From Finite to Infinite

Lajos Soukup

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Infinite Graphs, 2007

Outline

- theorems in finite combinatorics vs their infinite counterparts
- the methods of generalizations
- proof of a "finite" theorem vs proof of its "infinite" version.
- basic proof methods
- set-theoretic tools
- nice problems

Outline

- theorems in finite combinatorics vs their infinite counterparts
- the methods of generalizations
- proof of a "finite" theorem vs proof of its "infinite" version.
- basic proof methods
- set-theoretic tools
- nice problems

Outline

- theorems in finite combinatorics vs their infinite counterparts
- the methods of generalizations
- proof of a "finite" theorem vs proof of its "infinite" version.
- basic proof methods
- set-theoretic tools
- nice problems

Outline

- theorems in finite combinatorics vs their infinite counterparts
- the methods of generalizations
- proof of a "finite" theorem vs proof of its "infinite" version.
- basic proof methods
- set-theoretic tools
- nice problems

Outline

- theorems in finite combinatorics vs their infinite counterparts
- the methods of generalizations
- proof of a "finite" theorem vs proof of its "infinite" version.
- basic proof methods
- set-theoretic tools
- nice problems

Outline

- theorems in finite combinatorics vs their infinite counterparts
- the methods of generalizations
- proof of a "finite" theorem vs proof of its "infinite" version.
- basic proof methods
- set-theoretic tools
- nice problems

Outline

- theorems in finite combinatorics vs their infinite counterparts
- the methods of generalizations
- proof of a "finite" theorem vs proof of its "infinite" version.
- basic proof methods
- set-theoretic tools
- nice problems

Connectedness

Theorem

A finite graph $G=(V, E)$ is
connected iff

Theorem

An arbitrary graph $G=(V, E)$ is connected iff

Proof

Connectedness

Theorem
 A finite graph $G=(V, E)$ is connected iff given any partition
 $\left(V_{0}, V_{1}\right)$ of the vertices into two
 non-empty sets there is an edge
 between V_{0} and V_{1}.

Proof

Connectedness

Theorem

A finite graph $G=(V, E)$ is connected iff given any partition (V_{0}, V_{1}) of the vertices into two non-empty sets there is an edge between V_{0} and V_{1}.

Theorem
An arbitrary graph $G=(V, E)$ is connected iff

Connectedness

Theorem

A finite graph $G=(V, E)$ is
connected iff given any partition (V_{0}, V_{1}) of the vertices into two non-empty sets there is an edge between V_{0} and V_{1}.

Theorem
An arbitrary graph $G=(V, E)$ is connected iff

Proof

$$
\begin{aligned}
& \text { Let } A=\{z \in V: \exists x-z \text {-path }\} \text {. } \\
& \text { There is no edge between } A \text { and } V \backslash A \text {. }
\end{aligned}
$$

Connectedness

Theorem

A finite graph $G=(V, E)$ is
connected iff given any partition (V_{0}, V_{1}) of the vertices into two non-empty sets there is an edge between V_{0} and V_{1}.

Proof

$$
\text { Let } A=\{z \in V: \exists x \text {-z-path }\} .
$$

There is no edge between A and $V \backslash A$.

Connectedness

Theorem

A finite graph $G=(V, E)$ is connected iff given any partition (V_{0}, V_{1}) of the vertices into two non-empty sets there is an edge between V_{0} and V_{1}.

Proof

Let $A=\{z \in V: \exists x-z$-path $\}$.
There is no edge between A and $V \backslash A$.

Connectedness

Theorem

A finite graph $G=(V, E)$ is connected iff given any partition (V_{0}, V_{1}) of the vertices into two non-empty sets there is an edge between V_{0} and V_{1}.

Proof

Let $A=\{z \in V: \exists x-z$-path $\}$.
There is no edge between A and $V \backslash A$.
$A=V$.

Connectedness

Theorem

A finite graph $G=(V, E)$ is connected iff given any partition $\left(V_{0}, V_{1}\right)$ of the vertices into two non-empty sets there is an edge between V_{0} and V_{1}.

Theorem

An arbitrary graph $G=(V, E)$ is connected iff given any partition

$\left(V_{0}, V_{1}\right)$ of the vertices into two

non-empty sets there is an edge between V_{0} and V_{1}

Proof

Let $A=\{z \in V: \exists x$-z-path $\}$.
There is no edge between A and $V \backslash A$.
$A=V$.

Connectedness

Theorem

A finite graph $G=(V, E)$ is connected iff given any partition $\left(V_{0}, V_{1}\right)$ of the vertices into two non-empty sets there is an edge between V_{0} and V_{1}.

Theorem

An arbitrary graph $G=(V, E)$ is connected iff given any partition (V_{0}, V_{1}) of the vertices into two non-empty sets there is an edge between V_{0} and V_{1}.

Proof

Let $A=\{z \in V: \exists x$-z-path $\}$.
There is no edge between A and $V \backslash A$.
$A=V$.

Spanning trees

Finite case

Theorem

Every finite connected graph
 $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph
 $G=(V, E)$ has a spanning tree.

First Proof

Spanning trees

Finite case

Theorem

Every finite connected graph
 $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

First Proof

Spanning trees

Finite case

General case

Theorem

Every finite connected graph $G=(V, E)$ has a spanning tree.

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

First Proof

Spanning trees

Finite case

Theorem

Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

Spanning trees

Finite case
Theorem
Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

Spanning trees

Finite case

Theorem

Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

First Proof

Let $T=\langle V, F\rangle$ be a minimal connected subgraph of G.
Then T can not contain a circle, so it is a spanning tree.
no infinite version
how to get a minimal connected subgraph of an infinite graph?
an infinite graph G may contain a decreasing chain G_{0}, G_{1}, \ldots of
connected subgraphs of G such that $V\left(G_{i}\right)=V(G)$ but
$\cap_{i \in \mathbb{N}} E\left(G_{i}\right)=\emptyset$.

Spanning trees

Finite case

Theorem

Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

First Proof

Let $T=\langle V, F\rangle$ be a minimal connected subgraph of G.
Then T can not contain a circle, so it is a spanning tree.
no infinite version
how to get a minimal connected subgraph of an infinite graph?
an infinite graph G may contain a decreasing chain G_{0}, G_{1}, \ldots of
connected subgraphs of G such that $V\left(G_{i}\right)=V(G)$ but
$\cap_{i \in \mathbb{N}} E\left(G_{i}\right)=\emptyset$.

Spanning trees

Finite case

Theorem

Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

First Proof

Let $T=\langle V, F\rangle$ be a minimal connected subgraph of G.
Then T can not contain a circle, so it is a spanning tree.
how to get a minimal connected subgraph of an infinite graph?
an infinite granh G may contain a decreasing chain $G_{0}, G_{1} \quad$ of
connected subgraphs of G such that $V\left(G_{i}\right)=V(G)$ but
\square

Spanning trees

Finite case

Theorem

Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

First Proof

Let $T=\langle V, F\rangle$ be a minimal connected subgraph of G.
Then T can not contain a circle, so it is a spanning tree.
no infinite version
how to get a minimal connected subgraph of an infinite graph?
an infinite graph G may contain a decreasing chain G_{0}, G_{1}, \ldots of
connected subgraphs of G such that $V\left(G_{i}\right)=V(G)$ but
$\cap_{i \in \mathbb{N}} E\left(G_{i}\right)=\emptyset$.

Spanning trees

Finite case

Theorem

Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

First Proof

Let $T=\langle V, F\rangle$ be a minimal connected subgraph of G.
Then T can not contain a circle, so it is a spanning tree.
no infinite version
how to get a minimal connected subgraph of an infinite graph?
an infinite graph G may contain a decreasing chain G_{0}, G_{1}, \ldots of
connected subgraphs of G such that $V\left(G_{i}\right)=V(G)$ but
\square

Spanning trees

Finite case

Theorem

Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

First Proof

Let $T=\langle V, F\rangle$ be a minimal connected subgraph of G.
Then T can not contain a circle, so it is a spanning tree.
no infinite version
how to get a minimal connected subgraph of an infinite graph?
an infinite graph G may contain a decreasing chain G_{0}, G_{1}, \ldots of connected subgraphs of G such that $V\left(G_{i}\right)=V(G)$ but
$\cap_{i \in \mathbb{N}} E\left(G_{i}\right)=\emptyset$.

Spanning trees

Finite case
Theorem
Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem
Every connected graph $G=(V, E)$ has a spanning tree.

Spanning trees

Finite case

Theorem

Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem
Every connected graph $G=(V, E)$ has a spanning tree.

Second Proof

$\mathcal{T}=\{$ connected subtrees of $G\}$
$\langle\mathcal{T}, \subset\rangle$ has a maximal element T by Zorn's Iemma
Let T be a maximal connected subtree of G.
There is no edge between $V(T)$ and $V \backslash V(T)$.

Spanning trees

Finite case

Theorem

Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

Second Proof

\square
$\langle\mathcal{T}, \subset\rangle$ has a maximal element T by Zorn's lemma
Let T be a maximal connected subtree of G.
There is no edge between $V(T)$ and $V \backslash V(T)$.
\square

Spanning trees

Finite case

Theorem

Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

Second Proof

$\mathcal{T}=\{$ connected subtrees of $G\}$
$\langle\mathcal{T}, \subset\rangle$ has a maximal element T by Zorn's lemma
Let T be a maximal connected subtree of G.
There is no edge between $V(T)$ and $V \backslash V(T)$.

$$
V(T)=V .
$$

\square

Spanning trees

Finite case

Theorem

Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

Second Proof

$\mathcal{T}=\{$ connected subtrees of $G\}$
$\langle\mathcal{T}, \subset\rangle$ has a maximal element T by Zorn's Iemma
Let T be a maximal connected subtree of G.
There is no edge between $V(T)$ and $V \backslash V(T)$.

$$
V(T)=V .
$$

\square

Spanning trees

Finite case

Theorem

Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

Second Proof

$\mathcal{T}=\{$ connected subtrees of $G\}$
$\langle\mathcal{T}, \subset\rangle$ has a maximal element T by Zorn's lemma
Let T be a maximal connected subtree of G.
There is no edge between $V(T)$ and $V \backslash V(T)$.

$$
V(T)=V .
$$

\square

Spanning trees

Finite case

Theorem

Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

Second Proof

$\mathcal{T}=\{$ connected subtrees of $G\}$
$\langle\mathcal{T}, \subset\rangle$ has a maximal element T by Zorn's lemma
Let T be a maximal connected subtree of G.
There is no edge between $V(T)$ and $V \backslash V(T)$.

$$
V(T)=V .
$$

Zorn's Lemma, Axiom of Choice.

Spanning trees

Finite case

Theorem

Every finite connected graph $G=(V, E)$ has a spanning tree.

General case

Theorem

Every connected graph $G=(V, E)$ has a spanning tree.

Second Proof

$\mathcal{T}=\{$ connected subtrees of $G\}$
$\langle\mathcal{T}, \subset\rangle$ has a maximal element T by Zorn's lemma
Let T be a maximal connected subtree of G.
There is no edge between $V(T)$ and $V \backslash V(T)$.

$$
V(T)=V .
$$

Zorn's Lemma, Axiom of Choice. Really need?

Spanning trees and AC

Theorem

If every connected graph has a spanning tree then the Axiom of Choice holds.

Proof

$\mathcal{A}=\left\{A_{i}: i \in I\right\}$ a family of non-empty sets.
$V=\{x\} \cup\left\{y_{i}, z_{i}: i \in I\right\} \cup \cup\left\{A_{i}: i \in I\right\}$,
$E=\left\{x y_{i}: i \in /\right\} \cup \cup U_{i \in I}\left\{y_{i} a, a z_{i}: a \in A_{i}\right\}$.
G is connected, $T=(V, F)$ spanning tree.
(i) $\left\{x y_{i}: i \in I\right\} \subset F$,
(ii) $\forall i \in I \exists!a_{i} \in A_{i}$ s.t. $y_{i} a_{i}, a_{i} z_{i} \in F$,
(iii) $\forall a \in A_{i} \backslash\left\{a_{i}\right\}\left(y_{i} a \in F\right.$ iff $\left.a z_{i} \notin F\right)$.
$f(i)=a_{i}$ is a choice function for \mathcal{A}

Proof

$\mathcal{A}=\left\{A_{i}: i \in I\right\}$ a family of non-empty sets. $A_{i} \cap A_{j}=\emptyset$

Proof

$\mathcal{A}=\left\{A_{i}: i \in I\right\}$ a family of non-empty sets. $A_{i} \cap A_{j}=\emptyset$ $V=\{x\} \cup\left\{y_{i}, z_{i}: i \in I\right\} \cup \cup\left\{A_{i}: i \in I\right\}$,

Proof

$\mathcal{A}=\left\{A_{i}: i \in I\right\}$ a family of non-empty sets. $A_{i} \cap A_{j}=\emptyset$
$V=\{x\} \cup\left\{y_{i}, z_{i}: i \in I\right\} \cup \cup\left\{A_{i}: i \in I\right\}$,
$E=\left\{x y_{i}: i \in I\right\} \cup \cup_{i \in I}\left\{y_{i} a, a z_{i}: a \in A_{i}\right\}$.

Proof

$\mathcal{A}=\left\{A_{i}: i \in I\right\}$ a family of non-empty sets. $A_{i} \cap A_{j}=\emptyset$
$V=\{x\} \cup\left\{y_{i}, z_{i}: i \in I\right\} \cup \cup\left\{A_{i}: i \in I\right\}$,
$E=\left\{x y_{i}: i \in I\right\} \cup \cup \cup \in\left\{y_{i} a, a z_{i}: a \in A_{i}\right\}$.
G is connected,

Proof

$\mathcal{A}=\left\{A_{i}: i \in I\right\}$ a family of non-empty sets. $A_{i} \cap A_{j}=\emptyset$
$V=\{x\} \cup\left\{y_{i}, z_{i}: i \in I\right\} \cup \cup\left\{A_{i}: i \in I\right\}$,
$E=\left\{x y_{i}: i \in I\right\} \cup \cup \cup \in\left\{\cup_{i} a, a z_{i}: a \in A_{i}\right\}$.
G is connected, $T=(V, F)$ spanning tree.

Proof

$\mathcal{A}=\left\{A_{i}: i \in I\right\}$ a family of non-empty sets. $A_{i} \cap A_{j}=\emptyset$
$V=\{x\} \cup\left\{y_{i}, z_{i}: i \in I\right\} \cup \cup\left\{A_{i}: i \in I\right\}$,
$E=\left\{x y_{i}: i \in I\right\} \cup \cup \cup \in\left\{y_{i} a, a z_{i}: a \in A_{i}\right\}$.
G is connected, $T=(V, F)$ spanning tree.
(i) $\left\{x y_{i}: i \in I\right\} \subset F$,

Proof

$\mathcal{A}=\left\{A_{i}: i \in I\right\}$ a family of non-empty sets. $A_{i} \cap A_{j}=\emptyset$
$V=\{x\} \cup\left\{y_{i}, z_{i}: i \in I\right\} \cup \cup\left\{A_{i}: i \in I\right\}$,
$E=\left\{x y_{i}: i \in I\right\} \cup \cup \cup \in\left\{y_{i} a, a z_{i}: a \in A_{i}\right\}$.
G is connected, $T=(V, F)$ spanning tree.
(i) $\left\{x y_{i}: i \in I\right\} \subset F$,
(ii) $\forall i \in I \exists!a_{i} \in A_{i}$ s.t. $y_{i} a_{i}, a_{i} z_{i} \in F$,

Proof

$\mathcal{A}=\left\{A_{i}: i \in I\right\}$ a family of non-empty sets. $A_{i} \cap A_{j}=\emptyset$
$V=\{x\} \cup\left\{y_{i}, z_{i}: i \in I\right\} \cup \cup\left\{A_{i}: i \in I\right\}$,
$E=\left\{x y_{i}: i \in I\right\} \cup \cup \cup \in\left\{y_{i} a, a z_{i}: a \in A_{i}\right\}$.
G is connected, $T=(V, F)$ spanning tree.
(i) $\left\{x y_{i}: i \in I\right\} \subset F$,
(ii) $\forall i \in I \exists!a_{i} \in A_{i}$ s.t. $y_{i} a_{i}, a_{i} z_{i} \in F$,
(iii) $\forall a \in A_{i} \backslash\left\{a_{i}\right\}\left(y_{i} a \in F\right.$ iff $\left.a z_{i} \notin F\right)$.

Proof

$\mathcal{A}=\left\{A_{i}: i \in I\right\}$ a family of non-empty sets. $A_{i} \cap A_{j}=\emptyset$
$V=\{x\} \cup\left\{y_{i}, z_{i}: i \in I\right\} \cup \cup\left\{A_{i}: i \in I\right\}$,
$E=\left\{x y_{i}: i \in I\right\} \cup \cup \cup \in\left\{y_{i} a, a z_{i}: a \in A_{i}\right\}$.
G is connected, $T=(V, F)$ spanning tree.
(i) $\left\{x y_{i}: i \in I\right\} \subset F$,
(ii) $\forall i \in I \exists!a_{i} \in A_{i}$ s.t. $y_{i} a_{i}, a_{i} z_{i} \in F$,
(iii) $\forall a \in A_{i} \backslash\left\{a_{i}\right\}\left(y_{i} a \in F\right.$ iff $\left.a z_{i} \notin F\right)$.
$f(i)=a_{i}$ is a choice function for \mathcal{A}

Unfriendly Partitions

Unfriendly Partitions

Definition

Let $G=(V, E)$ be a graph. A partition (A, B) of V is called unfriendly iff every vertex has at least as many neighbor in the other class as in its own.

Unfriendly Partitions

Definition

Let $G=(V, E)$ be a graph. A partition (A, B) of V is called unfriendly iff every vertex has at least as many neighbor in the other class as in its own.

