Quantum Hypothesis Testing

Non-Commutative Chernoff and Hoeffding bounds

Institute for

Mathematical Sciences

Koenraad M.R. Audenaert

$\left[\begin{array}{lll}\mathbf{Q} & \mathbf{I} \\ \hline \mathbf{I} & \mathbf{C}\end{array}\right] \begin{aligned} & \text { Quantum Information at } \\ & \text { Imperial College } \\ & \text { London }\end{aligned}$

Impressum

Based on joint work with:

- J. Calsamiglia, R. Munoz-Tapia, E. Bagan, Ll. Masanes, A. Acin (Barcelona)
- F. Verstraete (Vienna)
- M. Nussbaum (Cornell) and A. Szkola (Leipzig).

Read more about it in:

- KA et al. et F. Verstraete, "The Quantum Chernoff Bound", quant-ph/0610027, to appear in PRL.
- M. Nussbaum and A. Szkola, quant-ph/0607216.
- ... and in a forthcoming full-length paper.

Distinguishing coins

- I have two types of coins in my pocket:
- Coin H_{0} is unbiased: heads/tails distributed according to $p=(1 / 2,1 / 2)$
- Coin H_{1} is biased: heads/tails distributed according to $q=\left(q_{H}, q_{T}\right)$
- I take one coin, and want to know of which type it is.
- Question 1: How can I distinguish the coins, minimising the error?
- Depends on how you define the error.
- Question 2: How many throws are needed before I can tell this with nearcertainty?
- This will tell me how good my "decision rule" is...
- ...but also how much H_{0} and H_{1} are alike.

Distinguishing coins

- What I can do is: throw the coin n times and see how much heads come up.
- What I know about the coins is:
- With coin H_{0}, heads come up k times in n throws with probability

$$
P_{k}=\binom{n}{k} 1 / 2^{n}
$$

- With coin H_{1} this probability is

$$
Q_{k}=\binom{n}{k} q_{H}^{k} q_{T}^{n-k} .
$$

- Say, in an actual experiment, heads come up k times out of n.
- Maximum Likelihood (ML) Decision rule: if $P_{k}>Q_{k}$, decide H_{0}, else H_{1}.

ML Decision rule

Error probabilities

- Type-I error: decide on H_{0} while H_{1} is true; probability α
- Type-II error: decide on H_{1} while H_{0} is true; probability β
- In symmetric hypothesis testing, type-I and type-II errors treated equally, via:
- "Total" or Bayesian error probability: $P_{e}=(\alpha+\beta) / 2$ (assuming equal priors).
- Quantifies the "cost" of making a mistake.
- This P_{e} is what we want to minimise.

Error probabilities

Answer 1

- Answer to Question 1: total error minimised by ML decision rule.
- What about Question 2? How big must n be to get "negligible" error?
- Depends on definition of "negligible".
- Let's look at how total error behaves in terms of n.

Total Error Probability v n

Answer 2

- Total Error Probability goes roughly as $\exp (-n R)$.
- Exponent R is the error rate (error exponent).
- We can take R as a qualitative answer to Question 2.
- It quantifies how well we're doing, given p and q : efficiency of the decision rule
- In turn quantifies how alike p and q are: gives a distance measure on distributions
- Well, almost...

We need the Asymptotic Error Rate

Asymptotic Error Rate

- Asymptotic error rate hard to calculate directly: large n
- H. Chernoff (1952): Simple formula for asymptotic error rate:

$$
\lim _{n \rightarrow \infty}-\frac{1}{n} \log P_{e}=-\log Q(p, q)
$$

where Q is defined as

$$
Q(p, q)=\min _{0 \leq s \leq 1} \sum_{i} p_{i}^{s} q_{i}^{1-s} .
$$

- The quantity $-\log Q$ is called the Chernoff Distance (Divergence, Bound).
- It is a measure of distinguishability between distributions.
- $-\log Q((0.5,0.5),(0.9,0.1))=0.0488$
- $-\log Q((0.5,0.5),(0.55,0.45))=0.000545$

Asymptotic Error Rate

- Asymptotic error rate hard to calculate directly: large n
- H. Chernoff (1952): Simple formula for asymptotic error rate:

$$
\lim _{n \rightarrow \infty}-\frac{1}{n} \log P_{e}=-\log Q(p, q)
$$

where Q is defined as

$$
Q(p, q)=\inf _{0 \leq s \leq 1} \sum_{i} p_{i}^{s} q_{i}^{1-s} .
$$

- The quantity $-\log Q$ is called the Chernoff Distance (Divergence, Bound).
- It is a measure of distinguishability between distributions.
- $-\log Q((0.5,0.5),(0.9,0.1))=0.0488$
- $-\log Q((0.5,0.5),(0.55,0.45))=0.000545$

