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Distinguishing coins

e | have two types of coins in my pocket:

— Coin Hj is unbiased: heads/tails distributed according to p = (1/2,1/2)

— Coin H, is biased: heads/tails distributed according to ¢ = (qx, q7)

e | take one coin, and want to know of which type it is.
e Question 1: How can I distinguish the coins, minimising the error?
e Depends on how you define the error.

e Question 2: How many throws are needed before I can tell this with near-
certainty?

e This will tell me how good my “decision rule” 1s...

e ...but also how much H, and H; are alike.



Distinguishing coins

e What I can do 1s: throw the coin n times and see how much heads come up.

e What I know about the coins i1s:

— With coin Hj, heads come up k times in n throws with probability

j (Z) 12"

— With coin H; this probability 1s

n _
Qr = (k) @ @ "

e Say, in an actual experiment, heads come up £ times out of n.

e Maximum Likelihood (ML) Decision rule: if P. > ()}, decide H, else H;.
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Error probabilities

e Type-I error: decide on H, while H is true; probability «
e Type-II error: decide on H; while Hj is true; probability (3
e In symmetric hypothesis testing, type-I and type-II errors treated equally, via:

e “Total” or Bayesian error probability: P, = (a + 3)/2
(assuming equal priors).

e Quantifies the “cost” of making a mistake.

e This F. 1s what we want to minimise.
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Answer 1

e Answer to Question 1: total error minimised by ML decision rule.
e What about Question 2? How big must n be to get “negligible” error?
e Depends on definition of “negligible”.

e [ ct’s look at how total error behaves in terms of n.
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Answer 2

e Total Error Probability goes roughly as exp(—nR).

e Exponent R 1s the error rate (error exponent).

e We can take R as a qualitative answer to Question 2.

e It quantifies how well we’re doing, given p and ¢: efficiency of the decision rule
e In turn quantifies how alike p and q are: gives a distance measure on distributions

e Well, almost...



We need the Asymptotic Error Rate

R= —Iog(Pe)/N
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Asymptotic Error Rate

e Asymptotic error rate hard to calculate directly: large n

e H. Chernoff (1952): Simple formula for asymptotic error rate:

lim ——logP = —log Q(p, q),

n—oo

where () is defined as

E : s 1—s
= mm .
 0<s<1 Pidi

e The quantity — log () is called the Chernoff Distance (Divergence, Bound).

e It is a measure of distinguishability between distributions.
e —log Q((0.5,0.5),(0.9,0.1)) = 0.0488
e —log Q((0.5,0.5),(0.55,0.45)) = 0.000545
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Asymptotic Error Rate

R= —Iog(Pe)/N
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The Quantum Chernoff Bound

e Can we “quantise” this?

e Question 1: What is the optimal symmetric hypothesis test for discriminating
between two quantum states p and o?

e Quantum measurement theory by Helstrom and Holevo from 70’s:

— Hypothesis Hy: n draws yield state p®"
— Hypothesis H;: n draws yield state c“"

— ML decision rule — “optimal measurement”

e Question 2: What is the error exponent?
e Would yield a distinguishability measure for quantum states

e Answered last year.
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Optimal Measurement

e Quantum version of n throws = p®" vs o € H®",
e Measurement = POVM { Ey, F; } on H®", with 0 < Ey, F1 < 1 and Ey+F; = 1.
e Decide on H if outcome is ‘0’ (£y), otherwise H;.

e Type-I error: o, = Tr[Ey c®"], Type-1I error: 3, = Tr[E; p®"].
e Total error: P.,, = (o, + (3,)/2 (assuming equal priors).

e Optimal measurement: minimise P, over all Ey, [

Pominn = min Tr[(1 — Ey) o®" + By p¥"]/2

o<pk<1
= (1 — max Tr[E) (a®" — p=™)])/2.
o<pk <1

e Solution is based on the positive part of an operator/matrix.
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The Positive Part

e The positive part /, of a Hermitian matrix / i1s obtained by
setting its negative eigenvalues equal to 0.

e In terms of the matrix absolute value: H, = (H + |H|)/2.
e If P is the projector on (the support of) /., we can write [/, = PH.
e For all Hermitian /4, one has /7, > H,and H. > 0.