Observation

Every finite graph has an unfriendly partition.

Unfriendly Partitions

Definition

Let $G=(V, E)$ be a graph. A partition (A, B) of V is called unfriendly iff every vertex has at least as many neighbor in the other class as in its own.

Observation

Every finite graph has an unfriendly partition.

Unfriendly Partition Conjecture

Every graph has an unfriendly partition.

Unfriendly Partitions

Definition

Let $G=(V, E)$ be a graph. A partition (A, B) of V is called unfriendly iff every vertex has at least as many neighbor in the other class as in its own.

Observation

Every finite graph has an unfriendly partition.

Unfriendly Partition Conjecture

Every graph has an unfriendly partition.

Theorem (Shelah)

There is an uncountable graph without an unfriendly partition.

Unfriendly Partitions

Unfriendly Partitions

Theorem (Shelah)

Every graph has a partition into three pieces such that every vertex has at least as many neighbor in the two other classes as in its own.

Unfriendly Partitions

Theorem (Shelah)

Every graph has a partition into three pieces such that every vertex has at least as many neighbor in the two other classes as in its own.

Theorem

Every locally finite graph has an unfriendly partition.

Proof: locally finite graphs have unfriendly partitions

Proof: locally finite graphs have unfriendly partitions

Natural aproach:

Proof: locally finite graphs have unfriendly partitions

Natural aproach:König's Lemma instead of Gödel's Theorem

Proof: locally finite graphs have unfriendly partitions

Natural aproach:König's Lemma instead of Gödel's Theorem $G=\langle V, E\rangle$ locally finite,

Proof: locally finite graphs have unfriendly partitions

Natural aproach:König's Lemma instead of Gödel's Theorem $G=\langle V, E\rangle$ locally finite, enumerate $V=\left\{x_{0}, x_{1}, \ldots\right\}$

Proof: locally finite graphs have unfriendly partitions

Natural aproach:König's Lemma instead of Gödel's Theorem $G=\langle V, E\rangle$ locally finite, enumerate $V=\left\{x_{0}, x_{1}, \ldots\right\}$ $T_{n}=\left\{(A, B)\right.$: an unfriendly partition of $\left.G\left[x_{0}, \ldots x_{n}\right]\right\}$

Proof: locally finite graphs have unfriendly partitions

Natural aproach:König's Lemma instead of Gödel's Theorem $G=\langle V, E\rangle$ locally finite,
enumerate $V=\left\{x_{0}, x_{1}, \ldots\right\}$
$T_{n}=\left\{(A, B)\right.$: an unfriendly partition of $\left.G\left[x_{0}, \ldots x_{n}\right]\right\}$
$\mathcal{T}=\left\{\cup T_{n}, \subset\right\}$

Proof: locally finite graphs have unfriendly partitions

Natural aproach:König's Lemma instead of Gödel's Theorem $G=\langle V, E\rangle$ locally finite, enumerate $V=\left\{x_{0}, x_{1}, \ldots\right\}$ $T_{n}=\left\{(A, B)\right.$: an unfriendly partition of $\left.G\left[x_{0}, \ldots x_{n}\right]\right\}$ $\mathcal{T}=\left\{\cup T_{n}, \subset\right\}$
can not apply König's Lemma

Proof: locally finite graphs have unfriendly partitions

Natural aproach:König's Lemma instead of Gödel's Theorem $G=\langle V, E\rangle$ locally finite, enumerate $V=\left\{x_{0}, x_{1}, \ldots\right\}$ $T_{n}=\left\{(A, B)\right.$: an unfriendly partition of $\left.G\left[x_{0}, \ldots x_{n}\right]\right\}$ $\mathcal{T}=\left\{\cup T_{n}, \subset\right\}$
can not apply König's Lemma $T_{n} \neq$ the $n^{\text {th }}$-level of \mathcal{T}

Proof: locally finite graphs have unfriendly partitions Gödel's Compactness Theorem

Theorem (Gödel)

A theory T has a model provided every finite subset of T has a model.

Proof: locally finite graphs have unfriendly partitions

 Gödel's Compactness Theorem$G=(V, E)$ locally finite graph

Proof: locally finite graphs have unfriendly partitions

 Gödel's Compactness Theorem$G=(V, E)$ locally finite graph
Language: $\left\{c_{V}: v \in V\right\}$ constant symbols, R_{A} and R_{B} are unary relation symbols.

Proof: locally finite graphs have unfriendly partitions

 Gödel's Compactness Theorem$G=(V, E)$ locally finite graph
Language: $\left\{c_{V}: v \in V\right\}$ constant symbols, R_{A} and R_{B} are unary relation symbols.
Formulas: $\psi: \forall x\left(R_{A}(x) \leftrightarrow \neg R_{B}(x)\right)$

Proof: locally finite graphs have unfriendly partitions

 Gödel's Compactness Theorem$G=(V, E)$ locally finite graph
Language: $\left\{c_{V}: v \in V\right\}$ constant symbols, R_{A} and R_{B} are unary relation symbols.
Formulas: $\psi: \forall x\left(R_{A}(x) \leftrightarrow \neg R_{B}(x)\right)$
for all $v \in V$ write $\mathcal{F}_{v}=\{C \subset E(v):|F| \geq|E(v)| / 2\}$

Proof: locally finite graphs have unfriendly partitions

 Gödel's Compactness Theorem$G=(V, E)$ locally finite graph
Language: $\left\{c_{V}: v \in V\right\}$ constant symbols, R_{A} and R_{B} are unary relation symbols.
Formulas: $\psi: \forall x\left(R_{A}(x) \leftrightarrow \neg R_{B}(x)\right)$
for all $v \in V$ write $\mathcal{F}_{v}=\{C \subset E(v):|F| \geq|E(v)| / 2\}$ and put
$\varphi_{v, A}: R_{A}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{B}\left(c_{x}\right)$

Proof: locally finite graphs have unfriendly partitions

 Gödel's Compactness Theorem$G=(V, E)$ locally finite graph
Language: $\left\{c_{V}: v \in V\right\}$ constant symbols, R_{A} and R_{B} are unary relation symbols.
Formulas: $\psi: \forall x\left(R_{A}(x) \leftrightarrow \neg R_{B}(x)\right)$
for all $v \in V$ write $\mathcal{F}_{v}=\{C \subset E(v):|F| \geq|E(v)| / 2\}$ and put
$\varphi_{v, A}: R_{A}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{B}\left(c_{x}\right)$
$\varphi_{v, B}: R_{B}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{A}\left(c_{x}\right)$

Proof: locally finite graphs have unfriendly partitions

 Gödel's Compactness Theorem$G=(V, E)$ locally finite graph
Language: $\left\{c_{V}: v \in V\right\}$ constant symbols, R_{A} and R_{B} are unary relation symbols.
Formulas: $\psi: \forall x\left(R_{A}(x) \leftrightarrow \neg R_{B}(x)\right)$
for all $v \in V$ write $\mathcal{F}_{v}=\{C \subset E(v):|F| \geq|E(v)| / 2\}$ and put
$\varphi_{v, A}: R_{A}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{B}\left(c_{x}\right)$
$\varphi_{v, B}: R_{B}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{A}\left(c_{x}\right)$
Theory: $T=\left\{\psi, \varphi_{V, A}, \varphi_{V, B}: v \in V\right\}$

Proof: locally finite graphs have unfriendly partitions

 Gödel's Compactness Theorem$G=(V, E)$ locally finite graph
Language: $\left\{c_{V}: v \in V\right\}$ constant symbols, R_{A} and R_{B} are unary relation symbols.
Formulas: $\psi: \forall x\left(R_{A}(x) \leftrightarrow \neg R_{B}(x)\right)$
for all $v \in V$ write $\mathcal{F}_{v}=\{C \subset E(v):|F| \geq|E(v)| / 2\}$ and put
$\varphi_{V, A}: R_{A}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{B}\left(c_{x}\right)$
$\varphi_{v, B}: R_{B}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{A}\left(c_{X}\right)$
Theory: $T=\left\{\psi, \varphi_{V, A}, \varphi_{v, B}: v \in V\right\}$

Claim

Every $T^{\prime} \in[T]^{<\omega}$ has a model.

Proof: locally finite graphs have unfriendly partitions

 Gödel's Compactness Theorem$G=(V, E)$ locally finite graph
Language: $\left\{c_{V}: v \in V\right\}$ constant symbols, R_{A} and R_{B} are unary relation symbols.
Formulas: $\psi: \forall x\left(R_{A}(x) \leftrightarrow \neg R_{B}(x)\right)$
for all $v \in V$ write $\mathcal{F}_{v}=\{C \subset E(v):|F| \geq|E(v)| / 2\}$ and put
$\varphi_{v, A}: R_{A}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{B}\left(c_{x}\right)$
$\varphi_{v, B}: R_{B}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{A}\left(c_{X}\right)$
Theory: $T=\left\{\psi, \varphi_{V, A}, \varphi_{v, B}: v \in V\right\}$

Claim

Every $T^{\prime} \in[T]^{<\omega}$ has a model.
Let $W=\left\{v: c_{v}\right.$ occurs in $\left.T^{\prime}\right\}$.

Proof: locally finite graphs have unfriendly partitions

 Gödel's Compactness Theorem$G=(V, E)$ locally finite graph
Language: $\left\{c_{V}: v \in V\right\}$ constant symbols, R_{A} and R_{B} are unary relation symbols.
Formulas: $\psi: \forall x\left(R_{A}(x) \leftrightarrow \neg R_{B}(x)\right)$
for all $v \in V$ write $\mathcal{F}_{v}=\{C \subset E(v):|F| \geq|E(v)| / 2\}$ and put
$\varphi_{v, A}: R_{A}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{B}\left(c_{x}\right)$
$\varphi_{v, B}: R_{B}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{A}\left(c_{X}\right)$
Theory: $T=\left\{\psi, \varphi_{V, A}, \varphi_{v, B}: v \in V\right\}$

Claim

Every $T^{\prime} \in[T]^{<\omega}$ has a model.
Let $W=\left\{v: c_{v}\right.$ occurs in $\left.T^{\prime}\right\}$. Then $G[W]$ has an unfriendly partition (A, B).

Proof: locally finite graphs have unfriendly partitions

 Gödel's Compactness Theorem$G=(V, E)$ locally finite graph
Language: $\left\{c_{V}: v \in V\right\}$ constant symbols, R_{A} and R_{B} are unary relation symbols.
Formulas: $\psi: \forall x\left(R_{A}(x) \leftrightarrow \neg R_{B}(x)\right)$
for all $v \in V$ write $\mathcal{F}_{v}=\{C \subset E(v):|F| \geq|E(v)| / 2\}$ and put
$\varphi_{v, A}: R_{A}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{B}\left(c_{x}\right)$
$\varphi_{v, B}: R_{B}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{A}\left(c_{X}\right)$
Theory: $T=\left\{\psi, \varphi_{V, A}, \varphi_{v, B}: v \in V\right\}$

Claim

Every $T^{\prime} \in[T]^{<\omega}$ has a model.
Let $W=\left\{v: c_{V}\right.$ occurs in $\left.T^{\prime}\right\}$. Then $G[W]$ has an unfriendly partition (A, B). Let M be the following model: the underlying set M is W, c_{V} is interpreted as v for $v \in W$, and R_{A} is interpreted as A and R_{B} is interpreted as B.

Proof: locally finite graphs have unfriendly partitions

 Gödel's Compactness Theorem$G=(V, E)$ locally finite graph
Language: $\left\{c_{V}: v \in V\right\}$ constant symbols, R_{A} and R_{B} are unary relation symbols.
Formulas: $\psi: \forall x\left(R_{A}(x) \leftrightarrow \neg R_{B}(x)\right)$
for all $v \in V$ write $\mathcal{F}_{v}=\{C \subset E(v):|F| \geq|E(v)| / 2\}$ and put
$\varphi_{v, A}: R_{A}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{B}\left(c_{x}\right)$
$\varphi_{v, B}: R_{B}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{A}\left(c_{X}\right)$
Theory: $T=\left\{\psi, \varphi_{V, A}, \varphi_{v, B}: v \in V\right\}$

Claim

Every $T^{\prime} \in[T]^{<\omega}$ has a model.
Let $W=\left\{v: c_{V}\right.$ occurs in $\left.T^{\prime}\right\}$. Then $G[W]$ has an unfriendly partition (A, B). Let M be the following model: the underlying set M is W, c_{V} is interpreted as v for $v \in W$, and R_{A} is interpreted as A and R_{B} is interpreted as $B . M \models T^{\prime}$.

Proof: locally finite graphs have unfriendly partitions

 Gödel's Compactness Theorem$G=(V, E)$ locally finite graph
Language: $\left\{c_{V}: v \in V\right\}$ constant symbols, R_{A} and R_{B} are unary relation symbols.
Formulas: $\psi: \forall x\left(R_{A}(x) \leftrightarrow \neg R_{B}(x)\right)$
for all $v \in V$ write $\mathcal{F}_{v}=\{C \subset E(v):|F| \geq|E(v)| / 2\}$ and put
$\varphi_{V, A}: R_{A}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{B}\left(c_{X}\right)$
$\varphi_{v, B}: R_{B}\left(c_{v}\right) \rightarrow \bigvee_{F \in \mathcal{F}_{v}} \bigwedge_{x \in F} R_{A}\left(c_{x}\right)$
Theory: $T=\left\{\psi, \varphi_{V, A}, \varphi_{V, B}: V \in V\right\}$

Claim

Every $T^{\prime} \in[T]^{<\omega}$ has a model.
Let M be a model of T and let $A=\left\{v \in V: M \models R_{A}\left(c_{v}\right)\right\}$ and $B=\left\{v \in V: M \models R_{B}\left(c_{V}\right)\right\}$.

Unfriendly Partitions

Theorem

Every locally finite graph has an unfriendly partition.

Unfriendly Partitions

Theorem

Every locally finite graph has an unfriendly partition.

Fact

If $G=(V, E)$ is countable and every $v \in V$ has infinite degree then G has an unfriendly partition.

Unfriendly Partitions

Theorem

Every locally finite graph has an unfriendly partition.

Fact

If $G=(V, E)$ is countable and every $v \in V$ has infinite degree then G has an unfriendly partition.

Unfriendly Partition Conjecture, revised

Every countable graph has an unfriendly partition.

Unfriendly Partitions

Unfriendly Partitions

Question

Let $G=(V, E)$ be a locally finite graph and $V^{\prime} \subset V$ such that V^{\prime} is "rare" (e.g the distances are large between the elements of V^{\prime} in G). Is it true that every partition $\left(A^{\prime}, B^{\prime}\right)$ of V^{\prime} can be extended to an unfriendly partition (A, B) of G ?

Unfriendly Partitions

Question

Let $G=(V, E)$ be a locally finite graph and $V^{\prime} \subset V$ such that V^{\prime} is "rare" (e.g the distances are large between the elements of V^{\prime} in G). Is it true that every partition $\left(A^{\prime}, B^{\prime}\right)$ of V^{\prime} can be extended to an unfriendly partition (A, B) of G ?

Answer

No, V. Bonifaci gave a very strong counterexample.

Unfriendly partitions

Theorem (Bonifaci)
There is a locally finite infinite graph with exactly one unfriendly partition.

Unfriendly partitions

Theorem (Bonifaci)

There is a locally finite infinite graph with exactly one unfriendly partition.

vertices: in columns

$$
\begin{array}{llllll}
1 & 2 & 2 & 3 & n n n+1
\end{array}
$$

Unfriendly partitions

Theorem (Bonifaci)

There is a locally finite infinite graph with exactly one unfriendly partition.

vertices: in columns
edges: between neighbouring columns

$12233 \quad n n n+1$

Unfriendly partitions

Theorem (Bonifaci)

There is a locally finite infinite graph with exactly one unfriendly partition.

vertices: in columns
edges: between neighbouring columns

$122333 n n n+1$

Unfriendly partitions

Theorem (Bonifaci)

There is a locally finite infinite graph with exactly one unfriendly partition.

vertices: in columns

edges: between neighbouring columns

$\bigcirc \quad \bigcirc$

0	0	
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

$12233 \quad n n \stackrel{\circ}{n}+1$

Unfriendly partitions

Theorem (Bonifaci)

There is a locally finite infinite graph with exactly one unfriendly partition.

vertices: in columns
edges: between neighbouring columns
column of size n

Unfriendly partitions

Theorem (Bonifaci)

There is a locally finite infinite graph with exactly one unfriendly partition.

vertices: in columns
 edges: between neighbouring columns
 column of size n
 red or blue majority in the neighbouring columns

Unfriendly partitions

Theorem (Bonifaci)

There is a locally finite infinite graph with exactly one unfriendly partition.

vertices: in columns
edges: between neighbouring columns
column of size n
red or blue majority in the neighbouring columns
blue majority \Longrightarrow the column is red.

Unfriendly partitions

Theorem (Bonifaci)

There is a locally finite infinite graph with exactly one unfriendly partition.

vertices: in columns
edges: between neighbouring columns
column of size n
red or blue majority in the neighbouring columns
blue majority \Longrightarrow the column is red.
next column is also
monochromatic: it should be blue.

Pseudo-winners in tournaments

Pseudo-winners in tournaments

Definition

Let $T=(V, E)$ be a tournament and let $t \in V$.

Pseudo-winners in tournaments

Definition

Let $T=(V, E)$ be a tournament and let $t \in V$. t is a pseudo-winner

Pseudo-winners in tournaments

Definition

Let $T=(V, E)$ be a tournament and let $t \in V$. t is a pseudo-winner iff for each $y \in V$ there is a path of length at most 2 which leads from t to y.