Asymptotic Error Rate

The Quantum Chernoff Bound

- Can we "quantise" this?
- Question 1: What is the optimal symmetric hypothesis test for discriminating between two quantum states ρ and σ ?
- Quantum measurement theory by Helstrom and Holevo from 70's:
- Hypothesis $H_{0}: n$ draws yield state $\rho^{\otimes n}$
- Hypothesis H_{1} : n draws yield state $\sigma^{\otimes n}$
- ML decision rule \mapsto "optimal measurement"
- Question 2: What is the error exponent?
- Would yield a distinguishability measure for quantum states
- Answered last year.

Optimal Measurement

- Quantum version of n throws $=\rho^{\otimes n}$ vs $\sigma^{\otimes n} \in \mathcal{H}^{\otimes n}$.
- Measurement $=\operatorname{POVM}\left\{E_{0}, E_{1}\right\}$ on $\mathcal{H}^{\otimes n}$, with $0 \leq E_{0}, E_{1} \leq \mathbb{1}$ and $E_{0}+E_{1}=\mathbb{1}$.
- Decide on H_{0} if outcome is ' 0 ' $\left(E_{0}\right)$, otherwise H_{1}.
- Type-I error: $\alpha_{n}=\operatorname{Tr}\left[E_{0} \sigma^{\otimes n}\right]$, Type-II error: $\beta_{n}=\operatorname{Tr}\left[E_{1} \rho^{\otimes n}\right]$.
- Total error: $P_{e, n}=\left(\alpha_{n}+\beta_{n}\right) / 2$ (assuming equal priors).
- Optimal measurement: minimise P_{e} over all E_{0}, E_{1}

$$
\begin{aligned}
P_{e, \min , n} & =\min _{0 \leq E_{1} \leq \mathbb{1}} \operatorname{Tr}\left[\left(\mathbb{1}-E_{1}\right) \sigma^{\otimes n}+E_{1} \rho^{\otimes n}\right] / 2 \\
& =\left(1-\max _{0 \leq E_{1} \leq \mathbb{1}} \operatorname{Tr}\left[E_{1}\left(\sigma^{\otimes n}-\rho^{\otimes n}\right)\right]\right) / 2 .
\end{aligned}
$$

- Solution is based on the positive part of an operator/matrix.

The Positive Part

- The positive part H_{+}of a Hermitian matrix H is obtained by setting its negative eigenvalues equal to 0 .
- In terms of the matrix absolute value: $H_{+}=(H+|H|) / 2$.
- If P is the projector on (the support of) H_{+}, we can write $H_{+}=P H$.
- For all Hermitian H, one has $H_{+} \geq H$, and $H_{+} \geq 0$.
- Variational expression for $\operatorname{Tr} H_{+}: \operatorname{Tr} H_{+}=\max _{Q} \operatorname{Tr} Q H$, where the maximisation is over all Hermitian projectors Q, and the optimum is achieved in $Q=P$, the projector on H_{+}.
- Variant: maximise $\operatorname{Tr} Q H$ over all positive contractions $Q(0 \leq Q \leq \mathbb{1})$. Same answer.

Optimal Measurement

- To Do: find $\max _{0 \leq E_{1} \leq \mathbb{1}} \operatorname{Tr}\left[E_{1}\left(\sigma^{\otimes n}-\rho^{\otimes n}\right)\right]$.
- Maximisation over positive contractions E_{1} !
- Optimal E_{1} is therefore the projector on $\left(\sigma^{\otimes n}-\rho^{\otimes n}\right)_{+}$.
- Optimal value:

$$
\begin{aligned}
\operatorname{Tr}\left[\left(\sigma^{\otimes n}-\rho^{\otimes n}\right)_{+}\right] & =\left(\operatorname{Tr}\left[\sigma^{\otimes n}-\rho^{\otimes n}\right]+\operatorname{Tr}\left[\left|\sigma^{\otimes n}-\rho^{\otimes n}\right|\right]\right) / 2 \\
& =\left\|\sigma^{\otimes n}-\rho^{\otimes n}\right\|_{1} / 2 .
\end{aligned}
$$

