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Distinguishing coins

• I have two types of coins in my pocket:

– Coin H0 is unbiased: heads/tails distributed according to p = (1/2, 1/2)

– Coin H1 is biased: heads/tails distributed according to q = (qH, qT )

• I take one coin, and want to know of which type it is.

• Question 1: How can I distinguish the coins, minimising the error?

• Depends on how you define the error.

• Question 2: How many throws are needed before I can tell this with near-
certainty?

• This will tell me how good my “decision rule” is...

• ...but also how much H0 and H1 are alike.

2



Distinguishing coins

• What I can do is: throw the coin n times and see how much heads come up.

• What I know about the coins is:

– With coin H0, heads come up k times in n throws with probability

Pk =

(
n

k

)
1/2n.

– With coin H1 this probability is

Qk =

(
n

k

)
qk
H qn−k

T .

• Say, in an actual experiment, heads come up k times out of n.

• Maximum Likelihood (ML) Decision rule: if Pk > Qk, decide H0, else H1.
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ML Decision rule
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Error probabilities

• Type-I error: decide on H0 while H1 is true; probability α

• Type-II error: decide on H1 while H0 is true; probability β

• In symmetric hypothesis testing, type-I and type-II errors treated equally, via:

• “Total” or Bayesian error probability: Pe = (α + β)/2

(assuming equal priors).

• Quantifies the “cost” of making a mistake.

• This Pe is what we want to minimise.

5



Error probabilities
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Answer 1

• Answer to Question 1: total error minimised by ML decision rule.

• What about Question 2? How big must n be to get “negligible” error?

• Depends on definition of “negligible”.

• Let’s look at how total error behaves in terms of n.
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Total Error Probability v n
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Answer 2

• Total Error Probability goes roughly as exp(−nR).

• Exponent R is the error rate (error exponent).

• We can take R as a qualitative answer to Question 2.

• It quantifies how well we’re doing, given p and q: efficiency of the decision rule

• In turn quantifies how alike p and q are: gives a distance measure on distributions

• Well, almost...
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We need the Asymptotic Error Rate
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Asymptotic Error Rate

• Asymptotic error rate hard to calculate directly: large n

• H. Chernoff (1952): Simple formula for asymptotic error rate:

lim
n→∞

−1

n
log Pe = − log Q(p, q),

where Q is defined as

Q(p, q) = min
0≤s≤1

∑
i

ps
iq

1−s
i .

• The quantity − log Q is called the Chernoff Distance (Divergence, Bound).

• It is a measure of distinguishability between distributions.

• − log Q((0.5, 0.5), (0.9, 0.1)) = 0.0488

• − log Q((0.5, 0.5), (0.55, 0.45)) = 0.000545
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Asymptotic Error Rate
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The Quantum Chernoff Bound

• Can we “quantise” this?

• Question 1: What is the optimal symmetric hypothesis test for discriminating
between two quantum states ρ and σ?

• Quantum measurement theory by Helstrom and Holevo from 70’s:

– Hypothesis H0: n draws yield state ρ⊗n

– Hypothesis H1: n draws yield state σ⊗n

– ML decision rule 7→ “optimal measurement”

• Question 2: What is the error exponent?

• Would yield a distinguishability measure for quantum states

• Answered last year.
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Optimal Measurement

• Quantum version of n throws = ρ⊗n vs σ⊗n ∈ H⊗n.

• Measurement = POVM {E0, E1} onH⊗n, with 0 ≤ E0, E1 ≤ 11 and E0+E1 = 11.

• Decide on H0 if outcome is ‘0’ (E0), otherwise H1.

• Type-I error: αn = Tr[E0 σ⊗n], Type-II error: βn = Tr[E1 ρ⊗n].

• Total error: Pe,n = (αn + βn)/2 (assuming equal priors).

• Optimal measurement: minimise Pe over all E0, E1

Pe,min,n = min
0≤E1≤11

Tr[(11− E1) σ⊗n + E1 ρ⊗n]/2

= (1− max
0≤E1≤11

Tr[E1 (σ⊗n − ρ⊗n)])/2.

• Solution is based on the positive part of an operator/matrix.
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The Positive Part

• The positive part H+ of a Hermitian matrix H is obtained by
setting its negative eigenvalues equal to 0.

• In terms of the matrix absolute value: H+ = (H + |H|)/2.

• If P is the projector on (the support of) H+, we can write H+ = PH .

• For all Hermitian H , one has H+ ≥ H , and H+ ≥ 0.

• Variational expression for Tr H+: Tr H+ = maxQ Tr QH ,
where the maximisation is over all Hermitian projectors Q,
and the optimum is achieved in Q = P , the projector on H+.