Pseudo-winners in tournaments

Pseudo-winners in tournaments

Finite case

Pseudo-winners in tournaments

Finite case
Theorem
Every finite tournament has a pseudo-winner.

Pseudo-winners in tournaments

Finite case
Theorem
Every finite tournament has a pseudo-winner.

Proof

If t has maximal out-degree then t is a pseudo-winner.

Pseudo-winners in tournaments

Finite case
Theorem
Every finite tournament has a pseudo-winner.

Proof

If t has maximal out-degree then t is a pseudo-winner.

Infinite case

Pseudo-winners in tournaments

Finite case
 Theorem
 Every finite tournament has a pseudo-winner.
 Proof
 If t has maximal out-degree then t is a pseudo-winner.

Infinite case

Observation

No pseudo-winner in $\langle\mathbb{Z},<\rangle$.

Pseudo-winners in tournaments

Finite case

Theorem

Every finite tournament has a pseudo-winner.

Proof

If t has maximal out-degree then t is a pseudo-winner.

Infinite case

Observation

No pseudo-winner in $\langle\mathbb{Z},<\rangle$.

Theorem

A tournament T contains a pseudo-winner

Pseudo-winners in tournaments

Finite case

Theorem

Every finite tournament has a pseudo-winner.

Proof

If t has maximal out-degree then t is a pseudo-winner.

Infinite case

Observation

No pseudo-winner in $\langle\mathbb{Z},<\rangle$.

Theorem

A tournament T contains a pseudo-winner or $\exists x \neq y \in V$ s.t. $T=\operatorname{Out}(x) \cup \operatorname{In}(y)$.

Pseudo-winners in tournaments

Finite case

Theorem

Every finite tournament has a pseudo-winner.

Proof

If t has maximal out-degree then t is a pseudo-winner.

Proof

If y is not a pseudo-winner witnessed by x, then $T=\operatorname{Out}(x) \cup \operatorname{In}(y)$.

Quasi Kernels and Quasi Sinks

Quasi Kernels and Quasi Sinks

Theorem (Chvatal, Lovász)

Every finite digraph (i.e. directed graph) contains a quasi-kernel

Quasi Kernels and Quasi Sinks

Theorem (Chvatal, Lovász)

Every finite digraph (i.e. directed graph) contains a quasi-kernel (i.e it contains an independent set A

Quasi Kernels and Quasi Sinks

Theorem (Chvatal, Lovász)

Every finite digraph (i.e. directed graph) contains a quasi-kernel (i.e it contains an independent set A such that for each point v

A

G

- V

Quasi Kernels and Quasi Sinks

Theorem (Chvatal, Lovász)

Every finite digraph (i.e. directed graph) contains a quasi-kernel (i.e it contains an independent set A such that for each point v there is a path of length at most 2 from some point of A to v.

The original problem

joint work of P. L. Erdős, A. Hajnal and -

What is the right question?

The original problem

joint work of P. L. Erdős, A. Hajnal and -

What is the right question?

The original problem

joint work of P. L. Erdős, A. Hajnal and -

What is the right question?

Graphs with quasi-kernels

Theorem

A directed graph $G=(V, E)$ has a quasi-kernel, provided (a) or (b) below holds:
(a) $\ln (x)$ is finite for each $x \in V$,
(b) the chromatic number of G is finite.

Graphs with quasi-kernels

Theorem

A directed graph $G=(V, E)$ has a quasi-kernel, provided (a) or (b) below holds:
(a) $\operatorname{In}(x)$ is finite for each $x \in V$,
(b) the chromatic number of G is finite.

Graphs with quasi-kernels

Theorem

A directed graph $G=(V, E)$ has a quasi-kernel, provided (a) or (b) below holds:
(a) $\ln (x)$ is finite for each $x \in V$,
the chromatic number of G is finite.

Graphs with quasi-kernels

Theorem

A directed graph $G=(V, E)$ has a quasi-kernel, provided (a) or (b) below holds:
(a) $\ln (x)$ is finite for each $x \in V$,
(b) the chromatic number of G is finite.

Quasi Kernels and Quasi Sinks

Definition

Let $G=(V, E)$ be a digraph.
An independent set A is a quasi-kernel iff for each $v \in V$ there is a path of length at most 2 which leads from some points of A to v. An independent set B is a quasi-sink iff for each $v \in V$ there is a path of length at most 2 which leads from v to some points of B.

Quasi Kernels and Quasi Sinks

Definition

Let $G=(V, E)$ be a digraph. An independent set A is a quasi-kernel iff for each $v \in V$ there is a path of length at most 2 which leads from some points of A to v. An independent set B is a quasi-sink iff for each $v \in V$ there is a path of length at most 2 which leads from v to some points of B.

Quasi Kernels and Quasi Sinks

Definition

Let $G=(V, E)$ be a digraph.
An independent set A is a quasi-kernel iff for each $v \in V$ there is a path of length at most 2 which leads from some points of A to v. An independent set B is a quasi-sink iff for each $v \in V$ there is a path of length at most 2 which leads from v to some points of B.

Quasi Kernels and Quasi Sinks

Definition

Let $G=(V, E)$ be a digraph.
An independent set A is a quasi-kernel iff for each $v \in V$ there is a path of length at most 2 which leads from some points of A to v. An independent set B is a quasi-sink iff for each $v \in V$ there is a path of length at most 2 which leads from v to some points of B.

Quasi Kernels and Quasi Sinks

Definition

Let $G=(V, E)$ be a digraph.
An independent set A is a quasi-kernel iff for each $v \in V$ there is a path of length at most 2 which leads from some points of A to v. An independent set B is a quasi-sink iff for each $v \in V$ there is a path of length at most 2 which leads from v to some points of B.

Graphs with nice partitions

Definition

If $G=(V, E)$ is a digraph define the undirected complement of the graph, $G=(V, \widetilde{E})$ as follows: $\{x, y\} \in \widetilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let $G=(V, E)$ be a directed graph. Then V has a partition $\left(V_{0}, V_{1}\right)$ such that $G\left[V_{0}\right]$ has a quasi-kernel, and $G\left[V_{1}\right]$ has a quasi-sink provided (a) or (b) below holds:
(a) $K_{n} \not \subset \widetilde{G}$ for some $n \geq 2$. (Especially, if the chromatic number of \widetilde{G} is finite.)
(b) \widetilde{G} is locally finite.

Graphs with nice partitions

Definition

If $G=(V, E)$ is a digraph define the undirected complement of the graph, $\widetilde{G}=(V, \widetilde{E})$ as follows: $\{x, y\} \in E$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let $G=(V, E)$ be a directed graph. Then V has a partition $\left(V_{0}, V_{1}\right)$ such that $G\left[V_{0}\right]$ has a quasi-kernel, and $G\left[V_{1}\right]$ has a quasi-sink provided (a) or (b) below holds:
(a) $K_{n} \not \subset G$ for some $n \geq 2$. (Especially, if the chromatic number of G is finite.)
(b) \widetilde{G} is locally finite.

Graphs with nice partitions

Definition

If $G=(V, E)$ is a digraph define the undirected complement of the graph, $\widetilde{G}=(V, \widetilde{E})$ as follows: $\{x, y\} \in \widetilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let $G=(V, E)$ be a directed graph. Then V has a partition $\left(V_{0}, V_{1}\right)$ such that $G\left[V_{0}\right]$ has a quasi-kernel, and $G\left[V_{1}\right]$ has a quasi-sink provided (a) or (b) below holds:
(a) $K_{n} \not \subset \widetilde{G}$ for some $n \geq 2$. (Especially, if the chromatic number of \widetilde{G} is finite.)
(b) \mathcal{G} is locally finite.

Graphs with nice partitions

Definition

If $G=(V, E)$ is a digraph define the undirected complement of the graph, $\mathcal{G}=(V, \widetilde{E})$ as follows: $\{x, y\} \in \widetilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let $G=(V, E)$ be a directed graph.
such that $G\left[V_{0}\right]$ has a quasi-kernel, and $G\left[V_{1}\right]$ has a quasi-sink provided (a) or (b) below holds:
$K_{n}+\widetilde{G}$ for some $n \geq 2$. (Especially, if the chromatic number of G is finite.)
G is locally finite.

Graphs with nice partitions

Definition

If $G=(V, E)$ is a digraph define the undirected complement of the graph, $\widetilde{G}=(V, \widetilde{E})$ as follows: $\{x, y\} \in \widetilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let $G=(V, E)$ be a directed graph. Then V has a partition $\left(V_{0}, V_{1}\right)$ such that $G\left[V_{0}\right]$ has a quasi-kernel, and $G\left[V_{1}\right]$ has a quasi-sink provided (a) or (b) below holds:
$K_{n} \not \subset G$ for some $n \geq 2$. (Especially, if the chromatic number of G is finite.)
(b) G is locally finite.

Graphs with nice partitions

Definition

If $G=(V, E)$ is a digraph define the undirected complement of the graph, $\widetilde{G}=(V, \widetilde{E})$ as follows: $\{x, y\} \in \widetilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let $G=(V, E)$ be a directed graph. Then V has a partition $\left(V_{0}, V_{1}\right)$ such that $G\left[V_{0}\right]$ has a quasi-kernel, and $G\left[V_{1}\right]$ has a quasi-sink

```
provided (a) or (b) below holds:
Kn \not\subset G for some n\geq2. (Especially, if the chromatic number of \widetilde{G}
    is finite.)
    G is locally finite.
```


Graphs with nice partitions

Definition

If $G=(V, E)$ is a digraph define the undirected complement of the graph, $\widetilde{G}=(V, \widetilde{E})$ as follows: $\{x, y\} \in \widetilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let $G=(V, E)$ be a directed graph. Then V has a partition $\left(V_{0}, V_{1}\right)$ such that $G\left[V_{0}\right]$ has a quasi-kernel, and $G\left[V_{1}\right]$ has a quasi-sink

```
provided (a) or (b) below holds:
G for some \(n \geq 2\). (Especially, if the chromatic number of \(G\)
is finite.)
\(G\) is locally finite.
```


Graphs with nice partitions

Definition

If $G=(V, E)$ is a digraph define the undirected complement of the graph, $\widetilde{G}=(V, \widetilde{E})$ as follows: $\{x, y\} \in \widetilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let $G=(V, E)$ be a directed graph. Then V has a partition $\left(V_{0}, V_{1}\right)$ such that $G\left[V_{0}\right]$ has a quasi-kernel, and $G\left[V_{1}\right]$ has a quasi-sink provided (a) or (b) below holds:
$K_{n} \not \subset G$ for some $n \geq 2$. (Especially, if the chromatic number of \widetilde{G} is finite.)
b) \tilde{G} is locally finite.

Graphs with nice partitions

Definition

If $G=(V, E)$ is a digraph define the undirected complement of the graph, $\widetilde{G}=(V, \widetilde{E})$ as follows: $\{x, y\} \in \widetilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let $G=(V, E)$ be a directed graph. Then V has a partition $\left(V_{0}, V_{1}\right)$ such that $G\left[V_{0}\right]$ has a quasi-kernel, and $G\left[V_{1}\right]$ has a quasi-sink provided (a) or (b) below holds:
(a) $K_{n} \not \subset \widetilde{G}$ for some $n \geq 2$. (Especially, if the chromatic number of \widetilde{G}

Graphs with nice partitions

Definition

If $G=(V, E)$ is a digraph define the undirected complement of the graph, $\widetilde{G}=(V, \widetilde{E})$ as follows: $\{x, y\} \in \widetilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let $G=(V, E)$ be a directed graph. Then V has a partition $\left(V_{0}, V_{1}\right)$ such that $G\left[V_{0}\right]$ has a quasi-kernel, and $G\left[V_{1}\right]$ has a quasi-sink provided (a) or (b) below holds:
(a) $K_{n} \not \subset \widetilde{G}$ for some $n \geq 2$. (Especially, if the chromatic number of \widetilde{G} is finite.)
(b) \mathcal{G} is locally finite.

Graphs with nice partitions

Definition

If $G=(V, E)$ is a digraph define the undirected complement of the graph, $\widetilde{G}=(V, \widetilde{E})$ as follows: $\{x, y\} \in \widetilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let $G=(V, E)$ be a directed graph. Then V has a partition $\left(V_{0}, V_{1}\right)$ such that $G\left[V_{0}\right]$ has a quasi-kernel, and $G\left[V_{1}\right]$ has a quasi-sink provided (a) or (b) below holds:
(a) $K_{n} \not \subset \widetilde{G}$ for some $n \geq 2$. (Especially, if the chromatic number of \widetilde{G} is finite.)
(b) \widetilde{G} is locally finite.

A theorem

Theorem

For each directed graph $G=(V, E)$ there are disjoint, independent subsets A and B of V such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of A to v, or from v to some point of B.

A theorem

Theorem

For each directed graph $G=(V, E)$ there are disjoint, independent subsets A and B of V such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of A to v, or from v to some point of B.

A theorem

Theorem

For each directed graph $G=(V, E)$ there are disjoint, independent subsets A and B of V such that for each $V \in V$ there is a path of length at most 2 which leads either from some points of A to v, or from v to some point of B.

A theorem

Theorem

For each directed graph $G=(V, E)$ there are disjoint, independent subsets A and B of V such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of A to V, or from v to some point of B.

A theorem

Theorem

For each directed graph $G=(V, E)$ there are disjoint, independent subsets A and B of V such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of A to v, or from

A theorem

Theorem

For each directed graph $G=(V, E)$ there are disjoint, independent subsets A and B of V such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of A to v, or from v to some point of B.

A theorem

Theorem

For each directed graph $G=(V, E)$ there are disjoint, independent subsets A and B of V such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of A to v, or from v to some point of B.
\square
For each digraph $G=(V, E)$ there is a partition $\left(V_{0}, V_{1}\right)$ of V such that $G\left[V_{0}\right]$ has a quasi-kernel, and $G\left[V_{1}\right]$ has a quasi-sink.

A theorem

Theorem

For each directed graph $G=(V, E)$ there are disjoint, independent subsets A and B of V such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of A to v, or from v to some point of B.

Conjecture

For each digraph $G=(V, E)$ there is a partition $\left(V_{0}, V_{1}\right)$ of V such that

A theorem

Theorem

For each directed graph $G=(V, E)$ there are disjoint, independent subsets A and B of V such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of A to v, or from v to some point of B.

Conjecture

For each digraph $G=(V, E)$ there is a partition $\left(V_{0}, V_{1}\right)$ of V such that $G\left[V_{0}\right]$ has a quasi-kernel,

A theorem

Theorem

For each directed graph $G=(V, E)$ there are disjoint, independent subsets A and B of V such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of A to v, or from v to some point of B.

Conjecture

For each digraph $G=(V, E)$ there is a partition $\left(V_{0}, V_{1}\right)$ of V such that $G\left[V_{0}\right]$ has a quasi-kernel, and $G\left[V_{1}\right]$ has a quasi-sink.

Structure theorems for tournaments

Definition

Let $T=(V, E)$ be a tournament, $t \in V$ and $n \in \mathbb{N}$.
pseudo-winner $=2$-winner
Theorem
Let $T=\langle V, E\rangle$ be an infinite tournament.

Structure theorems for tournaments

Definition
 Let $T=(V, E)$ be a tournament, $t \in V$ and $n \in \mathbb{N}$.
 t is an n-winner iff for each $y \in V$ there is a path of length at most n
 which leads from t to y.

pseudo-winner = 2-winner
Theorem
Let $T=\langle V, E\rangle$ be an infinite tournament.

Structure theorems for tournaments

Definition

Let $T=(V, E)$ be a tournament, $t \in V$ and $n \in \mathbb{N}$.
t is an n-winner iff for each $y \in V$ there is a path of length at most n which leads from t to y.
pseudo-winner = 2-winner
Theorem
Let $T=\langle V, E\rangle$ be an infinite tournament.

Structure theorems for tournaments

Definition

Let $T=(V, E)$ be a tournament, $t \in V$ and $n \in \mathbb{N}$.
t is an n-winner iff for each $y \in V$ there is a path of length at most n which leads from t to y.
pseudo-winner $=2$-winner
Theorem
Let $T=\langle V, E\rangle$ be an infinite tournament.

Structure theorems for tournaments

Definition

Let $T=(V, E)$ be a tournament, $t \in V$ and $n \in \mathbb{N}$.
t is an n-winner iff for each $y \in V$ there is a path of length at most n which leads from t to y.
pseudo-winner = 2-winner
Theorem
Let $T=\langle V, E\rangle$ be an infinite tournament.

Structure theorems for tournaments

Definition

Let $T=(V, E)$ be a tournament, $t \in V$ and $n \in \mathbb{N}$.
t is an n-winner iff for each $y \in V$ there is a path of length at most n which leads from t to y.
pseudo-winner = 2-winner

Theorem

Let $T=\langle V, E\rangle$ be an infinite tournament.
(1) There is an infinite tournament $T=\langle V, E\rangle$ such that T has a 3-winner, but there is no 2-winner in T.

Structure theorems for tournaments

Definition

Let $T=(V, E)$ be a tournament, $t \in V$ and $n \in \mathbb{N}$.
t is an n-winner iff for each $y \in V$ there is a path of length at most n which leads from t to y.
pseudo-winner = 2-winner

Theorem

Let $T=\langle V, E\rangle$ be an infinite tournament.
(1) There is an infinite tournament $T=\langle V, E\rangle$ such that T has a

3-winner, but there is no 2-winner in T.
(2) If T has an n-winner for some $n \geq 3$ then T has a 3-winner.