- Total error probability of the optimal measurement scheme is thus

$$
P_{e, \min , n}=\left(1-T\left(\rho^{\otimes n}, \sigma^{\otimes n}\right)\right) / 2, \quad T(\rho, \sigma):=\|\rho-\sigma\|_{1} / 2 .
$$

The Quantum Chernoff Bound

- Again, P_{e} goes down exponentially with n, with asymptotical rate

$$
\lim _{n \rightarrow \infty}-\frac{1}{n} \log \left(1-T\left(\rho^{\otimes n}, \sigma^{\otimes n}\right)\right)
$$

- Can we find a closed-form expression in the sense of Chernoff?
- Long-standing open problem.
- Ogawa and Hayashi (2004): three candidate expressions, based on the quantities

$$
\begin{aligned}
& \psi_{1}(s)=\min \left\{\operatorname{Tr}\left[\rho \sigma^{s / 2} \rho^{-s} \sigma^{s / 2}\right], \operatorname{Tr}\left[\sigma \rho^{(1-s) / 2} \sigma^{-(1-s)} \rho^{(1-s) / 2}\right]\right\} \\
& \psi_{2}(s)=\operatorname{Tr}\left[\rho^{s} \sigma^{1-s}\right] \\
& \psi_{3}(s)=\operatorname{Tr}[\exp ((1-s) \log \rho+s \log \sigma)]
\end{aligned}
$$

each of which reduces to $\sum_{k} p_{k}^{s} q_{k}^{1-s}$ for commuting ρ and σ.

Candidate \#2 is an upper bound

- Nussbaum and Szkola ('06) proved that candidate \#2,

$$
-\log \min _{0 \leq s \leq 1} \operatorname{Tr}\left[\rho^{s} \sigma^{1-s}\right]
$$

is an upper bound to the error rate.

- Proof is based on a very special mapping of pairs of d-dim. states to pairs of d^{2}-dim. probability vectors:

$$
\rho=U \Lambda U^{*}, \sigma=V M V^{*} \mapsto p=\operatorname{vec}(\Lambda W), q=\operatorname{vec}(W M)
$$

where W is an entrywise positive matrix s.t. $\operatorname{Tr}[\rho \sigma]=\sum_{i, j}(\Lambda W M)_{i, j}$.

- Can this bound be achieved? Is it also a lower bound?
- If so, this solves the problem completely!

Is the bound of candidate \#2 achievable?

- Let us define the quantity $Q(\rho, \sigma):=\min _{0 \leq s \leq 1} \operatorname{Tr}\left[\rho^{s} \sigma^{1-s}\right]$.
- We have

$$
-\log Q(\rho, \sigma) \geq \lim _{n \rightarrow \infty}-\frac{1}{n} \log P_{e}=\lim _{n \rightarrow \infty}-\frac{1}{n} \log \left(1-T\left(\rho^{\otimes n}, \sigma^{\otimes n}\right)\right)
$$

- Now we want to know whether

$$
-\log Q(\rho, \sigma) \leq \lim _{n \rightarrow \infty}-\frac{1}{n} \log \left(1-T\left(\rho^{\otimes n}, \sigma^{\otimes n}\right)\right)
$$

- Let's try a simple numerical experiment to get a feel for the problem: plot $Q(\rho, \sigma)$ vs $T(\rho, \sigma)$, for various d.

Matlab scatter plot of Q vs T

Is the bound \#2 achieved?

- Not only do we get a feel for the problem, we actually get the solution!
- These numerics suggest that, in any dimension:

$$
Q(\rho, \sigma) \geq 1-T(\rho, \sigma)
$$

- Thus, in particular,

$$
Q\left(\rho^{\otimes n}, \sigma^{\otimes n}\right) \geq 1-T\left(\rho^{\otimes n}, \sigma^{\otimes n}\right)
$$

- Now, Q is multiplicative w.r.t. tensor powers:

$$
\log Q\left(\rho^{\otimes n}, \sigma^{\otimes n}\right)=n \log Q(\rho, \sigma)
$$

- That would imply achievability!

$$
-\log Q(\rho, \sigma) \leq \lim _{n \rightarrow \infty}-\frac{1}{n}\left(1-T\left(\rho^{\otimes n}, \sigma^{\otimes n}\right)\right)=\lim _{n \rightarrow \infty}-\frac{1}{n} \log P_{e}
$$

Main Theorem

- We are thus led to conjecture the validity of the following statement, which is the generalisation of the inequality $Q+T \geq 1$ to non-normalised positive operators:

For all positive operators $a, b \geq 0$, and for all $s \in[0,1]$ one has:

$$
\operatorname{Tr}\left[a^{s} b^{1-s}\right] \geq \operatorname{Tr}[(a+b)-|a-b|] / 2
$$

- Amazing features: tensor powers not explicitly appearing, no limiting process needed
- Nice matrix analysis problem!
- We get a truly "quantum" solution!

