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Hierarchy of the Induction Scheme

Fix M = (M, X, +,-,0,1) to be a structure in the language of
second order arithmetic. X ¢ M is M-finite if it is coded in M.
Fix n> 1.

m M = X, (X, induction) if it satisfies every ¥, instance
(with parameters in M) of the induction scheme.

m M = BY, (X, bounding) if every ¥, definable function
maps an M-finite set onto an M-finite set.

m Kirby-Paris: --- — X1 = BXp1 — Iy — -

m We take as base theory RCA; (Recursive Comprehension
Axiom plus /¥).
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Definition
Let R € Xand Rs = {t|(s, t) € R}. C C Mis cohesive for R if
for all s, either C N Rs is M-finite or C N Rs is M-finite.

COH: M = COH if for all R € X, there is a C € X that is
cohesive for R.

An M-extension of M is a structure M* = (M* X* +,-,0,1)
such that M = M* and X C X*.

Theorem

(Cholak, Jockusch and Slaman) Let n = 1,2. Every countable
M E RCAy + IL, has an M-extension

M* = RCAy + COH + IZ,.
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Theorem

Every countable M = RCAy + BX, has an M-extension
M* = RCAy + COH + Bx,.

Corollary
COH + RCA, + Bx; is N} conservative over RCAy + BX».
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An M-extension Theorem

Theorem

Let M = RCA, + BX, be countable. If R € X, then M has an
M-extension M* = M[G] = RCA, + BX, such that G is
cohesive for R.

This is established using a two stage forcing construction.
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A Two-Stage Construction for M-Extension

m Stage 1. Build an R'-recursive tree T for which every
unbounded path X on T is cohesive for R and GL; relative

toR,ie. X R =1 X.

Let /bea X, cutin Mandg:/— Mbe %, increasing and

cofinal.
m Build a uniformly R’-recursive nested sequence {Cj|i € I}
of M-infinite R-recursive trees such that for all j € I:
(i) C,' D) C,'+1
(i) Every unbounded path on C; is cohesive for Rs, s < g(i)
(1) Every unbounded path on C; is 1-generic on C; for 3x s,
s < g(i), where pg is Ay
(iv) T=N¢C.
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m A Cohen-type forcing construction carried out recursively
in R’ is deployed to achieve GL;. However,

m For each i € /, need to argue that there is a condition
forcing Ixp; for all s < g(/).

m Effectively we are constructing T so that each X € [T] is
hyperregular.

m This is achieved by exploiting a coding lemma that says
"Every bounded A,(R) set is coded".
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m Stage 2. Define a path G (from the outside) on T such that
MIG] = Bx,.

m Define countable sequences {T,} and {on}, n < w, such
that for each n,

m T,D T, are recursive in R’

B op€ Ty on<onyii
m 0, R forces BL1(G R') for the nth (G & R’) sentence.

m T, above o, is M-infinite.

PUt G: Uno'n.
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Ramsey’s Theorem For Pairs

Let M = RCA,.

RT3: Every two coloring of [M]? (pairs of elements of M) has a
homogeneous set in M.

SRT3: Every stable two coloring of [M]? has a homogeneous
setin M (f : [M]? — 2is stable if for all x, lim,f(x, y) exists).

Hirst: Over RCAg, RT3 — BX»

Cholak, Jockusch and Slaman: Over RCAy,
RT3 <> COH + SRT5.

Question: Over RCAy, does RT3 — /X,? Does SRT3 — RT3?
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m Hirschfeldt, Jockusch, Kjos-Hansen, Lempp and Slaman:
Every A, set A C w either contains or is disjoint from an
infinite incomplete A, set.

m For A A,, call any infinite X C A or A a solution for A.

m Interpreting these A, solutions in RCAg + BX,:
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m Chong and Yag, Mytillinaios and Slaman: Let
M = RCAq + BX,. If Gis Ap(M), then M[G] satisfies
RCAg \ /¥1 plus either BX 4, /X or Bx,. Furthermore
m There is an M in which each of the three possibilities

occurs;

m There is an M in which every Ax(M) G satisfies either
M[G] = RCA \ /x4 plus BXy or BX, (and each possibility
occurs).

P : Forevery M = RCAq + BX,, thereisa A, A C M for
which no As solution G exists with an M-extension
M[G] E RCAq + Bx,

Q : For every M = RCAy + BX, and every A, A C M, there
is a Ay solution G with an M-extension M[G] = RCA, or
RCAq + BX,.
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Either P or Q is false.

Conjecture 1: There is a countable M = RCA( + BX, with an
M-extension for the same theory in which every A, set has a
solution.

Corollary (to Conjecture 1): RT3 does not imply /Z.

Jockusch: There is a recursive two coloring of [N]? with no Ay
homogeneous set.

Theorem

There is a (first order) M |= B, with a recursive two coloring
of [M]? having no regular (/" -recursive homogeneous set.
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Conjectue 2: There is a countable M = RCAq + BX, with an
M-extension for the same theory in which every A, set has a
solution, and in which there is a recursive 2-coloring of [M]?
with no homogeneous set.

Corollary (to Conjecture 2): RT3 does not imply SRT3.