Structure theorems for tournaments

Definition

Let $T=(V, E)$ be a tournament, $t \in V$ and $n \in \mathbb{N}$.
t is an n-winner iff for each $y \in V$ there is a path of length at most n which leads from t to y.
pseudo-winner = 2-winner

Theorem

Let $T=\langle V, E\rangle$ be an infinite tournament.
(1) There is an infinite tournament $T=\langle V, E\rangle$ such that T has a

3-winner, but there is no 2-winner in T.
(2) If T has an n-winner for some $n \geq 3$ then T has a 3-winner.

Digraphs generated by finite structures

Definition

A diaranh with terminal vertices is a triple $G=(V, E, T)$, where (V, E) is a digraph and $\emptyset \neq T \subset V$.

Construct $G \odot G=(W, F, S)$ from G as follows:
keep the terminal vertices and blow up each nonterminal vertex v to a (disjoint) copy G_{v} of G.
$T_{G \odot G}=T_{G} \cup \bigcup_{v \in V} T_{G_{v}}, N_{G \odot G}=\bigcup_{v \in V} N_{G_{v}}$
The edges are "inherited" from G in the natural way.

Digraphs generated by finite structures

Definition

A digraph with terminal vertices is a triple $G=(V, E, T)$, where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N=V \backslash T$ are the nonterminal vertices of G.

G

Digraphs generated by finite structures

Definition

A digraph with terminal vertices is a triple $G=(V, E, T)$, where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N=V \backslash T$ are the
nonterminal vertices of G.
Construct $G \odot G=(W, F, S)$ from G as follows:
keep the terminal vertices and blow up each nonterminal vertex v to a (disjoint) copy G_{v} of G.

G

Digraphs generated by finite structures

Definition

A digraph with terminal vertices is a triple $G=(V, E, T)$, where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N=V \backslash T$ are the nonterminal vertices of G.

Q

Digraphs generated by finite structures

Definition

A digraph with terminal vertices is a triple $G=(V, E, T)$, where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N=V \backslash T$ are the nonterminal vertices of G.

Construct $G \odot G=(W, F, S)$ from G as follows:
keep the terminal vertices and blow up each nonterminal vertex v to a (disjoint) copy G_{v} of G.

G

Digraphs generated by finite structures

Definition

A digraph with terminal vertices is a triple $G=(V, E, T)$, where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N=V \backslash T$ are the nonterminal vertices of G.

Construct $G \odot G=(W, F, S)$ from G as follows: keep the terminal vertices and blow up each nonterminal vertex v to a (disjoint) copy G_{v} of G.

Digraphs generated by finite structures

Definition

A digraph with terminal vertices is a triple $G=(V, E, T)$, where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N=V \backslash T$ are the nonterminal vertices of G.

Construct $G \odot G=(W, F, S)$ from G as follows: keep the terminal vertices and blow up each nonterminal vertex v to a (disjoint) copy G_{V} of G.
$T_{G \odot G}=T_{G} \cup \bigcup_{v \in V} T_{G_{v}}, N_{G \odot G}=\bigcup_{v \in V} N_{G_{v}}$
The edges are "inherited" from G in the natural way.

Digraphs generated by finite structures

Definition

A digraph with terminal vertices is a triple $G=(V, E, T)$, where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N=V \backslash T$ are the nonterminal vertices of G.

Construct $G \odot G=(W, F, S)$ from G as follows: keep the terminal vertices and blow up each nonterminal vertex v to a (disjoint) copy G_{V} of G.
$T_{G \odot G}=T_{G} \cup \bigcup_{v \in V} T_{G_{v}}, N_{G \odot G}=\bigcup_{v \in V} N_{G_{v}}$
The edges are "inherited" from G in the natural way.

Digraphs generated by finite structures

Definition

A digraph with terminal vertices is a triple $G=(V, E, T)$, where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N=V \backslash T$ are the nonterminal vertices of G.

Construct $G \odot G=(W, F, S)$ from G as follows: keep the terminal vertices and blow up each nonterminal vertex v to a (disjoint) copy G_{V} of G.
$T_{G \odot G}=T_{G} \cup \bigcup_{v \in V} T_{G_{v}}, N_{G \odot G}=\bigcup_{v \in V} N_{G_{v}}$ The edges are "inherited" from G in the natural way.

Digraphs generated by finite structures

Definition

A digraph with terminal vertices is a triple $G=(V, E, T)$, where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N=V \backslash T$ are the nonterminal vertices of G.

Construct $G \odot G=(W, F, S)$ from G as follows: keep the terminal vertices and blow up each nonterminal vertex v to a (disjoint) copy G_{v} of G.
$T_{G \odot G}=T_{G} \cup \bigcup_{v \in V} T_{G_{v}}, N_{G \odot G}=\bigcup_{v \in V} N_{G_{v}}$
The edges are "inherited" from G in the natural way.

Digraphs generated by a finite structure

$G\left[T_{G}\right]$ is an induced subgraph of $(G \odot G)\left[T_{G \odot G}\right]$

Now we can repeat the procedure above using $G \odot \mathcal{G}$ instead of G to get $(G \odot G) \odot(G \odot G)$.
Hence we obtain a sequence $\left\langle G_{n}: n \in \mathbb{N}\right\rangle$ of digraphs with terminal vertices, $G_{n}=\left\langle V_{n}, E_{n}, T_{n}\right\rangle$ s. t. $G_{0}\left[T_{0}\right] \subset G_{1}\left[T_{1}\right] \subset G_{2}\left[T_{2}\right] \subset$ Take

$$
G^{\infty}=\bigcup\left\{G_{n}\left[T_{n}\right]: n \in \mathbb{N}\right\} .
$$

Digraphs generated by a finite structure

$G\left[T_{G}\right]$ is an induced subgraph of $(G \odot G)\left[T_{G} \odot G\right]$.
Now we can repeat the procedure above using $G \odot G$ instead of G to get $(G \odot G) \odot(G \odot G)$.
Hence we obtain a sequence $\left\langle G_{n}: n \in \mathbb{N}\right\rangle$ of digraphs with terminal vertices, $G_{n}=\left\langle V_{n}, E_{n}, T_{n}\right\rangle$ s. t. $G_{0}\left[T_{0}\right] \subset G_{1}\left[T_{1}\right] \subset G_{2}\left[T_{2}\right] \subset$ Take

$$
G^{\infty}=\bigcup\left\{G_{n}\left[T_{n}\right]: n \in \mathbb{N}\right\} .
$$

Digraphs generated by a finite structure

$G\left[T_{G}\right]$ is an induced subgraph of $(G \odot G)\left[T_{G \odot G}\right]$. Now we can repeat the procedure above using $G \odot G$ instead of G to get $(G \odot G) \odot(G \odot G)$.
Hence we obtain a sequence $\left\langle G_{n}: n \in \mathbb{N}\right\rangle$ of digraphs with terminal
vertices, $G_{n}=\left\langle V_{n}, E_{n}, T_{n}\right\rangle$ s. t. $G_{0}\left[T_{0}\right] \subset G_{1}\left[T_{1}\right] \subset G_{2}\left[T_{2}\right] \subset$
Take

Digraphs generated by a finite structure

$G\left[T_{G}\right]$ is an induced subgraph of $(G \odot G)\left[T_{G} \odot G\right]$. Now we can repeat the procedure above using $G \odot G$ instead of G to get $(G \odot G) \bigodot(G \odot G)$.
Hence we obtain a sequence $\left\langle G_{n}: n \in \mathbb{N}\right\rangle$ of digraphs with terminal vertices, $G_{n}=\left\langle V_{n}, E_{n}, T_{n}\right\rangle$ s. t. $G_{0}\left[T_{0}\right] \subset G_{1}\left[T_{1}\right] \subset G_{2}\left[T_{2}\right] \subset \ldots$

Digraphs generated by a finite structure

$G\left[T_{G}\right]$ is an induced subgraph of $(G \odot G)\left[T_{G \odot G]}\right]$. Now we can repeat the procedure above using $G \odot G$ instead of G to get $(G \odot G) \bigodot(G \odot G)$.
Hence we obtain a sequence $\left\langle G_{n}: n \in \mathbb{N}\right\rangle$ of digraphs with terminal vertices, $G_{n}=\left\langle V_{n}, E_{n}, T_{n}\right\rangle$ s. t. $G_{0}\left[T_{0}\right] \subset G_{1}\left[T_{1}\right] \subset G_{2}\left[T_{2}\right] \subset \ldots$ Take

$$
G^{\infty}=\bigcup\left\{G_{n}\left[T_{n}\right]: n \in \mathbb{N}\right\} .
$$

Digraphs generated by a finite structure

Theorem

Let $G=(V, E, T)$ be a finite tournament with terminal vertices. T. F. A. E:
(i) G^{∞} has a 3-winner,
(ii) $\ln (v) \neq \emptyset$ for each $v \in V \backslash T$.

Theorem

There is an finite tournament G such that G^{∞} has a 3-winner, but no 2-winner.

G

Digraphs generated by a finite structure

Theorem

Let $G=(V, E, T)$ be a finite tournament with terminal vertices.
T. F. A. E:
(i) G^{∞} has a 3-winner,
(ii) $\ln (v) \neq \emptyset$ for each $v \in V \backslash T$.
(a) G^{∞} has a 2-winner
(b) there is 2-winner $v \in T$ in G.

Theorem

There is an finite tournament G such that G^{∞} has a 3-winner, but no 2-winner.

Digraphs generated by a finite structure

Theorem

Let $G=(V, E, T)$ be a finite tournament with terminal vertices.
T. F. A. E:
(i) G^{∞} has a 3-winner,
(ii) $\ln (v) \neq \emptyset$ for each $v \in V \backslash T$.
T. F. A. E.:
(a) G^{∞} has a 2-winner
(b) there is 2-winner $v \in T$ in G.

Theorem
There is an finite tournament G such that G^{∞} has a 3-winner, but no 2-winner.

Digraphs generated by a finite structure

Theorem

Let $G=(V, E, T)$ be a finite tournament with terminal vertices.
T. F. A. E:
(i) G^{∞} has a 3-winner,
(ii) $\ln (v) \neq \emptyset$ for each $v \in V \backslash T$.
T. F. A. E.:
(a) G^{∞} has a 2-winner
(b) there is 2-winner $v \in T$ in G.

Theorem

There is an finite tournament G such that G^{∞} has a 3-winner, but no 2-winner.

Digraphs generated by a finite structure

Theorem

Let $G=(V, E, T)$ be a finite tournament with terminal vertices.
T. F. A. E:
(i) G^{∞} has a 3-winner,
(ii) $\ln (v) \neq \emptyset$ for each $v \in V \backslash T$.
T. F. A. E.:
(a) G^{∞} has a 2-winner
(b) there is 2-winner $v \in T$ in G.

Theorem

There is an finite tournament G such that G^{∞} has a 3-winner, but no 2-winner.
G :

From Finite to Infinite

Digraphs generated by a finite structure

Theorem

If $G=\langle V, E, T\rangle$ is a finite digraph with terminal vertices $G^{\infty}=\left\langle V^{\infty}, E^{\infty}\right\rangle$, then there is a partition $\left(V_{0}, V_{1}\right)$ of V^{∞} such that $G^{\infty}\left[V_{0}\right]$ has a quasi-kernel, and $G^{\infty}\left[V_{1}\right]$ has a quasi-sink.

Digraphs generated by a finite structure

Theorem

If $G=\langle V, E, T\rangle$ is a finite digraph with terminal vertices $G^{\infty}=\left\langle V^{\infty}, E^{\infty}\right\rangle$, then there is a partition $\left(V_{0}, V_{1}\right)$ of V^{∞} such that $G^{\infty}\left[V_{0}\right]$ has a quasi-kernel, and $G^{\infty}\left[V_{1}\right]$ has a quasi-sink.

Digraphs generated by a finite structure

Theorem

If $G=\langle V, E, T\rangle$ is a finite digraph with terminal vertices $G^{\infty}=\left\langle V^{\infty}, E^{\infty}\right\rangle$, then there is a partition $\left(V_{0}, V_{1}\right)$ of V^{∞} such that $G^{\infty}\left[V_{0}\right]$ has a quasi-kernel, and $G^{\infty}\left[V_{1}\right]$ has a quasi-sink.

Multi-way cuts

Multiway Cut Problem

Fix a graph $G=(V, E)$

Multi-way cuts

Multiway Cut Problem

Fix a graph $G=(V, E)$

Multi-way cuts

Multiway Cut Problem

Fix a graph $G=(V, E)$ and a subset S of vertices called terminals.

Multi-way cuts

Multiway Cut Problem

Fix a graph $G=(V, E)$ and a subset S of vertices called terminals. A multiway cut is a set of edges whose removal disconnects each terminal from the others.

Multi-way cuts

Multiway Cut Problem

Fix a graph $G=(V, E)$ and a subset S of vertices called terminals. A multiway cut is a set of edges whose removal disconnects each terminal from the others. The multiway cut problem is to find the minimal size of a multiway cut denoted by $\pi_{G, S}$.

Multiway cuts

Definition

If $\vec{G}=(V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of edge-disjoint directed paths from some element of A into some element of B.

Multiway cuts

Definition

If $\vec{G}=(V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of edge-disjoint directed paths from some element of A into some element of B.

Definition

Multiway cuts

Definition

If $\vec{G}=(V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of edge-disjoint directed paths from some element of A into some element of B.

Definition

If $G=(V, E)$ is a finite graph, $S \subset V$,

Multiway cuts

Definition

If $\vec{G}=(V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of edge-disjoint directed paths from some element of A into some element of B.

Definition

If $G=(V, E)$ is a finite graph, $S \subset V$, and s_{1}. \vec{G} is obtained from G by an orientation of the edges,

Multiway cuts

Definition

If $\vec{G}=(V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of edge-disjoint directed paths from some element of A into some element of B.

Definition

If $G=(V, E)$ is a finite graph, $S \subset V$, and s_{1}. \vec{G} is obtained from G by an orientation of the edges, then let

$$
\nu_{\vec{G}, S}=\sum_{s \in S} \lambda(\vec{G}, S-s, s)
$$

$$
S=\left\{s_{1}, s_{2}, s_{3}\right\}
$$

S_{3}

Multiway cuts

Definition

If $\vec{G}=(V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of edge-disjoint directed paths from some element of A into some element of B.

Definition

If $G=(V, E)$ is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges, then let

$$
\nu_{\vec{G}, S}=\sum_{s \in S} \lambda(\vec{G}, S-s, s)
$$

$\lambda\left(\vec{G}, S-s_{3}, s_{3}\right)=1$,

$$
t=\left\{s_{1}, s_{2}, s_{3}\right\}
$$

Multiway cuts

Definition

If $\vec{G}=(V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of edge-disjoint directed paths from some element of A into some element of B.

Definition

If $G=(V, E)$ is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges, then let

$$
\nu_{\vec{G}, S}=\sum_{s \in S} \lambda(\vec{G}, S-s, s)
$$

$\lambda\left(\vec{G}, S-s_{3}, s_{3}\right)=1, \lambda\left(\vec{G}, S-s_{2}, s_{2}\right)=1$,

$$
S=\left\{s_{1}, s_{2}, s_{3}\right\}
$$

S_{3}

Multiway cuts

Definition

If $\vec{G}=(V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of edge-disjoint directed paths from some element of A into some element of B.

Definition

If $G=(V, E)$ is a finite graph, $S \subset V$, and ${ }^{s_{1}}$. \vec{G} is obtained from G by an orientation of the edges, then let

$$
\nu_{\vec{G}, S}=\sum_{s \in S} \lambda(\vec{G}, S-\boldsymbol{s}, \boldsymbol{s})
$$

$$
S=\left\{s_{1}, s_{2}, s_{3}\right\}
$$

$\lambda\left(\vec{G}, S-s_{3}, s_{3}\right)=1, \lambda\left(\vec{G}, S-s_{2}, s_{2}\right)=1$,
$\lambda\left(\vec{G}, S-s_{1}, s_{1}\right)=0$,
S_{3}

Multiway cuts

Definition

If $\vec{G}=(V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of edge-disjoint directed paths from some element of A into some element of B.

Definition

If $G=(V, E)$ is a finite graph, $S \subset V$, and ${ }^{s_{1}}$. \vec{G} is obtained from G by an orientation of the edges, then let

$$
\nu_{\vec{G}, S}=\sum_{s \in S} \lambda(\vec{G}, S-\boldsymbol{s}, \boldsymbol{s})
$$

$$
S=\left\{s_{1}, s_{2}, s_{3}\right\}
$$

$\lambda\left(\vec{G}, S-s_{3}, s_{3}\right)=1, \lambda\left(\vec{G}, S-s_{2}, s_{2}\right)=1$,
$\lambda\left(\vec{G}, S-s_{1}, s_{1}\right)=0, \nu_{\vec{G}, S}=2$
S_{3}

Multiway cuts

Theorem (P. L. Erdős, A. Frank, L. Székely)

If $G=(V, E)$ is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges,

Multiway cuts

Theorem (P. L. Erdős, A. Frank, L. Székely)

If $G=(V, E)$ is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges, then $\nu_{\vec{G}, S} \leq \pi_{G, S}$.

Multiway cuts

Theorem (P. L. Erdős, A. Frank, L. Székely)

If $G=(V, E)$ is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges, then $\nu_{\vec{G}, S} \leq \pi_{G, S}$.

Theorem (E. Dahjhaus, D. S. Johson, C. H. Papadimitriou, P.D. Seymout, M. Yannakakis)

The multiway cut problem is NP-complete.

Multiway cuts

Special case:

$G-S$ is a tree.

Multiway cuts

Special case:

$G-S$ is a tree.

Multiway cuts

Special case:

$G-S$ is a tree.

Multiway cuts

Special case:

$G-S$ is a tree.

Multiway cuts

Theorem (P. L. Erdős, L. Székely)

If $G=(V, E)$ is a finite graph, $S \subset V$ such that $G-S$ is tree, then

$$
\max _{\vec{G}} \nu_{\vec{G}, S}=\pi_{G, S} .
$$

where the maximum is taken over all orientations \vec{G} of G.