e Variational expression for Tr H.: Tr H. = maxg Tr QH,
where the maximisation is over all Hermitian projectors (),
and the optimum is achieved in () = P, the projector on H .

e Variant: maximise Tr () H over all positive contractions () (0 < @) < 1).
Same answer.
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Optimal Measurement

e To Do: find max,_p _q Tr[E} (" — p®")].
e Maximisation over positive contractions F;!
e Optimal F) is therefore the projector on (o®" — p*"),.

e Optimal value:

Te[(0™" = p")4] = (Tr[o®™" — p™"] + Tf|0™" — p™"]]) /2
= o™ = p™"[]1/2.

e Total error probability of the optimal measurement scheme 1s thus

Prowinn = (1= T(p™",0%)/2,  T(p,0) = |Ip— ol|1/2
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The Quantum Chernoff Bound

e Again, P, goes down exponentially with n, with asymptotical rate

1
lim —=log(1 — T'(p*",c®"))

n—oo N

e Can we find a closed-form expression in the sense of Chernoftf?

e [ ong-standing open problem.

e Ogawa and Hayashi (2004): three candidate expressions, based on the quantities
Yi(s) = min{Tr[po™?p~ "], Tr[op!' =26~ 17) pl=)/2]}
a(s) = Tr[p'o' 7]
3(s) = Trlexp((1 — s)logp + slogo)],

each of which reduces to ) _, pzq,i_s for commuting p and o.
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Candidate #2 1s an upper bound

e Nussbaum and Szkola (’06) proved that candidate #2,

. : s 1—s
log min Tr|p*c™""),

1s an upper bound to the error rate.

e Proof is based on a very special mapping of pairs of d-dim. states to pairs of
d?-dim. probability vectors:

p=UANU" 0 =VMV"— p=vec(AW), q=vec(WM),
where W' is an entrywise positive matrix s.t. Tr[pa| =} |, (AW M), ;.
e Can this bound be achieved? Is it also a lower bound?

e If so, this solves the problem completely!
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Is the bound of candidate #2 achievable?

e Let us define the quantity Q(p, o) := ming<,<1 Tr[p*c~%].

e We have

1 1
—logQ(p,0) > lim ——log P, = lim ——log(1 — T(p®",c®")).

n—oo M n—oo N

e Now we want to know whether

1
o 1Og Q(pa U) < lim —— 10g(1 o T<10®n7 U®n))'

n—oo N

e Let’s try a simple numerical experiment to get a feel for the problem:
plot Q(p, o) vs T'(p, o), for various d.
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Matlab scatter plot of Q vs T




Is the bound #2 achieved?

e Not only do we get a feel for the problem, we actually get the solution!

e These numerics suggest that, in any dimension:

Q(/Ov J) > 1= T</07 O_>°
e Thus, in particular,
Q(/O(Xm, O'®n> >1— T<p®n’ O.®n>.

e Now, () is multiplicative w.r.t. tensor powers:

log Q(p™",0"") = nlog Q(p, o)
e That would imply achievability!

1 1
—logQ(p,0) < lim ——(1 —=T(p*",0%")) = lim ——log P..

n—oo n n—o0 n
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Main Theorem

e We are thus led to conjecture the validity of the following statement, which is the
generalisation of the inequality () +I" > 1 to non-normalised positive operators:

For all positive operators a,b > 0, and for all s € |0, 1] one has:

Tr[a®v' %] > Tr{(a + b) — |a — b|] /2.

e Amazing features: tensor powers not explicitly appearing,
no limiting process needed

e Nice matrix analysis problem!

e We get a truly “quantum” solution!
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Overview of what 1s to come

e A ‘heuristic’ walk through the proof, highlighting its main ingredients:

— a few tricks from matrix analysis

— tons of luck

e Implications of the Theorem.
e Properties of () and — log(@Q).

e Further applications of the techniques we have used.
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Proof, Step 1

e The LHS and RHS look very different, but can be brought closer together by
expressing (a + b) — |a — b| in terms of the positive part (a — b),..

e The statement of the Theorem is equivalent to

Trla — a®b' %] <

Tr
Tr

= Ir

with () the projector on (a — b)..

