Hamilton Circles in Locally Finite Graphs

Xingxing Yu School of Mathematics Georgia Institute of Technology
Atlanta, GA 30332
and
Center for Combinatorics
Nankai University Tianjin, China 300071

Joint work with Q. Cui and J. Wang

1. Introduction

- The Four Color Theorem: Every planar map is 4-face colorable.
- Theorem (Whitney 1931). Every 4connected planar triangulation contains a Hamilton cycle.
- Theorem (Tutte 1956). 4-Connected planar graphs contain Hamilton cycles.

2. Spanning Rays

- An infinite graph G is k-indivisible, where k is a positive integer, if for any finite $X \subseteq V(G), G-X$ has at most $k-1$ infinite components.
- For locally finite graphs, a graph is k indivisible iff it has at most $k-1$ ends.
- Conjecture (Nash-Williams, 1971). A 4-connected infinite planar graph contains a spanning ray iff it is 2-indivisible.
—established by Dean, Thomas and Y. (1997)
- Conjecture (Nash-Williams, 1971). A 4-connected infinite planar graph contains a spanning double ray iff it is 3 indivisible.
—established by Y. (1999-2004).
- Conjecture (Bruhn, 2005?). Every locally finite 4-connected planar graph admits a Hamilton circle.
- True for 6-connected graphs with finitely many ends (Bruhn and Y. 2005).

3. 2-Indivisible Plane Graphs

- A dividing cycle C in an infinite plane graph G is a cycle such that each closed region bounded by C contains infinitely many vertices of G.
- If the cycle C is not dividing, then we can define $I(C)$, the maximal subgraph of G contained in the closed region bounded by C which contain only finitely many vertices of G.
- If an infinite plane graph is 2-indivisible, then it contains no dividing cycles.
- Theorem (Dean, Thomas and Y. 1997). Let G be a 2-indivisible locally finite infinite plane graph, with an appropriate connectivity condition. Then there exist cycles C_{1}, C_{2}, \ldots such that either
(1) $C_{i} \cap C_{j}=\emptyset$ for $i \neq j, I\left(C_{i}\right) \subseteq I\left(C_{i+1}\right)$, and $G=\cup I\left(C_{i}\right)$, or
(2) $I\left(C_{i}\right) \subseteq I\left(C_{i+1}\right), C_{i} \cap C_{i+1}$ is subpath of $C_{i+1} \cap C_{i+2}$ with no common endvertex, and $G=\bigcup I\left(C_{i}\right)$.
- $\left(C_{1}, C_{2}, \ldots\right)$ is a radial net if (1) is satisfied, and ladder net otherwise.

radial net

4. 3-Indivisible graphs

- Let $\gamma(G)$ denote the maximum number of vertex disjoint dividing cycles in G.
- 3-Indivisible infinite plane graphs can be divided into three classes:
- those with $\gamma(G)=0$,
- those with $\gamma(G)=\infty$, and
- those with $0<\gamma(G)<\infty$.

5. Graphs with $\gamma(G)=0$

- Structure: If G is an infinite plane graph with $\gamma(G)=0$ (suitably connected), then there is a sequence of cycles $\left(C_{1}, C_{2}, \ldots\right)$, called a net, in G such that
$-I\left(C_{i}\right) \subseteq I\left(C_{i+1}\right)$,
- each component of $C_{i} \cap C_{i+1}$ is subpath of some component of $C_{i+1} \cap$
C_{i+2}, with no common endvertex,
$-G=\cup I\left(C_{i}\right)$.
- Nice embdedding of G.

- Let G be a locally finite plane graph with $\gamma(G)=0$.
- We may assume that G is nicely embedded.
- Let C be a facial cycle of G, and e be an edge of C.
- Will show that G contains a collection of double rays so that the closure of their union is a Hamilton circle.

6. First reduction

We may assume that G has at least two ends.

(a)

(b)