Multiway cuts

Theorem (P. L. Erdős, A. Frank, L. Székely, reformulated)

Multiway cuts

Theorem (P. L. Erdős, A. Frank, L. Székely, reformulated)

 If $G=(V, E)$ is a finite graph,
Multiway cuts

Theorem (P. L. Erdős, A. Frank, L. Székely, reformulated)

 If $G=(V, E)$ is a finite graph, $S \subset V$ such that $G-S$ is tree,
Multiway cuts

Theorem (P. L. Erdős, A. Frank, L. Székely, reformulated) If $G=(V, E)$ is a finite graph, $S \subset V$ such that $G-S$ is tree, then there is an orientation \vec{G} of G,

Multiway cuts

Theorem (P. L. Erdős, A. Frank, L. Székely, reformulated)

 If $G=(V, E)$ is a finite graph, $S \subset V$ such that $G-S$ is tree, then there is an orientation \vec{G} of G, and for each $s \in S$ there is an edge-disjoint family \mathcal{P}_{s} of $(S-s, s)$-paths in \vec{G}
Multiway cuts

Theorem (P. L. Erdős, A. Frank, L. Székely, reformulated)

 If $G=(V, E)$ is a finite graph, $S \subset V$ such that $G-S$ is tree, then there is an orientation \vec{G} of G, and for each $s \in S$ there is an edge-disjoint family \mathcal{P}_{s} of $(S-s, s)$-paths in \vec{G} and for each $P \in \mathcal{P}_{s}$ we can pick an edge $e_{P} \in P$
Multiway cuts

Theorem (P. L. Erdős, A. Frank, L. Székely, reformulated)

 If $G=(V, E)$ is a finite graph, $S \subset V$ such that $G-S$ is tree, then there is an orientation \vec{G} of G, and for each $s \in S$ there is an edge-disjoint family \mathcal{P}_{s} of $(S-s, s)$-paths in \vec{G} and for each $P \in \mathcal{P}_{s}$ we can pick an edge $e_{P} \in P$ such that$$
\left\{e_{P}: P \in \mathcal{P}_{s} \text { for some } s \in S\right\}
$$

is a multiway cut (in G for S).

Multiway cuts

Theorem (-)
,

Multiway cuts

Theorem (-)
 If $G=(V, E)$ is a graph, ,

Multiway cuts

> Theorem (-)
> If $G=(V, E)$ is a graph, $S \subset V$ is finite such that $G-S$ is tree ,

Multiway cuts

Theorem (-)

If $G=(V, E)$ is a graph, $S \subset V$ is finite such that $G-S$ is tree without infinite trails,

Multiway cuts

Theorem (-)

If $G=(V, E)$ is a graph, $S \subset V$ is finite such that $G-S$ is tree without infinite trails, then there is an orientation \vec{G} of G,

Multiway cuts

Theorem (-)

If $G=(V, E)$ is a graph, $S \subset V$ is finite such that $G-S$ is tree without infinite trails, then there is an orientation \vec{G} of G, and for each $s \in S$ there is an edge-disjoint family \mathcal{P}_{s} of $(S-s, s)$-paths in \vec{G}

Multiway cuts

Theorem (-)

If $G=(V, E)$ is a graph, $S \subset V$ is finite such that $G-S$ is tree without infinite trails, then there is an orientation \vec{G} of G, and for each $s \in S$ there is an edge-disjoint family \mathcal{P}_{s} of $(S-s, s)$-paths in \vec{G} and for each $P \in \mathcal{P}_{s}$ we can pick an edge $e_{P} \in P$

Multiway cuts

Theorem (-)

If $G=(V, E)$ is a graph, $S \subset V$ is finite such that $G-S$ is tree without infinite trails, then there is an orientation \vec{G} of G, and for each $s \in S$ there is an edge-disjoint family \mathcal{P}_{s} of $(S-s, s)$-paths in \vec{G} and for each $P \in \mathcal{P}_{s}$ we can pick an edge $e_{P} \in P$ such that

$$
\left\{e_{P}: P \in \mathcal{P}_{s} \text { for some } s \in S\right\}
$$

is a multiway cut (in G for S).

Multiway cuts

Proposition

Let $G=(V, E)$ be a finite directed graph, and $A, B \subset V$ s.t

Multiway cuts

Proposition

Let $G=(V, E)$ be a finite directed graph, and $A, B \subset V$ s.t (1) $\operatorname{in}(a)=0$ and out $(a)=1$ for each $a \in A$,

Multiway cuts

Proposition

Let $G=(V, E)$ be a finite directed graph, and $A, B \subset V$ s.t
(1) $\operatorname{in}(a)=0$ and out $(a)=1$ for each $a \in A$,
(2) $\operatorname{in}(b)=1$ and out $(b)=0$ for each $b \in B$,

Multiway cuts

Proposition

Let $G=(V, E)$ be a finite directed graph, and $A, B \subset V$ s.t
(1) $\operatorname{in}(a)=0$ and out $(a)=1$ for each $a \in A$,
(2) in $(b)=1$ and out $(b)=0$ for each $b \in B$,
(3) in $(x) \leq$ out (x) for each $x \in V \backslash(A \cup b)$.

Multiway cuts

Proposition

Let $G=(V, E)$ be a finite directed graph, and $A, B \subset V$ s.t
(1) $\operatorname{in}(a)=0$ and out $(a)=1$ for each $a \in A$,
(2) in $(b)=1$ and out $(b)=0$ for each $b \in B$,
(3) in $(x) \leq$ out (x) for each $x \in V \backslash(A \cup b)$.

Then there is a family \mathcal{P} of edge-disjoint $A-B$-paths s.t. \mathcal{P} covers A.

Multiway cuts

Proposition

Let $G=(V, E)$ be a finite directed graph, and $A, B \subset V$ s.t
(1) $\operatorname{in}(a)=0$ and out $(a)=1$ for each $a \in A$,
(2) in $(b)=1$ and out $(b)=0$ for each $b \in B$,
(3) in $(x) \leq$ out (x) for each $x \in V \backslash(A \cup b)$.

Then there is a family \mathcal{P} of edge-disjoint A - B-paths s.t. \mathcal{P} covers A.

Multiway cuts

Proposition

Let $G=(V, E)$ be a finite directed graph, and $A, B \subset V$ s.t
(1) $\operatorname{in}(a)=0$ and out $(a)=1$ for each $a \in A$,
(2) in $(b)=1$ and out $(b)=0$ for each $b \in B$,
(3) in $(x) \leq$ out (x) for each $x \in V \backslash(A \cup b)$.

Then there is a family \mathcal{P} of edge-disjoint $A-B$-paths s.t. \mathcal{P} covers A.

Multiway cuts

Proposition

Let $G=(V, E)$ be a finite directed graph, and $A, B \subset V$ s.t
(1) $\operatorname{in}(a)=0$ and out $(a)=1$ for each $a \in A$,
(2) in $(b)=1$ and out $(b)=0$ for each $b \in B$,
(3) in $(x) \leq$ out (x) for each $x \in V \backslash(A \cup b)$.

Then there is a family \mathcal{P} of edge-disjoint A - B-paths s.t. \mathcal{P} covers A.

Infinite case

Theorem

Let $G=(V, E)$ be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t

Infinite case

Theorem

Let $G=(V, E)$ be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t
(1) $\operatorname{in}(a)=0$ and $\operatorname{out}(a)=1$ for each $a \in A$,

Multiway cuts
 Infinite case

Theorem

Let $G=(V, E)$ be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t
(1) $\operatorname{in}(a)=0$ and $\operatorname{out}(a)=1$ for each $a \in A$,
(2) $\operatorname{in}(b)=1$ and out $(b)=0$ for each $b \in B$,

Multiway cuts

Infinite case

Theorem

Let $G=(V, E)$ be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t
(1) $\operatorname{in}(a)=0$ and $\operatorname{out}(a)=1$ for each $a \in A$,
(2) $\operatorname{in}(b)=1$ and out $(b)=0$ for each $b \in B$,
(3) in $(x) \leq$ out (x) for each $x \in V \backslash(A \cup B)$.

Multiway cuts

Infinite case

Theorem

Let $G=(V, E)$ be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t
(1) $\operatorname{in}(a)=0$ and $\operatorname{out}(a)=1$ for each $a \in A$,
(2) $\operatorname{in}(b)=1$ and out $(b)=0$ for each $b \in B$,
(3) in $(x) \leq$ out (x) for each $x \in V \backslash(A \cup B)$.

Then there is a family \mathcal{P} of edge-disjoint $A-B$-paths s .t. \mathcal{P} covers A.

Multiway cuts

Infinite case

Theorem

Let $G=(V, E)$ be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t
(1) $\operatorname{in}(a)=0$ and out $(a)=1$ for each $a \in A$,
(2) $\operatorname{in}(b)=1$ and out $(b)=0$ for each $b \in B$,
(3) in $(x) \leq$ out (x) for each $x \in V \backslash(A \cup B)$.

Then there is a family \mathcal{P} of edge-disjoint $A-B$-paths s .t. \mathcal{P} covers A.

Proof.

G is countable:

Multiway cuts

Infinite case

Theorem

Let $G=(V, E)$ be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t
(1) $\operatorname{in}(a)=0$ and out $(a)=1$ for each $a \in A$,
(2) $\operatorname{in}(b)=1$ and out $(b)=0$ for each $b \in B$,
(3) in $(x) \leq \operatorname{out}(x)$ for each $x \in V \backslash(A \cup B)$.

Then there is a family \mathcal{P} of edge-disjoint A - B-paths s.t. \mathcal{P} covers A.

Proof.

G is countable: easy induction:

Multiway cuts

Infinite case

Theorem

Let $G=(V, E)$ be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t
(1) $\operatorname{in}(a)=0$ and out $(a)=1$ for each $a \in A$,
(2) $\operatorname{in}(b)=1$ and out $(b)=0$ for each $b \in B$,
(3) in $(x) \leq \operatorname{out}(x)$ for each $x \in V \backslash(A \cup B)$.

Then there is a family \mathcal{P} of edge-disjoint $A-B$-paths s .t. \mathcal{P} covers A.

Proof.

G is countable: easy induction: if P is an $A-B$-path then $G-P$ satisfies (1)-(3)

Multiway cuts

Infinite case

Theorem

Let $G=(V, E)$ be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t
(1) $\operatorname{in}(a)=0$ and $\operatorname{out}(a)=1$ for each $a \in A$,
(2) $\operatorname{in}(b)=1$ and out $(b)=0$ for each $b \in B$,
(3) in $(x) \leq$ out (x) for each $x \in V \backslash(A \cup B)$.

Then there is a family \mathcal{P} of edge-disjoint $A-B$-paths s .t. \mathcal{P} covers A.

Proof.

G is countable: easy induction: if P is an $A-B$-path then $G-P$ satisfies (1)-(3)

If G is uncountable

Multiway cuts

Infinite case

Theorem

Let $G=(V, E)$ be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t
(1) $\operatorname{in}(a)=0$ and out $(a)=1$ for each $a \in A$,
(2) $\operatorname{in}(b)=1$ and out $(b)=0$ for each $b \in B$,
(3) in $(x) \leq \operatorname{out}(x)$ for each $x \in V \backslash(A \cup B)$.

Then there is a family \mathcal{P} of edge-disjoint A - B-paths s.t. \mathcal{P} covers A.

Proof.

G is countable: easy induction: if P is an $A-B$-path then $G-P$ satisfies (1)-(3)

If G is uncountable then we may got stuck at some point

Multiway cuts

Infinite case

$$
G=(V, E), A, B \subset V,|V|=|A|=\omega_{1}
$$

$$
G=(V, E), A, B \subset V,|V|=|A|=\omega_{1}
$$

Inductive construction, but using the right enumeration

Uncountable case
$G=(V, E), A, B \subset V,|V|=|A|=\omega_{1}$
Inductive construction, but using the right enumeration
Partition V into countable sets $\left\{C_{\alpha}: \alpha<\omega_{1}\right\}$

Multi-way cuts

Uncountable case
$G=(V, E), A, B \subset V,|V|=|A|=\omega_{1}$
Inductive construction, but using the right enumeration
Partition V into countable sets $\left\{\boldsymbol{C}_{\alpha}: \alpha<\omega_{1}\right\}$ Enumerate $A=\left\{a_{\xi}: \xi<\omega_{1}\right\}$ such that $C_{0} \cap A=\left\{a_{0}, a_{1}, \ldots\right\}$, $C_{1} \cap A=\left\{a_{\omega}, a_{\omega+1}, \ldots\right\}$,

Multi-way cuts
 Uncountable case

$G=(V, E), A, B \subset V,|V|=|A|=\omega_{1}$
Inductive construction, but using the right enumeration
Partition V into countable sets $\left\{\boldsymbol{C}_{\alpha}: \alpha<\omega_{1}\right\}$ Enumerate $A=\left\{a_{\xi}: \xi<\omega_{1}\right\}$ such that $C_{0} \cap A=\left\{a_{0}, a_{1}, \ldots\right\}$, $C_{1} \cap A=\left\{a_{\omega}, a_{\omega+1}, \ldots\right\}$,
By transfinite induction find edge-disjoint families \mathcal{P}_{α} of $A-B$ paths in $G\left[\cup\left\{C_{\xi}: \xi \leq \alpha\right\}\right]$ such that \mathcal{P}_{α} covers $\boldsymbol{C}_{\alpha} \cap A$.

Multi-way cuts

Uncountable case

Partition V into countable sets $\left\{C_{\alpha}: \alpha<\omega_{1}\right\}$ s.t

Uncountable case

Partition V into countable sets $\left\{C_{\alpha}: \alpha<\omega_{1}\right\}$ s.t

- if $x \in C_{\alpha}$ with $|\operatorname{In}(x)| \leq \omega$ then $\operatorname{In}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.

Partition V into countable sets $\left\{C_{\alpha}: \alpha<\omega_{1}\right\}$ s.t

- if $x \in C_{\alpha}$ with $|\operatorname{In}(x)| \leq \omega$ then $\operatorname{In}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
- if $x \in C_{\alpha}$ with $|\operatorname{Out}(x)| \leq \omega$ then $\operatorname{Out}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.

Partition V into countable sets $\left\{C_{\alpha}: \alpha<\omega_{1}\right\}$ s.t

- if $x \in C_{\alpha}$ with $|\operatorname{In}(x)| \leq \omega$ then $\operatorname{In}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
- if $x \in C_{\alpha}$ with $|\operatorname{Out}(x)| \leq \omega$ then $\operatorname{Out}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
- if $x \in C_{\alpha}$ with $|\operatorname{Out}(x)|>\omega$ then $\operatorname{Out}(x) \cap C_{\beta}$ is infinite for each $\alpha \leq \beta<\omega_{1}$.

Multi-way cuts
 Uncountable case

Partition V into countable sets $\left\{C_{\alpha}: \alpha<\omega_{1}\right\}$ s.t

- if $x \in C_{\alpha}$ with $|\operatorname{In}(x)| \leq \omega$ then $\operatorname{In}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
- if $x \in C_{\alpha}$ with $|\operatorname{Out}(x)| \leq \omega$ then $\operatorname{Out}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
- if $x \in C_{\alpha}$ with $|\operatorname{Out}(x)|>\omega$ then $\operatorname{Out}(x) \cap C_{\beta}$ is infinite for each $\alpha \leq \beta<\omega_{1}$.

How to get such a partition?

Multi-way cuts
 Uncountable case

Partition V into countable sets $\left\{C_{\alpha}: \alpha<\omega_{1}\right\}$ s.t

- if $x \in C_{\alpha}$ with $|\operatorname{In}(x)| \leq \omega$ then $\operatorname{In}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
- if $x \in C_{\alpha}$ with $|\operatorname{Out}(x)| \leq \omega$ then $\operatorname{Out}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
- if $x \in C_{\alpha}$ with $|\operatorname{Out}(x)|>\omega$ then $\operatorname{Out}(x) \cap C_{\beta}$ is infinite for each $\alpha \leq \beta<\omega_{1}$.
How to get such a partition? How to get the right properties of such a partition?

Multi-way cuts
 Uncountable case

Partition V into countable sets $\left\{C_{\alpha}: \alpha<\omega_{1}\right\}$ s.t

- if $x \in C_{\alpha}$ with $|\operatorname{In}(x)| \leq \omega$ then $\operatorname{In}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
- if $x \in C_{\alpha}$ with $|\operatorname{Out}(x)| \leq \omega$ then $\operatorname{Out}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
- if $x \in C_{\alpha}$ with $|\operatorname{Out}(x)|>\omega$ then $\operatorname{Out}(x) \cap C_{\beta}$ is infinite for each $\alpha \leq \beta<\omega_{1}$.

How to get such a partition? How to get the right properties of such a partition?
Elementary submodels

Let θ be a large regular cardinals.

Let θ be a large regular cardinals. $\quad \theta=\left(2^{|G|}\right)^{+}$

Let θ be a large regular cardinals. $\quad \theta=\left(2^{|G|}\right)^{+}$ transitive closure of a set x is $x \cup(\cup x) \cup(\cup \cup x) \cup \ldots$

Let θ be a large regular cardinals. $\quad \theta=\left(2^{|G|}\right)^{+}$ transitive closure of a set x is $x \cup(\cup x) \cup(\cup \cup x) \cup \ldots$
Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ.