Overview of what is to come

- A 'heuristic' walk through the proof, highlighting its main ingredients:
- a few tricks from matrix analysis
- tons of luck
- Implications of the Theorem.
- Properties of Q and $-\log (Q)$.
- Further applications of the techniques we have used.

Proof, Step 1

- The LHS and RHS look very different, but can be brought closer together by expressing $(a+b)-|a-b|$ in terms of the positive part $(a-b)_{+}$.
- The statement of the Theorem is equivalent to

$$
\begin{aligned}
\operatorname{Tr}\left[a-a^{s} b^{1-s}\right] & \leq \operatorname{Tr}[a-((a+b)-|a-b|) / 2] \\
& =\operatorname{Tr}[((a-b)+|a-b|) / 2] \\
& =\operatorname{Tr}\left[(a-b)_{+}\right] \\
& =\operatorname{Tr}[Q(a-b)]
\end{aligned}
$$

with Q the projector on $(a-b)_{+}$.

- Other formulation (used in proof of Hoeffding bound):

$$
\operatorname{Tr}\left[a^{s} b^{1-s}\right] \geq \operatorname{Tr}[Q b+(\mathbb{1}-Q) a] .
$$

Proof, Step 1

- We can do sth like that in LHS too:

$$
\begin{aligned}
\operatorname{Tr}\left[a-a^{s} b^{1-s}\right]=\operatorname{Tr}\left[a^{s}\left(a^{1-s}-b^{1-s}\right)\right] & \leq \operatorname{Tr}\left[a^{s}\left(a^{1-s}-b^{1-s}\right)_{+}\right] \\
& =\operatorname{Tr}\left[a^{s} P\left(a^{1-s}-b^{1-s}\right)\right] \\
& =\operatorname{Tr}\left[P\left(a-b^{1-s} a^{s}\right)\right],
\end{aligned}
$$

where P is the projector on $\left(a^{1-s}-b^{1-s}\right)_{+}$.

- Thee Theorem would follow if, for that P,

$$
\operatorname{Tr}\left[P\left(a-b^{1-s} a^{s}\right)\right] \leq \operatorname{Tr} P(a-b)
$$

- After simplification:

$$
\operatorname{Tr}\left[P b^{1-s}\left(a^{s}-b^{s}\right)\right] \geq 0
$$

- Much nicer form, but also much stronger (Don't try this at home!)
- Still..., what to do with all those matrix powers?

Getting rid of one matrix power

- Step 2: absorb one of the powers via appropriate substitution.
- We certainly don't want a power in the definition of projector P, so let's use

$$
A=a^{1-s}, \quad B=b^{1-s}, \quad t=s /(1-s) .
$$

- This yields a t between 0 and 1 only when $0 \leq s \leq 1 / 2$.

The case $1 / 2 \leq s \leq 1$ can be treated after the substitution $s \rightarrow 1-s$.

- The Theorem is thus implied by the statement ("Lemma"):

$$
\operatorname{Tr}\left[P B\left(A^{t}-B^{t}\right)\right] \geq 0,
$$

for $A, B \geq 0$, and $0 \leq t \leq 1$, and P the projector on $(A-B)_{+}$.

- What about the remaining power?

Getting rid of the second matrix power

- Inspired by Loewner's theory of operator monotones...
- Step 3: Represent matrix power A^{t} using integral (V.56).
- For scalars $a \geq 0$ and $0 \leq t \leq 1$

$$
a^{t}=\frac{\sin (t \pi)}{\pi} \int_{0}^{+\infty} d x x^{t-1} \frac{a}{a+x}
$$

- This can be extended to positive operators:

$$
A^{t}=\frac{\sin (t \pi)}{\pi} \int_{0}^{+\infty} d x x^{t-1} A(A+x \mathbb{1})^{-1} .
$$

- Potential benefit: statements about the integral might follow from statements about the integrand, which is a simpler quantity.