Tr

a—((a+0)—[a—0b])/2
((a =)+ |a—b])/2]

(@ —b)4]

Q(a = b)),

e Other formulation (used in proof of Hoeffding bound):

Tr[a®b' ] > Tr[Qb + (1 — Q)al.

25



Proof, Step 1

e We can do sth like that in LHS too:
Trla — asbl_s] — Tr[as(al_s — bl_s)]

I

Tr:ajs(al_s o b1_8>+]
= Tr[a*P(a' ™ — b %)
= Tr[P(a — b' *a®)],

where P is the projector on (a' ™% — b %) .
e Thee Theorem would follow if, for that P,
Tr[P(a — b *a®)] < Tr P(a — b).
e After simplification: Tr[Pb' % (a® — b%)] > 0.
e Much nicer form, but also much stronger (Don’t try this at home!)

e Still..., what to do with all those matrix powers?
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Getting rid of one matrix power

e Step 2: absorb one of the powers via appropriate substitution.

e We certainly don’t want a power 1n the definition of projector P, so let’s use

A=a"° B=b"7 t=5/(1-5s).

® This yields a ¢ between 0 and 1 only when 0 < s < 1/2.

The case 1/2 < s < 1 can be treated after the substitution s — 1 — s.

e The Theorem i1s thus implied by the statement (“Lemma”):
Tr[PB(A" — B"] > 0,
for A,B>0,and 0 <t <1, and P the projector on (A — B)..

e What about the remaining power?
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Getting rid of the second matrix power

e Inspired by Loewner’s theory of operator monotones...
e Step 3: Represent matrix power A’ using integral (V.56).

e Forscalarsa > 0and 0 <t <1

: +00
S sin(t7) / gy 1O
0

T a+1x

e This can be extended to positive operators:

: 400
Al = sn(f) / dr o't A(A+ 1),
0

T

e Potential benefit: statements about the integral might follow
from statements about the integrand, which is a simpler quantity.
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Getting rid of the matrix powers

e Applying the integral representation to A* and B?, we get

TPB(A — B = SnUT)

/M dr 2" ' TY[PB(A(A+2)' — B(B+ )™ Y)].

-
e If the integrand is positive for all x > 0, the whole integral 1s positive.

e The Theorem follows if indeed we have
Tr[PB(A(A+2z) ' = B(B+z) Y] >0.

e Again a stronger statement!
e But this not nice enough yet: products and difference.

e [ want all products.
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Integral Representation ot a Difference

e Step 4: A difference can be expressed as an integral of a derivative:
1
d
fla) = Fb) = fb-+ (= b) = f6) = [ dt S7(b+(a = bt
0

e Here: apply this to the expression A(A + )~ — B(B + )~
Let A=A — B. Then

1
d
AA+z) ' = BB +az) ! = / dt a(B—FtA)(B—i—tA—I—ZC)_l.
0

e Potential benefit: statement might again follow from statement about integrand.
e One may be able to calculate the derivative explicitly.

e Not a stronger statement: has to hold for the derivative anyway (A close to B).
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Getting rid of the difference

e We can indeed calculate the derivative:

d
£(3+tA)(B+tA+:C)_1 — 2 (B+tA+2) ' A(B+tA+z) L.

Therefore,
Tr[PB(A(A+2) ' — B(B+2x)™ )
1
= x / dt Tr[PB(B +tA +2) 'A(B +tA +2)71.
0

e Again, if the integrand is positive for 0 < ¢ < 1, the whole integral is.

e Absorbing ¢ in A we need to show, with P the projector on A . :

T[PBVAV] >0,  whereV :=(B+A+xz)">0.
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Final Steps

e Since B=V"!—x— A, wehave BVAV = A(V — VAV) —2VAV.