Let θ be a large regular cardinals. $\quad \theta=\left(2^{|G|}\right)^{+}$ transitive closure of a set x is $x \cup(\cup x) \cup(\cup \cup x) \cup \ldots$
Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ.
$\mathcal{H}(\theta)=\langle H(\theta), \epsilon, \prec\rangle$, where \prec is a well-ordering

Elementary submodels

Let θ be a large regular cardinals. $\quad \theta=\left(2^{|G|}\right)^{+}$
transitive closure of a set x is $x \cup(\cup x) \cup(\cup \cup x) \cup \ldots$
Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ.
$\mathcal{H}(\theta)=\langle H(\theta), \epsilon, \prec\rangle$, where \prec is a well-ordering
Let $\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ be an increasing continuous chain of countable elementary submodels of $\mathcal{H}(\theta)$ with $G, A \in M_{0}$.

Let θ be a large regular cardinals. $\quad \theta=\left(2^{|G|}\right)^{+}$
transitive closure of a set x is $x \cup(\cup x) \cup(\cup \cup x) \cup \ldots$
Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ.
$\mathcal{H}(\theta)=\langle H(\theta), \in, \prec\rangle$, where \prec is a well-ordering
Let $\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ be an increasing continuous chain of countable elementary submodels of $\mathcal{H}(\theta)$ with $G, A \in M_{0}$. i.e.
(1) M_{α} is a countable elementary submodel of $\mathcal{H}(\theta)$ for $\alpha<\omega_{1}$

Multi-way cuts
 Elementary submodels

Let θ be a large regular cardinals. $\quad \theta=\left(2^{|G|}\right)^{+}$
transitive closure of a set x is $x \cup(\cup x) \cup(\cup \cup x) \cup \ldots$
Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ.
$\mathcal{H}(\theta)=\langle H(\theta), \epsilon, \prec\rangle$, where \prec is a well-ordering
Let $\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ be an increasing continuous chain of countable elementary submodels of $\mathcal{H}(\theta)$ with $G, A \in M_{0}$. i.e.
(1) M_{α} is a countable elementary submodel of $\mathcal{H}(\theta)$ for $\alpha<\omega_{1}$
(2) $\left\langle M_{\beta}: \beta \leq \alpha\right\rangle \in M_{\alpha+1}$,

Multi-way cuts
 Elementary submodels

Let θ be a large regular cardinals. $\quad \theta=\left(2^{|G|}\right)^{+}$ transitive closure of a set x is $x \cup(\cup x) \cup(\cup \cup x) \cup \ldots$
Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ.
$\mathcal{H}(\theta)=\langle H(\theta), \epsilon, \prec\rangle$, where \prec is a well-ordering
Let $\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ be an increasing continuous chain of countable elementary submodels of $\mathcal{H}(\theta)$ with $G, A \in M_{0}$. i.e.
(1) M_{α} is a countable elementary submodel of $\mathcal{H}(\theta)$ for $\alpha<\omega_{1}$
(2) $\left\langle M_{\beta}: \beta \leq \alpha\right\rangle \in M_{\alpha+1}$,
(3) $M_{\alpha}=\bigcup\left\{M_{\beta}: \beta<\alpha\right\}$ provided α is limit

Multi-way cuts
 Elementary submodels

Let θ be a large regular cardinals. $\quad \theta=\left(2^{|G|}\right)^{+}$ transitive closure of a set x is $x \cup(\cup x) \cup(\cup \cup x) \cup \ldots$
Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ.
$\mathcal{H}(\theta)=\langle H(\theta), \epsilon, \prec\rangle$, where \prec is a well-ordering
Let $\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ be an increasing continuous chain of countable elementary submodels of $\mathcal{H}(\theta)$ with $G, A \in M_{0}$. i.e.
(1) M_{α} is a countable elementary submodel of $\mathcal{H}(\theta)$ for $\alpha<\omega_{1}$
(2) $\left\langle M_{\beta}: \beta \leq \alpha\right\rangle \in M_{\alpha+1}$,
(3) $M_{\alpha}=\bigcup\left\{M_{\beta}: \beta<\alpha\right\}$ provided α is limit
(4) $G, A \in M_{0}$.

Multi-way cuts

Elementary submodels

Let θ be a large regular cardinals. $\quad \theta=\left(2^{|G|}\right)^{+}$ transitive closure of a set x is $x \cup(\cup x) \cup(\cup \cup x) \cup \ldots$
Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ.
$\mathcal{H}(\theta)=\langle H(\theta), \epsilon, \prec\rangle$, where \prec is a well-ordering
Let $\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ be an increasing continuous chain of countable elementary submodels of $\mathcal{H}(\theta)$ with $G, A \in M_{0}$. i.e.
(1) M_{α} is a countable elementary submodel of $\mathcal{H}(\theta)$ for $\alpha<\omega_{1}$
(2) $\left\langle M_{\beta}: \beta \leq \alpha\right\rangle \in M_{\alpha+1}$,
(3) $M_{\alpha}=\bigcup\left\{M_{\beta}: \beta<\alpha\right\}$ provided α is limit
(4) $G, A \in M_{0}$.

Let $C_{0}=M_{0} \cap V$ and $C_{n}=\left(M_{n+1} \backslash M_{n}\right) \cap V$ for $0<n<\omega$ and $C_{\alpha}=\left(M_{\alpha+1} \backslash M_{\alpha}\right) \cap V$ for $\omega \leq \alpha<\omega_{1}$.

Elementary submodels
$\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ is an increasing continuous chain of countable elementary submodels of $\langle H(\theta), \epsilon\rangle$ with $G, A \in M_{0}$.
$C_{0}=M_{0} \cap V$ and $C_{n}=\left(M_{n+1} \backslash M_{n}\right) \cap V$ for $0<n<\omega$ and $C_{\alpha}=\left(M_{\alpha+1} \backslash M_{\alpha}\right) \cap V$ for $\omega \leq \alpha<\omega_{1}$.

Multi-way cuts

Elementary submodels
$\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ is an increasing continuous chain of countable elementary submodels of $\langle H(\theta), \epsilon\rangle$ with $G, A \in M_{0}$.
$C_{0}=M_{0} \cap V$ and $C_{n}=\left(M_{n+1} \backslash M_{n}\right) \cap V$ for $0<n<\omega$ and $C_{\alpha}=\left(M_{\alpha+1} \backslash M_{\alpha}\right) \cap V$ for $\omega \leq \alpha<\omega_{1}$.
$\left(^{*}\right)$ if $x \in C_{\alpha}$ with $|\ln (x)| \leq \omega$ then $\ln (x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.

Multi-way cuts

Elementary submodels
$\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ is an increasing continuous chain of countable elementary submodels of $\langle H(\theta), \epsilon\rangle$ with $G, A \in M_{0}$.
$C_{0}=M_{0} \cap V$ and $C_{n}=\left(M_{n+1} \backslash M_{n}\right) \cap V$ for $0<n<\omega$ and $C_{\alpha}=\left(M_{\alpha+1} \backslash M_{\alpha}\right) \cap V$ for $\omega \leq \alpha<\omega_{1}$.
$\left(^{*}\right)$ if $x \in C_{\alpha}$ with $|\ln (x)| \leq \omega$ then $\ln (x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
$\mathcal{H}(\theta) \models$ " $\ln (x)$ has an enumeration $\vec{x}=\left\langle x_{n}: n<\omega\right\rangle$ "

Multi-way cuts

Elementary submodels
$\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ is an increasing continuous chain of countable elementary submodels of $\langle H(\theta), \epsilon\rangle$ with $G, A \in M_{0}$.
$C_{0}=M_{0} \cap V$ and $C_{n}=\left(M_{n+1} \backslash M_{n}\right) \cap V$ for $0<n<\omega$ and $C_{\alpha}=\left(M_{\alpha+1} \backslash M_{\alpha}\right) \cap V$ for $\omega \leq \alpha<\omega_{1}$.
$\left(^{*}\right)$ if $x \in C_{\alpha}$ with $|\ln (x)| \leq \omega$ then $\ln (x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
$\mathcal{H}(\theta) \models$ " $\ln (x)$ has an enumeration $\vec{x}=\left\langle x_{n}: n<\omega\right\rangle$ " $M_{\alpha+1} \models " \operatorname{In}(x)$ has an enumeration $\vec{x}=\left\langle x_{n}: n<\omega\right\rangle "$

Multi-way cuts

Elementary submodels

$\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ is an increasing continuous chain of countable elementary submodels of $\langle H(\theta), \epsilon\rangle$ with $G, A \in M_{0}$.
$C_{0}=M_{0} \cap V$ and $C_{n}=\left(M_{n+1} \backslash M_{n}\right) \cap V$ for $0<n<\omega$ and $C_{\alpha}=\left(M_{\alpha+1} \backslash M_{\alpha}\right) \cap V$ for $\omega \leq \alpha<\omega_{1}$.
$\left(^{*}\right)$ if $x \in C_{\alpha}$ with $|\ln (x)| \leq \omega$ then $\ln (x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
$\mathcal{H}(\theta) \models$ " $\ln (x)$ has an enumeration $\vec{x}=\left\langle x_{n}: n<\omega\right\rangle$ " $M_{\alpha+1} \models " \operatorname{In}(x)$ has an enumeration $\vec{x}=\left\langle x_{n}: n<\omega\right\rangle "$ there is $\vec{x} \in M_{\alpha+1}$ s.t. $M_{\alpha+1} \models$ " \vec{x} is an enumeration of $\operatorname{In}(x)$ "

Multi-way cuts
 \section*{Elementary submodels}

$\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ is an increasing continuous chain of countable elementary submodels of $\langle H(\theta), \epsilon\rangle$ with $G, A \in M_{0}$.
$C_{0}=M_{0} \cap V$ and $C_{n}=\left(M_{n+1} \backslash M_{n}\right) \cap V$ for $0<n<\omega$ and $C_{\alpha}=\left(M_{\alpha+1} \backslash M_{\alpha}\right) \cap V$ for $\omega \leq \alpha<\omega_{1}$.
$\left(^{*}\right)$ if $x \in C_{\alpha}$ with $|\ln (x)| \leq \omega$ then $\operatorname{In}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
$\mathcal{H}(\theta) \models$ " $\ln (x)$ has an enumeration $\vec{x}=\left\langle x_{n}: n<\omega\right\rangle$ " $M_{\alpha+1} \models " \operatorname{In}(x)$ has an enumeration $\vec{x}=\left\langle x_{n}: n<\omega\right\rangle "$ there is $\vec{x} \in M_{\alpha+1}$ s.t. $M_{\alpha+1} \models " \vec{x}$ is an enumeration of $\ln (x) "$ $\mathcal{H}(\theta) \models \vec{x}$ is an enumeration of $\operatorname{In}(x)$

Multi-way cuts
 \section*{Elementary submodels}

$\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ is an increasing continuous chain of countable elementary submodels of $\langle H(\theta), \epsilon\rangle$ with $G, A \in M_{0}$.
$C_{0}=M_{0} \cap V$ and $C_{n}=\left(M_{n+1} \backslash M_{n}\right) \cap V$ for $0<n<\omega$ and $C_{\alpha}=\left(M_{\alpha+1} \backslash M_{\alpha}\right) \cap V$ for $\omega \leq \alpha<\omega_{1}$.
$\left(^{*}\right)$ if $x \in C_{\alpha}$ with $|\ln (x)| \leq \omega$ then $\operatorname{In}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
$\mathcal{H}(\theta) \models$ " $\ln (x)$ has an enumeration $\vec{x}=\left\langle x_{n}: n<\omega\right\rangle$ " $M_{\alpha+1} \models " \operatorname{In}(x)$ has an enumeration $\vec{x}=\left\langle x_{n}: n<\omega\right\rangle "$ there is $\vec{x} \in M_{\alpha+1}$ s.t. $M_{\alpha+1} \models " \vec{x}$ is an enumeration of $\ln (x) "$ $\mathcal{H}(\theta) \models \vec{x}$ is an enumeration of $\operatorname{In}(x)$ \vec{x} is an enumeration of $\operatorname{In}(x)$

Multi-way cuts

Elementary submodels

$\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ is an increasing continuous chain of countable elementary submodels of $\langle H(\theta), \epsilon\rangle$ with $G, A \in M_{0}$.
$C_{0}=M_{0} \cap V$ and $C_{n}=\left(M_{n+1} \backslash M_{n}\right) \cap V$ for $0<n<\omega$ and $C_{\alpha}=\left(M_{\alpha+1} \backslash M_{\alpha}\right) \cap V$ for $\omega \leq \alpha<\omega_{1}$.
$\left(^{*}\right)$ if $x \in C_{\alpha}$ with $|\ln (x)| \leq \omega$ then $\operatorname{In}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
$\mathcal{H}(\theta) \models$ " $\ln (x)$ has an enumeration $\vec{x}=\left\langle x_{n}: n\langle\omega\rangle\right.$ " $M_{\alpha+1} \models " \operatorname{In}(x)$ has an enumeration $\vec{x}=\left\langle x_{n}: n<\omega\right\rangle "$ there is $\vec{x} \in M_{\alpha+1}$ s.t. $M_{\alpha+1} \models " \vec{x}$ is an enumeration of $\ln (x) "$
$\mathcal{H}(\theta) \models \vec{x}$ is an enumeration of $\operatorname{In}(x)$
\vec{x} is an enumeration of $\operatorname{In}(x)$
Since $\omega \subset M_{\alpha+1}$ we have $\vec{x}(n) \in M_{\alpha+1}$ for each $n \in \omega$

Multi-way cuts
 \section*{Elementary submodels}

$\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ is an increasing continuous chain of countable elementary submodels of $\langle H(\theta), \epsilon\rangle$ with $G, A \in M_{0}$.
$C_{0}=M_{0} \cap V$ and $C_{n}=\left(M_{n+1} \backslash M_{n}\right) \cap V$ for $0<n<\omega$ and $C_{\alpha}=\left(M_{\alpha+1} \backslash M_{\alpha}\right) \cap V$ for $\omega \leq \alpha<\omega_{1}$.
$\left(^{*}\right)$ if $x \in C_{\alpha}$ with $|\ln (x)| \leq \omega$ then $\operatorname{In}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
$\mathcal{H}(\theta) \models$ " $\ln (x)$ has an enumeration $\vec{x}=\left\langle x_{n}: n<\omega\right\rangle$ " $M_{\alpha+1} \models " \operatorname{In}(x)$ has an enumeration $\vec{x}=\left\langle x_{n}: n<\omega\right\rangle "$ there is $\vec{x} \in M_{\alpha+1}$ s.t. $M_{\alpha+1} \models " \vec{x}$ is an enumeration of $\ln (x) "$
$\mathcal{H}(\theta) \models \vec{x}$ is an enumeration of $\operatorname{In}(x)$
\vec{x} is an enumeration of $\operatorname{In}(x)$
Since $\omega \subset M_{\alpha+1}$ we have $\vec{x}(n) \in M_{\alpha+1}$ for each $n \in \omega$ So $\ln (x) \subset M_{\alpha+1}$.

Multi-way cuts
 \section*{Elementary submodels}

$\left\langle M_{\alpha}: \alpha<\omega_{1}\right\rangle$ is an increasing continuous chain of countable elementary submodels of $\langle H(\theta), \epsilon\rangle$ with $G, A \in M_{0}$.
$C_{0}=M_{0} \cap V$ and $C_{n}=\left(M_{n+1} \backslash M_{n}\right) \cap V$ for $0<n<\omega$ and $C_{\alpha}=\left(M_{\alpha+1} \backslash M_{\alpha}\right) \cap V$ for $\omega \leq \alpha<\omega_{1}$.
$\left(^{*}\right)$ if $x \in C_{\alpha}$ with $|\ln (x)| \leq \omega$ then $\operatorname{In}(x) \subset \cup\left\{C_{\xi}: \xi \leq \alpha\right\}$.
$\mathcal{H}(\theta) \models$ " $\ln (x)$ has an enumeration $\vec{x}=\left\langle x_{n}: n<\omega\right\rangle$ " $M_{\alpha+1} \models " \operatorname{In}(x)$ has an enumeration $\vec{x}=\left\langle x_{n}: n<\omega\right\rangle "$ there is $\vec{x} \in M_{\alpha+1}$ s.t. $M_{\alpha+1} \models " \vec{x}$ is an enumeration of $\ln (x) "$
$\mathcal{H}(\theta) \models \vec{x}$ is an enumeration of $\operatorname{In}(x)$
\vec{x} is an enumeration of $\operatorname{In}(x)$
Since $\omega \subset M_{\alpha+1}$ we have $\vec{x}(n) \in M_{\alpha+1}$ for each $n \in \omega$
So $\ln (x) \subset M_{\alpha+1}$.
$\cup\left\{C_{\xi}: \xi \leq \alpha\right\}=V \cap M_{\alpha+1}$.

Chromatic number of product of graphs

Hedetniemi's Conjecture
 If $\min \{\chi(G), \chi(H)\} \geq n \in \mathbb{N}$ then $\chi(G \times H) \geq n$.

Chromatic number of product of graphs

Hedetniemi's Conjecture
 If $\min \{\chi(G), \chi(H)\} \geq n \in \mathbb{N}$ then $\chi(G \times H) \geq n$.

Theorem (El-Sahar, Sauer)

If $\min \{\chi(G), \chi(H)\} \geq 4$ then $\chi(G \times H) \geq 4$.

Chromatic number of product of graphs

> Hedetniemi's Conjecture
> If $\min \{\chi(G), \chi(H)\} \geq n \in \mathbb{N}$ then $\chi(G \times H) \geq n$.

Theorem (El-Sahar, Sauer)
If $\min \{\chi(G), \chi(H)\} \geq 4$ then $\chi(G \times H) \geq 4$.

Theorem (Hajnal)

If $\chi(G), \chi(H) \geq \omega$ then $\chi(G \times H) \geq \omega$.

If $\chi(G) \geq \omega$ and $\chi(H) \geq n+1$ then $\chi(G \times H) \geq n+1$.