Getting rid of the matrix powers

- Applying the integral representation to A^{t} and B^{t}, we get

$$
\operatorname{Tr}\left[P B\left(A^{t}-B^{t}\right)\right]=\frac{\sin (t \pi)}{\pi} \int_{0}^{+\infty} d x x^{t-1} \operatorname{Tr}\left[P B\left(A(A+x)^{-1}-B(B+x)^{-1}\right)\right] .
$$

- If the integrand is positive for all $x>0$, the whole integral is positive.
- The Theorem follows if indeed we have

$$
\operatorname{Tr}\left[P B\left(A(A+x)^{-1}-B(B+x)^{-1}\right)\right] \geq 0 .
$$

- Again a stronger statement!
- But this not nice enough yet: products and difference.
- I want all products.

Integral Representation of a Difference

- Step 4: A difference can be expressed as an integral of a derivative:

$$
f(a)-f(b)=f(b+(a-b))-f(b)=\int_{0}^{1} d t \frac{d}{d t} f(b+(a-b) t)
$$

- Here: apply this to the expression $A(A+x)^{-1}-B(B+x)^{-1}$.

Let $\Delta=A-B$. Then

$$
A(A+x)^{-1}-B(B+x)^{-1}=\int_{0}^{1} d t \frac{d}{d t}(B+t \Delta)(B+t \Delta+x)^{-1}
$$

- Potential benefit: statement might again follow from statement about integrand.
- One may be able to calculate the derivative explicitly.
- Not a stronger statement: has to hold for the derivative anyway (A close to B).

Getting rid of the difference

- We can indeed calculate the derivative:

$$
\frac{d}{d t}(B+t \Delta)(B+t \Delta+x)^{-1}=x(B+t \Delta+x)^{-1} \Delta(B+t \Delta+x)^{-1}
$$

Therefore,

$$
\begin{aligned}
& \operatorname{Tr}\left[P B\left(A(A+x)^{-1}-B(B+x)^{-1}\right)\right] \\
& =x \int_{0}^{1} d t \operatorname{Tr}\left[P B(B+t \Delta+x)^{-1} \Delta(B+t \Delta+x)^{-1}\right] .
\end{aligned}
$$

- Again, if the integrand is positive for $0 \leq t \leq 1$, the whole integral is.
- Absorbing t in Δ we need to show, with P the projector on Δ_{+}:

$$
\operatorname{Tr}[P B V \Delta V] \geq 0, \quad \text { where } V:=(B+\Delta+x)^{-1} \geq 0
$$

Final Steps

- Since $B=V^{-1}-x-\Delta$, we have $B V \Delta V=\Delta(V-V \Delta V)-x V \Delta V$.
- $B \geq 0$ implies $V B V=V-V \Delta V-x V^{2} \geq 0$, thus $V-V \Delta V \geq x V^{2}$, and

$$
\begin{aligned}
\operatorname{Tr}[P B V \Delta V] & =\operatorname{Tr}\left[\Delta_{+}(V-V \Delta V)\right]-x \operatorname{Tr}[P V \Delta V] \\
& \geq x\left(\operatorname{Tr}\left[\Delta_{+} V^{2}\right]-\operatorname{Tr}[P V \Delta V]\right)
\end{aligned}
$$

since $P \Delta=\Delta_{+} \geq 0$.

- Because $\mathbb{1} \geq P \geq 0, \Delta_{+} \geq 0$, and $\Delta_{+} \geq \Delta$,

$$
\operatorname{Tr}\left[\Delta_{+} V^{2}\right]=\operatorname{Tr}\left[V \Delta_{+} V\right] \geq \operatorname{Tr}\left[P\left(V \Delta_{+} V\right)\right] \geq \operatorname{Tr}[P(V \Delta V)]
$$

- Conclusion: $\operatorname{Tr}[P B V \Delta V] \geq 0$.

Importance of this result

- Having defined a quantum version of Chernoff's quantity

$$
Q(\rho, \sigma)=\min _{0 \leq s \leq 1} Q_{s}, \quad Q_{s}:=\operatorname{Tr} \rho^{s} \sigma^{1-s}
$$

"we" have proven that the asymptotic error rate in symmetric hypothesis testing is given by $-\log Q$.
We can thus rightfully call $-\log Q$ the Quantum Chernoff Bound.

- The quantities $-\log Q_{s}$ are known as the Renyi relative entropies.

Since $-\log Q=\max _{s}\left(-\log Q_{s}\right)$, this gives the Renyi relative entropies a full operational meaning.

