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PARTITIONS

L a set.

L-partition of a set X:

e distinct block containing a for each a € L

e free blocks



WORDS
Think of L as an alphabet.
Words over L:
apai - - - an
apg,al,-..,an € L.
Infinite words over L:
apai---an - --

an € L (n € w)



VARIABLE WORDS

Fix an infinite list of variables:

VO, V1V, v« Uny - - -

Families of variable words:

e W(L,m,n)

o W(L,m)

e W(L,m,n)1

Allow n or m or both to be w.
We can make the following identification

W(L,n,m) = L-partitions of m with n free
blocks



THE HALES-JEWETT
THEOREM

is the following generalization of van der Waer-
den’'s Theorem on arithmetic progressions:

For any finite alphabet L and any positive in-
teger ¢, there is an integer n so large that for
any coloring

W(L,0,n) =C1UCrU---UC,

there is a monochromatic linei.e. a monochro-
matic set of the form

{w(a)|a € L}

where w € W(L,1,n).



HIGHER DIMENSIONAL
HALES-JEWETT

THEOREM. (Hales-Jewett) For any finite al-
phabet L and any positive integers ¢ and m,
there is an integer n so large that for any col-
oring

W(L,0,n) =C1UCrU---UC,

there is a monochromatic subspace of W(L,0,n)
of dimension m i.e. a monochromatic set of
the form

{w(agay - --apm—1)lagay -+ ap_1 € W(L,0,m)}

where w € W (L, m,n).

Remark: w can be chosen in W(L,m,n) 7.



GRAHAM-ROTHSCHILD
PARAMETER SET
THEOREM

THEOREM (Graham-Rothschild) For any fi-
nite alphabet L and any positive integers ¢, m
and k there is an integer n so large that for
any coloring

W(L,k,n) =C1UC>U---UC,

there is a monochromatic subset of W (L, k,n)
of dimension m of the form

{w(apay - -am—1) |apar - am—1 € W(L,k,m)}
where w € W (L, m,n).

Remark: The set in the conclusion is not quite
a subspace by the conditions on the variables.
However, notice that e.qg.

voUL * Vg 10k apm—1 € W(L, k,m)
for all ap,...,am—1 € LU{vg,...,v_1}.



AN INFINITARY VERSION OF
THE GRAHAM-ROTHSCHILD
THEOREM

THEOREM. (with Simpson) For any finite
alphabet L, any positive integers ¢ and k£ and
any coloring

W(L,k,w) =C1UCrU---UC,

where each () is Borel there is a monochro-
matic subset of W (L, k,w) of the form

{w(apay---am---)|apar---am--- € W(L,k,w)}
where w € W(L,w,w).

The case when L = (0 is known at the Dual
Ramsey T heorem.



STRENGTH?

PROBLEM: Determine the strength of the Dual
Ramsey T heorem along with various restricted
Versions.

Some partial results:

(Slaman) The Dual Ramsey Theorem can be
proved in M} — CAg.

The Dual Ramsey Theorem for open colorings
and partitions with k£ 4+ 1 blocks implies Ram-
sey’'s Theorem for sets of size k.

(Miller-Solomon) (RCAgp) The Dual Ramsey
Theorem restricted to open colorings and pari-
tions with 4 blocks implies AC' Ag.

(Miller-Solomon) WKLy does not imply the
Dual Ramsey Theorem for open colorings and
partitions with 3 blocks.



DUAL GALVIN-PRIKRY
THEOREM

THEOREM. (with Simpson) For any positive
integer ¢ and any coloring

W,w,w)=C1U---UC,

where each C; is Borel there is w € W(0,w,w)
such that {w(u) |u € W(0,w,w)} is monochro-
matic.

The Dual Galvin-Prikry Theorem easily implies
the Dual Ramsey Theorem and the Galvin-
Prikry T heorem.



LARGE PARTITIONS

w € W(0,k,n) is large if k is greater than the
least occurrence of vy.

COROLLARY of Dual G-P Thm. For any
positive integers m, kK and ¢, there is an integer
n SO large that for all colorings

WD, k,n) =CiU---UC,

there exists m’ > m and large w € W (0, m',n)
such that {w(u)|u € W(0,k,m")} is monochro-
matic.

T he corollary easily implies the Paris-Harrington
Theorem, so it can’t be proved in AC Ap.
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COMBINATORIAL CORE

The infinitary theorems discussed to this point
are proved in two stages:

1. Establish the combinatorial core of the the-
orem.

2. Establish the full topological version by a
fusion argument like that used to establish
Ellentuck’s T heorem.

All of the infinitary theorems to this point have
the same combinatorial core:

For any coloring of W (L,0) with finitely many
colors there is a w € W(L,w,w) such that the
collection of initial parts of w(u) (u € W(L,w,w))
IS monochromatic.
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REDUCTION RELATIONS

For w a variable word over L and W = wq, ..., wn
a sequence of variable words over L define

u < w

iff u = wo(tg) - - - wn(tn) for some variable words
to,...,tn. FOr «u =wuqg,u1,... and v = wqg, wq,. ..
infinite sequences of variable words define

u < w
iff there is an infinite subsequence ' of @ such

that &/ can be written as oy * @) * --- where
un, < ), for all n € w.

For e : w — w, S(L,e) is the set of infinite
sequences

wo, W1y yWny. ..

such that w, € W(L,e(n)).
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STRONGER THEOREMS

THEOREM. For any finite L, all e : w — w
and any coloring
S(L,e)=Cq1U---UC,

where each C; is Borel there is @ € S(L,e)
such that the set of all @ in S(L,e) with 4« < ¥
IS monochromatic.

This easily implies the Galvin-Prikry T heorem.
The combinatorial core is:

(CC) For any finite L, any positive integer n
and any coloring

W(L,n)=C1U---UC¢
there is @ € S(L,{n,n+ 1,...)) such that the

set of #(0) where v € S(L,{n,n+ 1,...)) and
u < w iS monochromatic.

For fixed n, this implies Ramsey’'s Theorem
for sets of size n. Lower bounds for the case
n=17

13



ULTRAFILTERS

The previous theorem uses the general the-
ory of families of idempotent ultrafilters (e.q.
see recent work with Hindman and Strauss and
their text Algebra in the Stone-Cech Compact-
ification). What is the status of this theory in
terms of reverse mathematics? Hirst, Simp-
son and Mummert have some results in this
direction.
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EXAMPLE. There exist ultrafilters V on W (L, 0)
and U on W(L,1) such that

o VxV =V

e ho(U)=V forall ac L

o VxU=UxV=U

o UxU=U

The example is strong enough to prove the
theorem on S(L,(1,1,1,...)).
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