If $\chi(G) \geq \omega$ and $\chi(H) \geq n+1$ then $\chi(G \times H) \geq n+1$.

$f: V(G) \times V(H) \rightarrow n$.

If $\chi(G) \geq \omega$ and $\chi(H) \geq n+1$ then $\chi(G \times H) \geq n+1$.

$f: V(G) \times V(H) \rightarrow n . \quad \mathcal{I}=\left\{V^{\prime} \subset V(G): \chi\left(G\left[V^{\prime}\right]\right)<\omega\right\}$.

If $\chi(G) \geq \omega$ and $\chi(H) \geq n+1$ then $\chi(G \times H) \geq n+1$.

$f: V(G) \times V(H) \rightarrow n . \quad \mathcal{I}=\left\{V^{\prime} \subset V(G): \chi\left(G\left[V^{\prime}\right]\right)<\omega\right\}$.

There is an ultrafilter \mathcal{U} on $V(G)$ s.t. $\mathcal{U} \cap \mathcal{I}=\emptyset$.

If $\chi(G) \geq \omega$ and $\chi(H) \geq n+1$ then $\chi(G \times H) \geq n+1$.

$f: V(G) \times V(H) \rightarrow n . \quad \mathcal{I}=\left\{V^{\prime} \subset V(G): \chi\left(G\left[V^{\prime}\right]\right)<\omega\right\}$.
There is an ultrafilter \mathcal{U} on $V(G)$ s.t. $\mathcal{U} \cap \mathcal{I}=\emptyset$.
$(*) \forall U \in \mathcal{U}\left(\exists v_{0}, v_{1} \in U\right) v_{0} v_{1} \in E(G)$.
$V(H) \mid \xrightarrow[U]{Q_{V_{0}}}{ }^{\circ}{ }_{V_{1}}$
$V(G)$

If $\chi(G) \geq \omega$ and $\chi(H) \geq n+1$ then $\chi(G \times H) \geq n+1$.

$f: V(G) \times V(H) \rightarrow n . \quad \mathcal{I}=\left\{V^{\prime} \subset V(G): \chi\left(G\left[V^{\prime}\right]\right)<\omega\right\}$.
There is an ultrafilter \mathcal{U} on $V(G)$ s.t. $\mathcal{U} \cap \mathcal{I}=\emptyset$.
$(*) \forall U \in \mathcal{U}\left(\exists v_{0}, v_{1} \in U\right) v_{0} v_{1} \in E(G)$.
For $w \in V(H)$ and $i<n$ let $U(w, i)=\{v \in V(G): f(v, w)=i\}$

If $\chi(G) \geq \omega$ and $\chi(H) \geq n+1$ then $\chi(G \times H) \geq n+1$.

$f: V(G) \times V(H) \rightarrow n . \quad \mathcal{I}=\left\{V^{\prime} \subset V(G): \chi\left(G\left[V^{\prime}\right]\right)<\omega\right\}$.
There is an ultrafilter \mathcal{U} on $V(G)$ s.t. $\mathcal{U} \cap \mathcal{I}=\emptyset$.
$(*) \forall U \in \mathcal{U}\left(\exists v_{0}, v_{1} \in U\right) v_{0} v_{1} \in E(G)$.
For $w \in V(H)$ and $i<n$ let $U(w, i)=\{v \in V(G): f(v, w)=i\}$ $V(G)=U(w, 0) \cup \cdots \cup U(w, n-1)$.

If $\chi(G) \geq \omega$ and $\chi(H) \geq n+1$ then $\chi(G \times H) \geq n+1$.

$f: V(G) \times V(H) \rightarrow n . \quad \mathcal{I}=\left\{V^{\prime} \subset V(G): \chi\left(G\left[V^{\prime}\right]\right)<\omega\right\}$.
There is an ultrafilter \mathcal{U} on $V(G)$ s.t. $\mathcal{U} \cap \mathcal{I}=\emptyset$.
$(*) \forall U \in \mathcal{U}\left(\exists v_{0}, v_{1} \in U\right) v_{0} v_{1} \in E(G)$.
For $w \in V(H)$ and $i<n$ let $U(w, i)=\{v \in V(G): f(v, w)=i\}$
$V(G)=U(w, 0) \cup \cdots \cup U(w, n-1)$.
$\forall w \in V(H) \exists g(w)<n U(w, g(w)) \in \mathcal{U}$
$V(H)$
\square

If $\chi(G) \geq \omega$ and $\chi(H) \geq n+1$ then $\chi(G \times H) \geq n+1$.

$f: V(G) \times V(H) \rightarrow n . \quad \mathcal{I}=\left\{V^{\prime} \subset V(G): \chi\left(G\left[V^{\prime}\right]\right)<\omega\right\}$.
There is an ultrafilter \mathcal{U} on $V(G)$ s.t. $\mathcal{U} \cap \mathcal{I}=\emptyset$.
$(*) \forall U \in \mathcal{U}\left(\exists v_{0}, v_{1} \in U\right) v_{0} v_{1} \in E(G)$.
For $w \in V(H)$ and $i<n$ let $U(w, i)=\{v \in V(G): f(v, w)=i\}$
$V(G)=U(w, 0) \cup \cdots \cup U(w, n-1)$.
$\forall w \in V(H) \exists g(w)<n U(w, g(w)) \in \mathcal{U}$
$g: V(H) \rightarrow n$
$V(H)$
$V(G)$

If $\chi(G) \geq \omega$ and $\chi(H) \geq n+1$ then $\chi(G \times H) \geq n+1$.

$f: V(G) \times V(H) \rightarrow n . \quad \mathcal{I}=\left\{V^{\prime} \subset V(G): \chi\left(G\left[V^{\prime}\right]\right)<\omega\right\}$.
There is an ultrafilter \mathcal{U} on $V(G)$ s.t. $\mathcal{U} \cap \mathcal{I}=\emptyset$.
$(*) \forall U \in \mathcal{U}\left(\exists v_{0}, v_{1} \in U\right) v_{0} v_{1} \in E(G)$.
For $w \in V(H)$ and $i<n$ let $U(w, i)=\{v \in V(G): f(v, w)=i\}$
$V(G)=U(w, 0) \cup \cdots \cup U(w, n-1)$.
$\forall w \in V(H) \exists g(w)<n U(w, g(w)) \in \mathcal{U}$
$g: V(H) \rightarrow n \quad \exists w_{0} w_{1} \in E(H)$ s.t. $g\left(w_{0}\right)=g\left(w_{1}\right)$.

$V(G)$

If $\chi(G) \geq \omega$ and $\chi(H) \geq n+1$ then $\chi(G \times H) \geq n+1$.

$f: V(G) \times V(H) \rightarrow n . \quad \mathcal{I}=\left\{V^{\prime} \subset V(G): \chi\left(G\left[V^{\prime}\right]\right)<\omega\right\}$.
There is an ultrafilter \mathcal{U} on $V(G)$ s.t. $\mathcal{U} \cap \mathcal{I}=\emptyset$.
$(*) \forall U \in \mathcal{U}\left(\exists v_{0}, v_{1} \in U\right) v_{0} v_{1} \in E(G)$.
For $w \in V(H)$ and $i<n$ let $U(w, i)=\{v \in V(G): f(v, w)=i\}$
$V(G)=U(w, 0) \cup \cdots \cup U(w, n-1)$.
$\forall w \in V(H) \exists g(w)<n U(w, g(w)) \in \mathcal{U}$
$g: V(H) \rightarrow n \exists w_{0} w_{1} \in E(H)$ s.t. $g\left(w_{0}\right)=g\left(w_{1}\right)$.
$U=U\left(w_{0}, g\left(w_{0}\right)\right) \cap U\left(w_{1}, g\left(w_{1}\right)\right) \in \mathcal{U}$

If $\chi(G) \geq \omega$ and $\chi(H) \geq n+1$ then $\chi(G \times H) \geq n+1$.

$f: V(G) \times V(H) \rightarrow n . \quad \mathcal{I}=\left\{V^{\prime} \subset V(G): \chi\left(G\left[V^{\prime}\right]\right)<\omega\right\}$.
There is an ultrafilter \mathcal{U} on $V(G)$ s.t. $\mathcal{U} \cap \mathcal{I}=\emptyset$.
$(*) \forall U \in \mathcal{U}\left(\exists v_{0}, v_{1} \in U\right) v_{0} v_{1} \in E(G)$.
For $w \in V(H)$ and $i<n$ let $U(w, i)=\{v \in V(G): f(v, w)=i\}$
$V(G)=U(w, 0) \cup \cdots \cup U(w, n-1)$.
$\forall w \in V(H) \exists g(w)<n U(w, g(w)) \in \mathcal{U}$
$g: V(H) \rightarrow n \exists w_{0} w_{1} \in E(H)$ s.t. $g\left(w_{0}\right)=g\left(w_{1}\right)$.
$U=U\left(w_{0}, g\left(w_{0}\right)\right) \cap U\left(w_{1}, g\left(w_{1}\right)\right) \in \mathcal{U} \quad \exists v_{0}, v_{1} \in U$ s.t. $v_{0} v_{1} \in E(G)$.

If $\chi(G) \geq \omega$ and $\chi(H) \geq n+1$ then $\chi(G \times H) \geq n+1$.

$f: V(G) \times V(H) \rightarrow n . \quad \mathcal{I}=\left\{V^{\prime} \subset V(G): \chi\left(G\left[V^{\prime}\right]\right)<\omega\right\}$.
There is an ultrafilter \mathcal{U} on $V(G)$ s.t. $\mathcal{U} \cap \mathcal{I}=\emptyset$.
$(*) \forall U \in \mathcal{U}\left(\exists v_{0}, v_{1} \in U\right) v_{0} v_{1} \in E(G)$.
For $w \in V(H)$ and $i<n$ let $U(w, i)=\{v \in V(G): f(v, w)=i\}$
$V(G)=U(w, 0) \cup \cdots \cup U(w, n-1)$.
$\forall w \in V(H) \exists g(w)<n U(w, g(w)) \in \mathcal{U}$
$g: V(H) \rightarrow n \exists w_{0} w_{1} \in E(H)$ s.t. $g\left(w_{0}\right)=g\left(w_{1}\right)$.
$U=U\left(w_{0}, g\left(w_{0}\right)\right) \cap U\left(w_{1}, g\left(w_{1}\right)\right) \in \mathcal{U} \quad \exists v_{0}, v_{1} \in U$ s.t. $v_{0} v_{1} \in E(G)$.
$\left\langle v_{0}, w_{0}\right\rangle\left\langle v_{1}, w_{1}\right\rangle \in E(G \times H)$.

If $\chi(G) \geq \omega$ and $\chi(H) \geq n+1$ then $\chi(G \times H) \geq n+1$.

$f: V(G) \times V(H) \rightarrow n . \quad \mathcal{I}=\left\{V^{\prime} \subset V(G): \chi\left(G\left[V^{\prime}\right]\right)<\omega\right\}$.
There is an ultrafilter \mathcal{U} on $V(G)$ s.t. $\mathcal{U} \cap \mathcal{I}=\emptyset$.
$(*) \forall U \in \mathcal{U}\left(\exists v_{0}, v_{1} \in U\right) v_{0} v_{1} \in E(G)$.
For $w \in V(H)$ and $i<n$ let $U(w, i)=\{v \in V(G): f(v, w)=i\}$
$V(G)=U(w, 0) \cup \cdots \cup U(w, n-1)$.
$\forall w \in V(H) \exists g(w)<n U(w, g(w)) \in \mathcal{U}$
$g: V(H) \rightarrow n \exists w_{0} w_{1} \in E(H)$ s.t. $g\left(w_{0}\right)=g\left(w_{1}\right)$.
$U=U\left(w_{0}, g\left(w_{0}\right)\right) \cap U\left(w_{1}, g\left(w_{1}\right)\right) \in \mathcal{U} \quad \exists v_{0}, v_{1} \in U$ s.t. $v_{0} v_{1} \in E(G)$.
$\left\langle v_{0}, w_{0}\right\rangle\left\langle v_{1}, w_{1}\right\rangle \in E(G \times H) . \quad f\left(\left\langle v_{0}, w_{0}\right\rangle\right)=g\left(w_{0}\right)=g\left(w_{1}\right)=f\left(\left\langle v_{1}, w_{1}\right\rangle\right)$.

If $\chi(G) \geq \omega$ and $\chi(H) \geq n+1$ then $\chi(G \times H) \geq n+1$.

$f: V(G) \times V(H) \rightarrow n . \quad \mathcal{I}=\left\{V^{\prime} \subset V(G): \chi\left(G\left[V^{\prime}\right]\right)<\omega\right\}$.
There is an ultrafilter \mathcal{U} on $V(G)$ s.t. $\mathcal{U} \cap \mathcal{I}=\emptyset$.
$(*) \forall U \in \mathcal{U}\left(\exists v_{0}, v_{1} \in U\right) v_{0} v_{1} \in E(G)$.
For $w \in V(H)$ and $i<n$ let $U(w, i)=\{v \in V(G): f(v, w)=i\}$
$V(G)=U(w, 0) \cup \cdots \cup U(w, n-1)$.
$\forall w \in V(H) \exists g(w)<n U(w, g(w)) \in \mathcal{U}$
$g: V(H) \rightarrow n \exists w_{0} w_{1} \in E(H)$ s.t. $g\left(w_{0}\right)=g\left(w_{1}\right)$.
$U=U\left(w_{0}, g\left(w_{0}\right)\right) \cap U\left(w_{1}, g\left(w_{1}\right)\right) \in \mathcal{U} \quad \exists v_{0}, v_{1} \in U$ s.t. $v_{0} v_{1} \in E(G)$.
$\left\langle v_{0}, w_{0}\right\rangle\left\langle v_{1}, w_{1}\right\rangle \in E(G \times H) . \quad f\left(\left\langle v_{0}, w_{0}\right\rangle\right)=g\left(w_{0}\right)=g\left(w_{1}\right)=f\left(\left\langle v_{1}, w_{1}\right\rangle\right)$.

Chromatic number of product of graphs

Theorem (Hajnal)

There are two ω_{1}-chromatic graphs G and H on ω_{1} such that $\chi(G \times H)=\omega$.

Chromatic number of product of graphs

Theorem (Hajnal)

There are two ω_{1}-chromatic graphs G and H on ω_{1} such that $\chi(G \times H)=\omega$.

Theorem (-)

It is consistent with GCH that there are two ω_{2}-chromatic graphs G and H on ω_{2} s. t. $\chi(G \times H)=\omega$.

Chromatic number of product of graphs

Theorem (Hajnal)

There are two ω_{1}-chromatic graphs G and H on ω_{1} such that $\chi(G \times H)=\omega$.

Theorem (-)

It is consistent with GCH that there are two ω_{2}-chromatic graphs G and H on ω_{2} s. t. $\chi(G \times H)=\omega$.

Problem

Is it consistent with GCH that there are two ω_{3}-chromatic graphs G and H on ω_{3} s. $t . \chi(G \times H)=\omega$?

Combinatorial principles

Consistency proofs without tears

Consistency proofs without tears

Consistency proofs are unavoidable

Combinatorial principles

Consistency proofs without tears

Consistency proofs are unavoidable

- independence proofs are rather sophisticated

Combinatorial principles

 Consistency proofs without tears
Consistency proofs are unavoidable

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians

Combinatorial principles

Consistency proofs without tears

Consistency proofs are unavoidable

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians

Solution:

Combinatorial principles

Consistency proofs without tears

Consistency proofs are unavoidable

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians

Solution: isolate a relatively small number of principles, i.e. independent statements

Combinatorial principles

Consistency proofs without tears

Consistency proofs are unavoidable

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians

Solution: isolate a relatively small number of principles, i.e. independent statements

- that are simple to formulate

Combinatorial principles

Consistency proofs without tears

Consistency proofs are unavoidable

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians

Solution: isolate a relatively small number of principles, i.e. independent statements

- that are simple to formulate
- that are useful in the sense that they have many interesting consequences.

Combinatorial principles

 Consistency proofs without tears
Consistency proofs are unavoidable

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians

Solution: isolate a relatively small number of principles, i.e. independent statements

- that are simple to formulate
- that are useful in the sense that they have many interesting consequences.
combinatorial principles

Combinatorial principles

 Consistency proofs without tears
Consistency proofs are unavoidable

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians

Solution: isolate a relatively small number of principles, i.e. independent statements

- that are simple to formulate
- that are useful in the sense that they have many interesting consequences.
combinatorial principles
Continuum Hypothesis,

Combinatorial principles

 Consistency proofs without tears
Consistency proofs are unavoidable

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians

Solution: isolate a relatively small number of principles, i.e. independent statements

- that are simple to formulate
- that are useful in the sense that they have many interesting consequences.
combinatorial principles
Continuum Hypothesis, Martin's Axiom

Combinatorial principles

 Consistency proofs without tears
Consistency proofs are unavoidable

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians

Solution: isolate a relatively small number of principles, i.e. independent statements

- that are simple to formulate
- that are useful in the sense that they have many interesting consequences.
combinatorial principles
Continuum Hypothesis, Martin's Axiom Other models?

Combinatorial principles

 Consistency proofs without tears
Consistency proofs are unavoidable

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians

Solution: isolate a relatively small number of principles, i.e. independent statements

- that are simple to formulate
- that are useful in the sense that they have many interesting consequences.
combinatorial principles
Continuum Hypothesis, Martin's Axiom
Other models?
principles which describe the Cohen Model

Covers of \mathbb{R}^{n}

Covers of \mathbb{R}^{n}

Theorem (Aharoni, R.; Hajnal, A.; Milner, E. C.)

Any κ-fold cover of \mathbb{R} by intervals can be partitioned into κ subcovers.