• Variant: maximise Tr QH over all positive contractions Q (0 ≤ Q ≤ 11).
Same answer.
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Optimal Measurement

• To Do: find max0≤E1≤11 Tr[E1 (σ⊗n − ρ⊗n)].

• Maximisation over positive contractions E1!

• Optimal E1 is therefore the projector on (σ⊗n − ρ⊗n)+.

• Optimal value:

Tr[(σ⊗n − ρ⊗n)+] = (Tr[σ⊗n − ρ⊗n] + Tr[|σ⊗n − ρ⊗n|])/2

= ||σ⊗n − ρ⊗n||1/2.

• Total error probability of the optimal measurement scheme is thus

Pe,min,n = (1− T (ρ⊗n, σ⊗n))/2, T (ρ, σ) := ||ρ− σ||1/2.

17



The Quantum Chernoff Bound

• Again, Pe goes down exponentially with n, with asymptotical rate

lim
n→∞

−1

n
log(1− T (ρ⊗n, σ⊗n))

• Can we find a closed-form expression in the sense of Chernoff?

• Long-standing open problem.

• Ogawa and Hayashi (2004): three candidate expressions, based on the quantities

ψ1(s) = min{Tr[ρσs/2ρ−sσs/2], Tr[σρ(1−s)/2σ−(1−s)ρ(1−s)/2]}
ψ2(s) = Tr[ρsσ1−s]

ψ3(s) = Tr[exp((1− s) log ρ + s log σ)],

each of which reduces to
∑

k ps
kq

1−s
k for commuting ρ and σ.
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Candidate #2 is an upper bound

• Nussbaum and Szkola (’06) proved that candidate #2,

− log min
0≤s≤1

Tr[ρsσ1−s],

is an upper bound to the error rate.

• Proof is based on a very special mapping of pairs of d-dim. states to pairs of
d2-dim. probability vectors:

ρ = UΛU ∗, σ = V MV ∗ 7→ p = vec(ΛW ), q = vec(WM),

where W is an entrywise positive matrix s.t. Tr[ρσ] =
∑

i,j(ΛWM)i,j.

• Can this bound be achieved? Is it also a lower bound?

• If so, this solves the problem completely!
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Is the bound of candidate #2 achievable?

• Let us define the quantity Q(ρ, σ) := min0≤s≤1 Tr[ρsσ1−s].

• We have

− log Q(ρ, σ) ≥ lim
n→∞

−1

n
log Pe = lim

n→∞
−1

n
log(1− T (ρ⊗n, σ⊗n)).

• Now we want to know whether

− log Q(ρ, σ) ≤ lim
n→∞

−1

n
log(1− T (ρ⊗n, σ⊗n)).

• Let’s try a simple numerical experiment to get a feel for the problem:
plot Q(ρ, σ) vs T (ρ, σ), for various d.
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Matlab scatter plot of Q vs T
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Is the bound #2 achieved?
• Not only do we get a feel for the problem, we actually get the solution!

• These numerics suggest that, in any dimension:

Q(ρ, σ) ≥ 1− T (ρ, σ).

• Thus, in particular,

Q(ρ⊗n, σ⊗n) ≥ 1− T (ρ⊗n, σ⊗n).

• Now, Q is multiplicative w.r.t. tensor powers:

log Q(ρ⊗n, σ⊗n) = n log Q(ρ, σ)

• That would imply achievability!

− log Q(ρ, σ) ≤ lim
n→∞

−1

n
(1− T (ρ⊗n, σ⊗n)) = lim

n→∞
−1

n
log Pe.
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Main Theorem

• We are thus led to conjecture the validity of the following statement, which is the
generalisation of the inequality Q+T ≥ 1 to non-normalised positive operators:

For all positive operators a, b ≥ 0, and for all s ∈ [0, 1] one has:

Tr[asb1−s] ≥ Tr [(a + b)− |a− b|] /2.

• Amazing features: tensor powers not explicitly appearing,
no limiting process needed

• Nice matrix analysis problem!

• We get a truly “quantum” solution!
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Overview of what is to come

• A ‘heuristic’ walk through the proof, highlighting its main ingredients:

– a few tricks from matrix analysis

– tons of luck

• Implications of the Theorem.

• Properties of Q and − log(Q).

• Further applications of the techniques we have used.
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Proof, Step 1

• The LHS and RHS look very different, but can be brought closer together by
expressing (a + b)− |a− b| in terms of the positive part (a− b)+.