- The QCB has properties that make it an excellent distinguishability measure.

Coming up next

- We discuss some properties of $Q \ldots$
- ...and show that Q and $-\log Q$ are excellent distinguishability measures, lacking many undesirable features of other measures.

Coming up next

- We discuss some properties of $Q \ldots$
- ...and show that Q and $-\log Q$ are excellent distinguishability measures, lacking many undesirable features of other measures.
- The following 3 pages are to be inserted at the end of Chapter 13 of Bengtsson and Zyczkowski.

Properties of QCB

Inverted measure. - The maximum value Q can attain is 1 , and this is reached when $\rho=\sigma$. The minimal value is 0 , and this is only attained for pairs of orthogonal states, i.e. states such that $\rho \sigma=0$. If you don't like the \log in $-\log Q$, use $1-Q$.

Convexity in s. - The function to be minimised in Q is $s \mapsto \operatorname{Tr}\left[\rho^{s} \sigma^{1-s}\right]$ which is convex in $s \in[0,1]$. That means that the minimisation has only one local minimum. This makes numerical and analytical calculations very efficient.

Joint concavity. - $Q(\rho, \sigma)$ is jointly concave in (ρ, σ), by Lieb concavity.

Monotonicity under CPT maps. - For all CPT maps $\Phi, Q(\Phi(\rho), \Phi(\sigma)) \geq Q(\rho, \sigma)$.

Properties of QCB

Relation to Trace Norm Distance: $T(\rho, \sigma):=\|\rho-\sigma\|_{1} / 2$
We can show $0 \leq 1-Q \leq T \leq \sqrt{1-Q^{2}}$.
The lower bound implies that Q is continuous: states that are close in trace norm distance are also close in $1-Q$ distance.

Relation to Uhlmann Fidelity: $F(\rho, \sigma):=\left\|\rho^{1 / 2} \sigma^{1 / 2}\right\|_{1}$
F is an upper bound to Q. Indeed: $Q \leq Q_{s=1 / 2}=\operatorname{Tr} \rho^{1 / 2} \sigma^{1 / 2} \leq F$.
If the states are pure, then equality holds.

Relation to Overlap:
If one of the states is pure, Q is equal to the overlap $\operatorname{Tr} \rho \sigma$.
Indeed, if $\rho=|\psi\rangle\langle\psi|$ is pure, the optimum s is 0 .

Properties of QCB

Relation to Relative Entropy: $S(\rho \| \sigma):=\operatorname{Tr} \rho(\log \rho-\log \sigma)$
When dealing with pure states, the relative entropy is pretty useless: $S=0$ only when the states are the same, otherwise it is $+\infty$. In contrast, $-\log Q$ is infinite only when the states have disjoint support, e.g. for orthogonal pure states.

Interpretation of optimal s: "Quantum Hellinger arc"
Define, for s between 0 and 1, the (non self-adjoint) operator

$$
\tau_{s}:=\frac{\rho^{s} \sigma^{1-s}}{\operatorname{Tr} \rho^{s} \sigma^{1-s}}
$$

Optimal s in Q is achieved for τ_{s} the metric midpoint between ρ and σ :

$$
S\left(\tau_{s} \| \rho\right)=S\left(\tau_{s} \| \sigma\right)
$$

Asymmetric Hypothesis Testing

- For distinguishing coins, type-I and type-II errors are treated equally.
- But what if the 'costs' of the two types of error are different, or even incommensurate?
- "What colour did my wife want again for the living room?"
- H_{0} : Beige $\quad H_{1}$: Hot Pink
- Type-II error: repaint more likely
- Medical Diagnosis:
- H_{0} : Ordinary Flu $\quad H_{1}$: Bird Flu
- Type-I error: expensive and annoying
- Type-II error: might be lethal

Quantum Hoeffding Bound

- Several ways for dealing with asymmetry: Stein's Lemma, Hoeffding bound.
- Let α_{R} and β_{R} be the asymptotic rates of α and β.
- Quantum Hoeffding bound: under the constraint $\beta_{R} \geq r, a_{R}$ is at most $e(r)$, the error-exponent function

$$
e(r)=\max _{0 \leq s \leq 1} \frac{-r s-\log Q_{s}(\rho, \sigma)}{1-s}
$$

- Proof of optimality: Nagaoka, using the Nussbaum-Szkola mapping.
- Proof of achievability: Hayashi, with the inequality used for Quantum Chernoff.

