $\forall i \exists n \ (G \upharpoonright n \in D_i)$.

Cohen 2-genericity is more than we need to prove AMT.

 Π_1^0 G: Let $(D_i)_{i\in\omega}$ be uniformly Π_1^0 dense subsets of $2^{<\omega}$. There is a G s.t. $\forall i \exists n \ (G \upharpoonright n \in D_i)$.

It is easy to see that $RCA_0 \vdash \Pi_1^0G \rightarrow AMT$.

Cohen 2-genericity is more than we need to prove AMT.

 Π^0_1 G: Let $(D_i)_{i\in\omega}$ be uniformly Π^0_1 dense subsets of $2^{<\omega}$. There is a G s.t. $\forall i \exists n \ (G \upharpoonright n \in D_i)$.

It is easy to see that $RCA_0 \vdash \Pi_1^0G \rightarrow AMT$.

Thm (Conidis). $RCA_0 + I\Sigma_2 \vdash AMT \rightarrow \Pi_1^0G$.

Cohen 2-genericity is more than we need to prove AMT.

 Π^0_1 G: Let $(D_i)_{i\in\omega}$ be uniformly Π^0_1 dense subsets of $2^{<\omega}$. There is a G s.t. $\forall i \exists n \ (G \upharpoonright n \in D_i)$.

It is easy to see that $RCA_0 \vdash \Pi_1^0G \rightarrow AMT$.

Thm (Conidis). $RCA_0 + I\Sigma_2 \vdash AMT \rightarrow \Pi_1^0G$.

The use of $I\Sigma_2$ cannot be dispensed with.

AMT and Genericity: Further Conservativity Results

Thm(HSS). AMT is Π_1^1 conservative over RCA₀ + B Σ_2 .

AMT and Genericity: Further Conservativity Results

Thm(HSS). AMT is Π_1^1 conservative over RCA₀ + B Σ_2 .

Thm(HSS). $RCA_0 \vdash \Pi_1^0G + B\Sigma_2 \rightarrow I\Sigma_2$.

Thus AMT does not imply $\Pi_1^0 G$ over RCA₀ (or even RCA₀ + B Σ_2).

AMT and Genericity: Further Conservativity Results

Thm(HSS). AMT is Π_1^1 conservative over RCA₀ + B Σ_2 .

Thm(HSS). $RCA_0 \vdash \Pi_1^0G + B\Sigma_2 \rightarrow I\Sigma_2$.

Thus AMT does not imply Π^0_1G over RCA $_0$ (or even RCA $_0$ + B Σ_2).

Thm(HSS). AMT is Π_1^1 conservative over RCA₀ + I Σ_2 .

Omitting Partial Types

Thm (Millar). The following hold in RCA_0 .

Let A be a set of complete types of T.

There is a model of T omitting all nonprincipal types in A.

Let B be a set of nonprincipal partial types of T.

There is a model of T omitting all partial types in B.

Omitting Partial Types

Thm (Millar). The following hold in RCA_0 .

Let A be a set of complete types of T.

There is a model of T omitting all nonprincipal types in A.

Let B be a set of nonprincipal partial types of T.

There is a model of T omitting all partial types in B.

OPT: Let S be a set of partial types of T.

There is a model of T omitting all nonprincipal types in S.

Omitting Partial Types and Hyperimmunity

OPT: Let S be a set of partial types of T. There is a model of T omitting all nonprincipal types in S.

Omitting Partial Types and Hyperimmunity

OPT: Let S be a set of partial types of T.

There is a model of T omitting all nonprincipal types in S.

HYP: For every X there is a function not dominated by any X-computable function.

Omitting Partial Types and Hyperimmunity

OPT: Let S be a set of partial types of T.

There is a model of T omitting all nonprincipal types in S.

HYP: For every X there is a function not dominated by any X-computable function.

Thm (HSS). $RCA_0 \vdash OPT \leftrightarrow HYP$.

A Weak Form of AMT

Partial types Γ and Δ of T are equivalent if they imply the same formulas over T.

 $(\Delta_n)_{n\in\omega}$ is a subenumeration of the partial types of T if for every partial type Γ of T there is an n s.t. Γ and Δ_n are equivalent.

A Weak Form of AMT

Partial types Γ and Δ of T are equivalent if they imply the same formulas over T.

 $(\Delta_n)_{n\in\omega}$ is a subenumeration of the partial types of T if for every partial type Γ of T there is an n s.t. Γ and Δ_n are equivalent.