o B> 0implies VBV =V — VAV — 2V? > (,
thus V — VAV > 2V?, and

Tr[PBVAV] = Tr[AL(V = VAV)] — 2 Tr|PVAV]
> 2(Tr[ALV?] — Ti[PVAV]),

since PA = A, > 0.
e Because 1 > P > 0, AL > 0,and A, > A,

T ALV = Ti[VALV] > Tr[P(VAL V)] > Te[P(VAV)).
e Conclusion: Tr|PBVAV] > 0. ]
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Importance of this result

e Having defined a quantum version of Chernoff’s quantity

Qp,o) = min Qs, Qs :=Trp'o" ™
“we” have proven that the asymptotic error rate in symmetric hypothesis testing
is given by — log ().
We can thus rightfully call — log () the Quantum Chernoff Bound.
e The quantities — log () are known as the Renyi relative entropies.
Since — log ) = max,(—log ()s), this gives the Renyi relative entropies a full
operational meaning.

e The QCB has properties that make it an excellent distinguishability measure.
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Coming up next

e We discuss some properties of ()...

e ...and show that () and — log () are excellent distinguishability measures,
lacking many undesirable features of other measures.
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Coming up next

e We discuss some properties of ()...

e ...and show that () and — log () are excellent distinguishability measures,
lacking many undesirable features of other measures.

e The following 3 pages are to be inserted at the end of Chapter 13 of Bengtsson
and Zyczkowski.
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Properties of QCB

Inverted measure. — The maximum value () can attain is 1, and this is reached
when p = o. The minimal value 1s 0, and this is only attained for pairs of orthogonal
states, i.e. states such that po = 0. If you don’t like the log in — log (), use 1 — Q).

Convexity in s. — The function to be minimised in Q is s — Tr[p°c'~*] which is

convex in s € |0, 1|. That means that the minimisation has only one local minimum.
This makes numerical and analytical calculations very efficient.

Joint concavity. — Q)(p, o) is jointly concave in (p, o), by Lieb concavity.

Monotonicity under CPT maps. — For all CPT maps ®, Q(®(p), P(a)) > Q(p, o).
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Properties of QCB

Relation to Trace Norm Distance: T(p, o) := ||p — ol|1/2

Wecanshow 0 <1 —Q <T < /1 — Q>
The lower bound implies that () is continuous: states that are close in trace norm
distance are also close in 1 — () distance.

Relation to Uhlmann Fidelity: F(p,o) = ||p"?c"?||,
F is an upper bound to Q. Indeed: Q < Qy_y/o = Trp'/2c!/2 < F.
If the states are pure, then equality holds.

Relation to Overlap:

If one of the states is pure, () is equal to the overlap It po.
Indeed, if p = [1)) (1] is pure, the optimum s is 0.
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Properties of QCB

Relation to Relative Entropy: S(p||o) := Tr p(log p — log o)

When dealing with pure states, the relative entropy is pretty useless: S = 0 only
when the states are the same, otherwise it is +0o. In contrast, — log () is infinite
only when the states have disjoint support, e.g. for orthogonal pure states.

Interpretation of optimal s: “Quantum Hellinger arc”
Define, for s between 0 and 1, the (non self-adjoint) operator

S

,030'1_
Tg ‘= .
Ty pso-l—s

Optimal s in @) is achieved for 7, the metric midpoint between p and o

S(7sllp) = S(7l]o).
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Asymmetric Hypothesis Testing

e For distinguishing coins, type-I and type-II errors are treated equally.

e But what 1f the ‘costs’ of the two types of error are different,
or even incommensurate?

e “What colour did my wife want again for the living room?”
— Hy: Beige H: Hot Pink
— Type-II error: repaint more likely
e Medical Diagnosis:
— Hy: Ordinary Flu Hy: Bird Flu
— Type-I error: expensive and annoying

— Type-II error: might be lethal
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Quantum Hoeffding Bound

e Several ways for dealing with asymmetry: Stein’s Lemma, Hoeffding bound.
e Let ap and (i be the asymptotic rates of o and [3.

e Quantum Hoeffding bound: under the constraint 5z > 7, apy is at most e(r), the
error-exponent function

B —1rs —log Qs(p, 0)
e(r) = ax - .

e Proof of optimality: Nagaoka, using the Nussbaum-Szkola mapping.

e Proof of achievability: Hayashi, with the inequality used for Quantum Chernoff.
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