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1. Introduction

• The Four Color Theorem: Every

planar map is 4-face colorable.

• Theorem (Whitney 1931). Every 4-

connected planar triangulation contains

a Hamilton cycle.

• Theorem (Tutte 1956). 4-Connected

planar graphs contain Hamilton cycles.



2. Spanning Rays

• An infinite graph G is k-indivisible, where

k is a positive integer, if for any finite

X ⊆ V (G), G − X has at most k − 1

infinite components.

• For locally finite graphs, a graph is k-

indivisible iff it has at most k−1 ends.

• Conjecture (Nash-Williams, 1971). A

4-connected infinite planar graph con-

tains a spanning ray iff it is 2-indivisible.

—established by Dean, Thomas and

Y. (1997)



• Conjecture (Nash-Williams, 1971). A

4-connected infinite planar graph con-

tains a spanning double ray iff it is 3-

indivisible.

—established by Y. (1999-2004).

• Conjecture (Bruhn, 2005?). Every

locally finite 4-connected planar graph

admits a Hamilton circle.

• True for 6-connected graphs with finitely

many ends (Bruhn and Y. 2005).



3. 2-Indivisible Plane Graphs

• A dividing cycle C in an infinite plane

graph G is a cycle such that each closed

region bounded by C contains infinitely

many vertices of G.

• If the cycle C is not dividing, then we

can define I(C), the maximal subgraph

of G contained in the closed region

bounded by C which contain only finitely

many vertices of G.

• If an infinite plane graph is 2-indivisible,

then it contains no dividing cycles.



• Theorem (Dean, Thomas and Y. 1997).

Let G be a 2-indivisible locally finite in-

finite plane graph, with an appropriate

connectivity condition. Then there ex-

ist cycles C1, C2, . . . such that either

(1) Ci∩Cj = ∅ for i 6= j, I(Ci) ⊆ I(Ci+1),

and G =
⋃

I(Ci), or

(2) I(Ci) ⊆ I(Ci+1), Ci ∩ Ci+1 is sub-

path of Ci+1 ∩ Ci+2 with no com-

mon endvertex, and G =
⋃

I(Ci).

• (C1, C2, . . .) is a radial net if (1) is sat-

isfied, and ladder net otherwise.
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4. 3-Indivisible graphs

• Let γ(G) denote the maximum number

of vertex disjoint dividing cycles in G.

• 3-Indivisible infinite plane graphs can

be divided into three classes:

– those with γ(G) = 0,

– those with γ(G) = ∞, and

– those with 0 < γ(G) < ∞.



5. Graphs with γ(G) = 0

• Structure: If G is an infinite plane graph

with γ(G) = 0 (suitably connected),

then there is a sequence of cycles (C1, C2, . . .),

called a net, in G such that

– I(Ci) ⊆ I(Ci+1),

– each component of Ci∩Ci+1 is sub-

path of some component of Ci+1 ∩

Ci+2, with no common endvertex,

– G =
⋃

I(Ci).

• Nice embdedding of G.
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• Let G be a locally finite plane graph

with γ(G) = 0.

• We may assume that G is nicely em-

bedded.

• Let C be a facial cycle of G, and e be

an edge of C.

• Will show that G contains a collection

of double rays so that the closure of

their union is a Hamilton circle.



6. First reduction
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We may assume that G has at least

two ends.
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