AST: If T is atomic and its partial types have a subenumeration, then T has an atomic model.

A Weak Form of AMT

Partial types Γ and Δ of T are equivalent if they imply the same formulas over T.

 $(\Delta_n)_{n\in\omega}$ is a subenumeration of the partial types of T if for every partial type Γ of T there is an n s.t. Γ and Δ_n are equivalent.

AST: If T is atomic and its partial types have a subenumeration, then T has an atomic model.

Thm (HSS). $RCA_0 \vdash AST \leftrightarrow \forall X \exists Y (Y \nleq_T X)$.

The Picture

 \Longrightarrow : not reversible \longrightarrow : opposite direction open

Open Questions

Completing the Picture

Does COH (or CADS) imply AMT over RCA₀?

Does CADS imply OPT over RCA₀?

Is AMT r- Π_2^1 conservative over B Σ_2 ?

The Homogeneous Model Theorem

 $\mathcal M$ is homogeneous if for $ec a, ec b \in \mathcal M$ of the same type, $(\mathcal M, ec a) \cong (\mathcal M, ec b)$.

Goncharov gave closure conditions on a set of types S of T necessary and sufficient for S to be the type spectrum of a homogeneous model of T.

The Homogeneous Model Theorem

 \mathcal{M} is homogeneous if for $\vec{a}, \vec{b} \in \mathcal{M}$ of the same type, $(\mathcal{M}, \vec{a}) \cong (\mathcal{M}, \vec{b})$.

Goncharov gave closure conditions on a set of types S of T necessary and sufficient for S to be the type spectrum of a homogeneous model of T.

- Closure under permutations of variables.
- Closure under subtypes.
- Closure under unions of types on disjoint sets of variables.
- ► Closure under type / type amalgamation.
- ▶ Closure under type / formula amalgamation.

The Homogeneous Model Theorem

 \mathcal{M} is homogeneous if for $\vec{a}, \vec{b} \in \mathcal{M}$ of the same type, $(\mathcal{M}, \vec{a}) \cong (\mathcal{M}, \vec{b})$.

Goncharov gave closure conditions on a set of types S of T necessary and sufficient for S to be the type spectrum of a homogeneous model of T.

- ▶ Closure under permutations of variables.
- ► Closure under subtypes.
- Closure under unions of types on disjoint sets of variables.
- ► Closure under type / type amalgamation.
- ► Closure under type / formula amalgamation.

HMT: If S satisfies the Goncharov conditions, then there is a homogeneous model of T with type spectrum S.

The Homogeneous Model Theorem and AMT

Computability theoretic results suggest that HMT behaves like AMT.

For example:

Thm (Lange). TFAE for a Δ_2^0 degree **d**.

For every computable S satisfying the Goncharov conditions, there is a **d**-decidable homogeneous model of T with type spectrum S.

 \mathbf{d} is nonlow₂.

The Homogeneous Model Theorem and AMT

Computability theoretic results suggest that HMT behaves like AMT.

For example:

Thm (Lange). TFAE for a Δ_2^0 degree **d**.

For every computable S satisfying the Goncharov conditions, there is a **d**-decidable homogeneous model of T with type spectrum S.

 \mathbf{d} is nonlow₂.

Lange has shown that AMT implies HMT computability-theoretically.

The Homogeneous Model Theorem and AMT

Computability theoretic results suggest that HMT behaves like AMT.

For example:

Thm (Lange). TFAE for a Δ_2^0 degree **d**.

For every computable S satisfying the Goncharov conditions, there is a **d**-decidable homogeneous model of T with type spectrum S.

 \mathbf{d} is nonlow₂.

Lange has shown that AMT implies HMT computability-theoretically.

Open Question: Are HMT and AMT equivalent over RCA₀?

References

- ► C.J. Conidis, Classifying model-theoretic properties, JSL 73 (2008) 885–905.
- ▶ D.R. Hirschfeldt and R.A. Shore, Combinatorial Principles Weaker than Ramsey's Theorem for Pairs, JSL 72 (2007) 171–206.
- ▶ D.R. Hirschfeldt, R.A. Shore, and T.A. Slaman, The Atomic Model Theorem and Type Omitting, to appear in TAMS.
- ► K. Lange, The Degree Spectra of Homogeneous Models, JSL 73 (2008), 1009–1028.