• The statement of the Theorem is equivalent to

Tr[a− asb1−s] ≤ Tr[a− ((a + b)− |a− b|)/2]

= Tr[((a− b) + |a− b|)/2]

= Tr[(a− b)+]

= Tr[Q(a− b)],

with Q the projector on (a− b)+.

• Other formulation (used in proof of Hoeffding bound):

Tr[asb1−s] ≥ Tr[Qb + (11−Q)a].
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Proof, Step 1

• We can do sth like that in LHS too:

Tr[a− asb1−s] = Tr[as(a1−s − b1−s)] ≤ Tr[as(a1−s − b1−s)+]

= Tr[asP (a1−s − b1−s)]

= Tr[P (a− b1−sas)],

where P is the projector on (a1−s − b1−s)+.

• Thee Theorem would follow if, for that P ,

Tr[P (a− b1−sas)] ≤ Tr P (a− b).

• After simplification: Tr[Pb1−s(as − bs)] ≥ 0.

• Much nicer form, but also much stronger (Don’t try this at home!)

• Still..., what to do with all those matrix powers?
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Getting rid of one matrix power

• Step 2: absorb one of the powers via appropriate substitution.

• We certainly don’t want a power in the definition of projector P , so let’s use

A = a1−s, B = b1−s, t = s/(1− s).

• This yields a t between 0 and 1 only when 0 ≤ s ≤ 1/2.

The case 1/2 ≤ s ≤ 1 can be treated after the substitution s → 1− s.

• The Theorem is thus implied by the statement (“Lemma”):

Tr[PB(At −Bt)] ≥ 0,

for A,B ≥ 0, and 0 ≤ t ≤ 1, and P the projector on (A−B)+.

• What about the remaining power?
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Getting rid of the second matrix power

• Inspired by Loewner’s theory of operator monotones...

• Step 3: Represent matrix power At using integral (V.56).

• For scalars a ≥ 0 and 0 ≤ t ≤ 1

at =
sin(tπ)

π

∫ +∞

0

dx xt−1 a

a + x
.

• This can be extended to positive operators:

At =
sin(tπ)

π

∫ +∞

0

dx xt−1 A(A + x11)−1.

• Potential benefit: statements about the integral might follow
from statements about the integrand, which is a simpler quantity.
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Getting rid of the matrix powers

• Applying the integral representation to At and Bt, we get

Tr[PB(At −Bt)] =
sin(tπ)

π

∫ +∞

0

dx xt−1 Tr[PB(A(A + x)−1 −B(B + x)−1)].

• If the integrand is positive for all x > 0, the whole integral is positive.

• The Theorem follows if indeed we have

Tr[PB(A(A + x)−1 −B(B + x)−1)] ≥ 0.

• Again a stronger statement!

• But this not nice enough yet: products and difference.

• I want all products.
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Integral Representation of a Difference

• Step 4: A difference can be expressed as an integral of a derivative:

f (a)− f (b) = f (b + (a− b))− f (b) =

∫ 1

0

dt
d

dt
f (b + (a− b)t)

• Here: apply this to the expression A(A + x)−1 −B(B + x)−1.
Let ∆ = A−B. Then

A(A + x)−1 −B(B + x)−1 =

∫ 1

0

dt
d

dt
(B + t∆)(B + t∆ + x)−1.

• Potential benefit: statement might again follow from statement about integrand.

• One may be able to calculate the derivative explicitly.

• Not a stronger statement: has to hold for the derivative anyway (A close to B).
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Getting rid of the difference

• We can indeed calculate the derivative:

d

dt
(B + t∆)(B + t∆ + x)−1 = x (B + t∆ + x)−1 ∆ (B + t∆ + x)−1.

Therefore,

Tr[PB(A(A + x)−1 −B(B + x)−1)]

= x

∫ 1

0

dt Tr[PB(B + t∆ + x)−1∆(B + t∆ + x)−1].

• Again, if the integrand is positive for 0 ≤ t ≤ 1, the whole integral is.

• Absorbing t in ∆ we need to show, with P the projector on ∆+:

Tr[PB V ∆ V ] ≥ 0, where V := (B + ∆ + x)−1 ≥ 0.
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Final Steps

• Since B = V −1 − x−∆, we have BV ∆V = ∆(V − V ∆V )− xV ∆V .

• B ≥ 0 implies V BV = V − V ∆V − xV 2 ≥ 0,
thus V − V ∆V ≥ xV 2, and

Tr[PBV ∆V ] = Tr[∆+(V − V ∆V )]− x Tr[PV ∆V ]

≥ x(Tr[∆+V 2]− Tr[PV ∆V ]),

since P∆ = ∆+ ≥ 0.

• Because 11 ≥ P ≥ 0, ∆+ ≥ 0, and ∆+ ≥ ∆,

Tr[∆+V 2] = Tr[V ∆+V ] ≥ Tr[P (V ∆+V )] ≥ Tr[P (V ∆V )].

• Conclusion: Tr[PBV ∆V ] ≥ 0. ¤
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Importance of this result

• Having defined a quantum version of Chernoff’s quantity

Q(ρ, σ) = min
0≤s≤1

Qs, Qs := Tr ρsσ1−s

“we” have proven that the asymptotic error rate in symmetric hypothesis testing
is given by − log Q.
We can thus rightfully call − log Q the Quantum Chernoff Bound.

• The quantities − log Qs are known as the Renyi relative entropies.
Since − log Q = maxs(− log Qs), this gives the Renyi relative entropies a full
operational meaning.

• The QCB has properties that make it an excellent distinguishability measure.
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Coming up next

• We discuss some properties of Q...

• ...and show that Q and − log Q are excellent distinguishability measures,
lacking many undesirable features of other measures.
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Coming up next

• We discuss some properties of Q...

• ...and show that Q and − log Q are excellent distinguishability measures,
lacking many undesirable features of other measures.

• The following 3 pages are to be inserted at the end of Chapter 13 of Bengtsson
and Zyczkowski.
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Properties of QCB

Inverted measure. — The maximum value Q can attain is 1, and this is reached
when ρ = σ. The minimal value is 0, and this is only attained for pairs of orthogonal
states, i.e. states such that ρσ = 0. If you don’t like the log in − log Q, use 1−Q.

Convexity in s. — The function to be minimised in Q is s 7→ Tr[ρsσ1−s] which is
convex in s ∈ [0, 1]. That means that the minimisation has only one local minimum.
This makes numerical and analytical calculations very efficient.

Joint concavity. — Q(ρ, σ) is jointly concave in (ρ, σ), by Lieb concavity.

Monotonicity under CPT maps. — For all CPT maps Φ, Q(Φ(ρ), Φ(σ)) ≥ Q(ρ, σ).
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Properties of QCB

Relation to Trace Norm Distance: T (ρ, σ) := ||ρ− σ||1/2

We can show 0 ≤ 1−Q ≤ T ≤
√

1−Q2.
The lower bound implies that Q is continuous: states that are close in trace norm
distance are also close in 1−Q distance.

Relation to Uhlmann Fidelity: F (ρ, σ) := ||ρ1/2σ1/2||1
F is an upper bound to Q. Indeed: Q ≤ Qs=1/2 = Tr ρ1/2σ1/2 ≤ F .
If the states are pure, then equality holds.

Relation to Overlap:
If one of the states is pure, Q is equal to the overlap Tr ρσ.
Indeed, if ρ = |ψ〉〈ψ| is pure, the optimum s is 0.
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Properties of QCB

Relation to Relative Entropy: S(ρ||σ) := Tr ρ(log ρ− log σ)

When dealing with pure states, the relative entropy is pretty useless: S = 0 only
when the states are the same, otherwise it is +∞. In contrast, − log Q is infinite
only when the states have disjoint support, e.g. for orthogonal pure states.

Interpretation of optimal s: “Quantum Hellinger arc”
Define, for s between 0 and 1, the (non self-adjoint) operator

τs :=
ρsσ1−s

Tr ρsσ1−s
.

Optimal s in Q is achieved for τs the metric midpoint between ρ and σ:

S(τs||ρ) = S(τs||σ).
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Asymmetric Hypothesis Testing

• For distinguishing coins, type-I and type-II errors are treated equally.

• But what if the ‘costs’ of the two types of error are different,
or even incommensurate?

• “What colour did my wife want again for the living room?”

– H0: Beige H1: Hot Pink

– Type-II error: repaint more likely

• Medical Diagnosis:

– H0: Ordinary Flu H1: Bird Flu

– Type-I error: expensive and annoying

– Type-II error: might be lethal
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Quantum Hoeffding Bound

• Several ways for dealing with asymmetry: Stein’s Lemma, Hoeffding bound.

• Let αR and βR be the asymptotic rates of α and β.

• Quantum Hoeffding bound: under the constraint βR ≥ r, aR is at most e(r), the
error-exponent function

e(r) = max
0≤s≤1

−rs− log Qs(ρ, σ)

1− s
.

• Proof of optimality: Nagaoka, using the Nussbaum-Szkola mapping.

• Proof of achievability: Hayashi, with the inequality used for Quantum Chernoff.
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