Covers of \mathbb{R}^{n}

Theorem (Aharoni, R.; Hajnal, A.; Milner, E. C.)
 Any κ-fold cover of \mathbb{R} by intervals can be partitioned into κ subcovers.

Theorem (M. Elekes, T. Matrai, -)

Covers of \mathbb{R}^{n}

Theorem (Aharoni, R.; Hajnal, A.; Milner, E. C.)

Any κ-fold cover of \mathbb{R} by intervals can be partitioned into κ subcovers.
Theorem (M. Elekes, T. Matrai, -)

- any ω_{1}-fold cover of \mathbb{R}^{n} by polytopes can be partitioned into ω_{1} subcovers.

Covers of \mathbb{R}^{n}

Theorem (Aharoni, R.; Hajnal, A.; Milner, E. C.)

Any κ-fold cover of \mathbb{R} by intervals can be partitioned into κ subcovers.

Theorem (M. Elekes, T. Matrai, -)

- any ω_{1}-fold cover of \mathbb{R}^{n} by polytopes can be partitioned into ω_{1} subcovers.
- R^{2} has an ω-fold cover by rectangles which can not be partitioned into two subcovers .

Covers of \mathbb{R}^{n}

Theorem (Aharoni, R.; Hajnal, A.; Milner, E. C.)

Any κ-fold cover of \mathbb{R} by intervals can be partitioned into κ subcovers.

Theorem (M. Elekes, T. Matrai, -)

- any ω_{1}-fold cover of \mathbb{R}^{n} by polytopes can be partitioned into ω_{1} subcovers.
- R^{2} has an ω-fold cover by rectangles which can not be partitioned into two subcovers .
- $\mathrm{CH} \Longrightarrow$ any ω_{1}-fold cover of \mathbb{R}^{n} by closed sets can be partitioned into ω_{1} subcovers.

Covers of \mathbb{R}^{n}

Theorem (Aharoni, R.; Hajnal, A.; Milner, E. C.)

Any κ-fold cover of \mathbb{R} by intervals can be partitioned into κ subcovers.

Theorem (M. Elekes, T. Matrai, -)

- any ω_{1}-fold cover of \mathbb{R}^{n} by polytopes can be partitioned into ω_{1} subcovers.
- R^{2} has an ω-fold cover by rectangles which can not be partitioned into two subcovers .
- $\mathrm{CH} \Longrightarrow$ any ω_{1}-fold cover of \mathbb{R}^{n} by closed sets can be partitioned into ω_{1} subcovers.
- If $M A_{\omega_{1}}$ then there is an ω_{1}-fold cover of \mathbb{R}^{n} by closed sets which can not be partitioned into ω_{1} subcovers.

Covers of \mathbb{R}^{n}

$(*)$: any ω_{1}-fold cover of \mathbb{R}^{n} by closed sets can be partitioned into ω_{1} subcovers.

Covers of \mathbb{R}^{n}

$(*)$: any ω_{1}-fold cover of \mathbb{R}^{n} by closed sets can be partitioned into ω_{1} subcovers.
(1) $\mathrm{CH} \Longrightarrow(*)$. (2) If $M A_{\omega_{1}}$ then $\neg(*)$.

Covers of \mathbb{R}^{n}

$(*)$: any ω_{1}-fold cover of \mathbb{R}^{n} by closed sets can be partitioned into ω_{1} subcovers.
(1) $\mathrm{CH} \Longrightarrow(*)$. (2) If $M A_{\omega_{1}}$ then $\neg(*)$.

Definition

A poset P has the weak Freese-Nation property

Covers of \mathbb{R}^{n}

$(*)$: any ω_{1}-fold cover of \mathbb{R}^{n} by closed sets can be partitioned into ω_{1} subcovers.
(1) $\mathrm{CH} \Longrightarrow(*)$. (2) If $M A_{\omega_{1}}$ then $\neg(*)$.

Definition

A poset P has the weak Freese-Nation property iff $\exists f: P \rightarrow[P]^{\leq \omega}$

Covers of \mathbb{R}^{n}

$(*)$: any ω_{1}-fold cover of \mathbb{R}^{n} by closed sets can be partitioned into ω_{1} subcovers.
(1) $\mathrm{CH} \Longrightarrow(*)$. (2) If $M A_{\omega_{1}}$ then $\neg(*)$.

Definition

A poset P has the weak Freese-Nation property iff $\exists f: P \rightarrow[P]^{\leq \omega}$ s.t. $\forall\{p, q\} \in[P]^{2}, p \leq_{p} q, \exists r \in f(p) \cap f(q)$ with $p \leq_{p} r \leq_{p} q$.

Covers of \mathbb{R}^{n}

$(*)$: any ω_{1}-fold cover of \mathbb{R}^{n} by closed sets can be partitioned into ω_{1} subcovers.
(1) $\mathrm{CH} \Longrightarrow(*)$. (2) If $M A_{\omega_{1}}$ then $\neg(*)$.

Definition

A poset P has the weak Freese-Nation property iff $\exists f: P \rightarrow[P]^{\leq \omega}$ s.t. $\forall\{p, q\} \in[P]^{2}, p \leq_{p} q, \exists r \in f(p) \cap f(q)$ with $p \leq_{p} r \leq_{p} q$.

Theorem (Fuchino, -)

In the Cohen modell $\langle P(\omega), \subset\rangle$ has the weak Freese-Nation property

Covers of \mathbb{R}^{n}

$(*)$: any ω_{1}-fold cover of \mathbb{R}^{n} by closed sets can be partitioned into ω_{1} subcovers.
(1) $\mathrm{CH} \Longrightarrow(*)$. (2) If $M A_{\omega_{1}}$ then $\neg(*)$.

Definition

A poset P has the weak Freese-Nation property iff $\exists f: P \rightarrow[P]^{\leq \omega}$ s.t. $\forall\{p, q\} \in[P]^{2}, p \leq_{p} q, \exists r \in f(p) \cap f(q)$ with $p \leq_{p} r \leq_{p} q$.

Theorem (Fuchino, -)

In the Cohen modell $\langle P(\omega), \subset\rangle$ has the weak Freese-Nation property

Covers of \mathbb{R}^{n}

(*): any ω_{1}-fold cover of \mathbb{R}^{n} by closed sets can be partitioned into ω_{1} subcovers.
(1) $\mathrm{CH} \Longrightarrow(*)$. (2) If $M A_{\omega_{1}}$ then $\neg(*)$.

Definition

A poset P has the weak Freese-Nation property iff $\exists f: P \rightarrow[P]^{\leq \omega}$ s.t. $\forall\{p, q\} \in[P]^{2}, p \leq_{p} q, \exists r \in f(p) \cap f(q)$ with $p \leq_{p} r \leq_{p} q$.

Theorem (Fuchino, -)

In the Cohen modell $\langle P(\omega), \subset\rangle$ has the weak Freese-Nation property
Theorem (M. Elekes, T. Matrai, -) If $\langle P(\omega), \subset\rangle$ has the weak Freese-Nation property then $(*)$ holds.

Covers of \mathbb{R}^{n}

(*): any ω_{1}-fold cover of \mathbb{R}^{n} by closed sets can be partitioned into ω_{1} subcovers.
(1) $\mathrm{CH} \Longrightarrow(*)$. (2) If $M A_{\omega_{1}}$ then $\neg(*)$.

Definition

A poset P has the weak Freese-Nation property iff $\exists f: P \rightarrow[P]^{\leq \omega}$ s.t. $\forall\{p, q\} \in[P]^{2}, p \leq_{p} q, \exists r \in f(p) \cap f(q)$ with $p \leq_{p} r \leq_{p} q$.

Theorem (Fuchino, -)

In the Cohen modell $\langle P(\omega), \subset\rangle$ has the weak Freese-Nation property
Theorem (M. Elekes, T. Matrai, -) If $\langle P(\omega), \subset\rangle$ has the weak Freese-Nation property then $(*)$ holds.

Covers of \mathbb{R}^{n}

(*): any ω_{1}-fold cover of \mathbb{R}^{n} by closed sets can be partitioned into ω_{1} subcovers.
(1) $\mathrm{CH} \Longrightarrow(*)$.
(2) If $M A_{\omega_{1}}$ then $\neg(*)$.

Definition

A poset P has the weak Freese-Nation property iff $\exists f: P \rightarrow[P]^{\leq \omega}$ s.t. $\forall\{p, q\} \in[P]^{2}, p \leq_{p} q, \exists r \in f(p) \cap f(q)$ with $p \leq_{p} r \leq_{p} q$.

Theorem (Fuchino, -)

In the Cohen modell $\langle P(\omega), \subset\rangle$ has the weak Freese-Nation property
Theorem (M. Elekes, T. Matrai, -)
If $\langle P(\omega), \subset\rangle$ has the weak Freese-Nation property then $(*)$ holds. So $(*)+\neg C H$ is consistent.

When a principle fails

When a principle fails

T: statement

When a principle fails

T: statement
 Con(T)?

When a principle fails

T: statement
 Con(T)?

Plan: Pick a principle P and prove that P implies T.

When a principle fails

T: statement
 Con(T)?

Plan: Pick a principle P and prove that P implies T. can't prove that P implies T

When a principle fails

T: statement
 Con(T)?

Plan: Pick a principle P and prove that P implies T. can't prove that P implies T
Problem: Prove that P does not imply T

Smooth graphs

K.A.Kierstead and P.J.Nyikos: Are there infinite graphs which are very homogeneous

Smooth graphs

K.A.Kierstead and P.J.Nyikos: Are there infinite graphs which are very homogeneous in a non-trivial way?

Smooth graphs

K.A.Kierstead and P.J.Nyikos: Are there infinite graphs which are very homogeneous in a non-trivial way? smooth=homogeneous

Smooth graphs

K.A.Kierstead and P.J.Nyikos: Are there infinite graphs which are very homogeneous in a non-trivial way?
smooth=homogeneous
$G=\left\langle\omega_{1}, E\right\rangle$

Smooth graphs

K.A.Kierstead and P.J.Nyikos: Are there infinite graphs which are very homogeneous in a non-trivial way?
smooth=homogeneous
$G=\left\langle\omega_{1}, E\right\rangle$
How to measure homogeneity of a graph G ?

Smooth graphs

K.A.Kierstead and P.J.Nyikos: Are there infinite graphs which are very homogeneous in a non-trivial way?
smooth=homogeneous
$G=\left\langle\omega_{1}, E\right\rangle$
How to measure homogeneity of a graph G ?
$I(G)$: isomorphism classes of induced uncountable subgraphs of G.

Smooth graphs

K.A.Kierstead and P.J.Nyikos: Are there infinite graphs which are very homogeneous in a non-trivial way?
smooth=homogeneous
$G=\left\langle\omega_{1}, E\right\rangle$
How to measure homogeneity of a graph G ?
$I(G)$: isomorphism classes of induced uncountable subgraphs of G.
(1) $|\mathrm{I}(G)|$ is small,

Smooth graphs

K.A.Kierstead and P.J.Nyikos: Are there infinite graphs which are very homogeneous in a non-trivial way?
smooth=homogeneous
$G=\left\langle\omega_{1}, E\right\rangle$
How to measure homogeneity of a graph G ?
$I(G)$: isomorphism classes of induced uncountable subgraphs of G.
(1) $|\mathrm{I}(G)|$ is small,
(2) $G \cong G[A]$ for many $A \subset \omega_{1}$.

Smooth graphs

G is smooth iff $|I(G)|=1$

Smooth graphs

G is smooth iff $|I(G)|=1$

Fact

A smooth graph is either complete or empty.

Smooth graphs

G is smooth iff $|I(G)|=1$
Fact
A smooth graph is either complete or empty.

Proof.

Smooth graphs

G is smooth iff $|l(G)|=1$

Fact

A smooth graph is either complete or empty.

Proof.

- $x \in \omega_{1}$, w.l.o.g $|E(x)|=\omega_{1}$.

Smooth graphs

G is smooth iff $|l(G)|=1$

Fact

A smooth graph is either complete or empty.

Proof.

- $x \in \omega_{1}$, w.l.o.g $|E(x)|=\omega_{1}$.
- $G \cong G[\{x\} \cup E(x)]$

Smooth graphs

G is smooth iff $|\mathrm{I}(G)|=1$

Fact

A smooth graph is either complete or empty.

Proof.

- $x \in \omega_{1}$, w.l.o.g $|E(x)|=\omega_{1}$.
- $G \cong G[\{x\} \cup E(x)]$
- $\exists \boldsymbol{v} \in \omega_{1} \omega_{1}=\{\boldsymbol{v}\} \cup E(v)$

Smooth graphs

G is smooth iff $|\mathrm{I}(G)|=1$

Fact

A smooth graph is either complete or empty.

Proof.

- $x \in \omega_{1}$, w.l.o.g $|E(x)|=\omega_{1}$.
- $G \cong G[\{x\} \cup E(x)]$
- $\exists v \in \omega_{1} \omega_{1}=\{v\} \cup E(v)$
- $\forall W \in[V]^{\omega_{1}} \exists w \in W W \subset\{w\} \cup E(w)$

Smooth graphs

G is smooth iff $|\mathrm{I}(G)|=1$

Fact

A smooth graph is either complete or empty.

Proof.

- $x \in \omega_{1}$, w.l.o.g $|E(x)|=\omega_{1}$.
- $G \cong G[\{x\} \cup E(x)]$
- $\exists v \in \omega_{1} \omega_{1}=\{v\} \cup E(v)$
- $\forall W \in[V]^{\omega_{1}} \exists w \in W W \subset\{w\} \cup E(w)$
- G is complete

Smooth graphs

G is non-trivial iff there are no uncountable cliques or independent subsets in G.

Smooth graphs

G is non-trivial iff there are no uncountable cliques or independent subsets in G.
Theorem (K.A.Kierstead and P.J.Nyikos)
If G is a non-trivial graph on ω_{1} then $|\mathrm{I}(G)| \geq \omega$.

Smooth graphs

G is non-trivial iff there are no uncountable cliques or independent subsets in G.
Theorem (K.A.Kierstead and P.J.Nyikos)
If G is a non-trivial graph on ω_{1} then $|I(G)| \geq \omega$.
Theorem (Hajnal, Nagy, -)
(1) $|I(G)| \geq 2^{\omega}$ for each non-trivial graph G on ω_{1}.

Smooth graphs

G is non-trivial iff there are no uncountable cliques or independent subsets in G.

Theorem (K.A.Kierstead and P.J.Nyikos)

If G is a non-trivial graph on ω_{1} then $|I(G)| \geq \omega$.

Theorem (Hajnal, Nagy, -)

(1) $|I(G)| \geq 2^{\omega}$ for each non-trivial graph G on ω_{1}.
(2) Under \diamond^{+}there exists a non-trivial graph G on ω_{1} with $|\mathrm{I}(G)|=\omega_{1}$.

Smooth graphs

G is non-trivial iff there are no uncountable cliques or independent subsets in G.
Theorem (K.A.Kierstead and P.J.Nyikos)
If G is a non-trivial graph on ω_{1} then $|I(G)| \geq \omega$.

Theorem (Hajnal, Nagy, -)

(1) $|I(G)| \geq 2^{\omega}$ for each non-trivial graph G on ω_{1}.
(2) Under \diamond^{+}there exists a non-trivial graph G on ω_{1} with $|I(G)|=\omega_{1}$.

Theorem (Shelah, -)

Assume that GCH holds and every Aronszajn-tree is special. Then $|(G)|=2^{\omega_{1}}$ for each non-trivial graph $G=\left\langle\omega_{1}, E\right\rangle$.

Smooth graphs

G is almost smooth iff $G \cong G\left[\omega_{1} \backslash A\right]$ for each $A \in\left[\omega_{1}\right]^{\omega}$.

Smooth graphs

G is almost smooth iff $G \cong G\left[\omega_{1} \backslash A\right]$ for each $A \in\left[\omega_{1}\right]^{\omega}$.
Theorem (Hajnal, Nagy, -)
If CH holds then there is a non-trivial, almost smooth graph on ω_{1}.

Smooth graphs

G is almost smooth iff $G \cong G\left[\omega_{1} \backslash A\right]$ for each $A \in\left[\omega_{1}\right]^{\omega}$.
Theorem (Hajnal, Nagy, -)
If CH holds then there is a non-trivial, almost smooth graph on ω_{1}.

Problem

Is there a non-trivial, almost smooth graph on ω_{1} ?

Smooth graphs

G is almost smooth iff $G \cong G\left[\omega_{1} \backslash A\right]$ for each $A \in\left[\omega_{1}\right]^{\omega}$.
Theorem (Hajnal, Nagy, -)
If CH holds then there is a non-trivial, almost smooth graph on ω_{1}.

Problem

Is there a non-trivial, almost smooth graph on ω_{1} ?

Smooth graphs

G is almost smooth iff $G \cong G\left[\omega_{1} \backslash A\right]$ for each $A \in\left[\omega_{1}\right]^{\omega}$.
Theorem (Hajnal, Nagy, -)
If CH holds then there is a non-trivial, almost smooth graph on ω_{1}.

Problem

Is there a non-trivial, almost smooth graph on ω_{1} ?
Does Martin's Axiom imply that there is no non-trivial, almost smooth graph on ω_{1} ?

Smooth graphs

Theorem (-)

It is consistent that $M A_{\aleph_{1}}$ holds and there is a non-trivial, almost smooth graph on ω_{1}.

A blackbox theorem

A blackbox theorem

$$
\mathrm{Fn}_{m}\left(\omega_{1}, K\right)=\left\{s: s \text { is a function, } \operatorname{dom}(s) \in\left[\omega_{1}\right]^{m}, \operatorname{ran}(s) \subset K\right\}
$$

A blackbox theorem

$\mathrm{Fn}_{m}\left(\omega_{1}, K\right)=\left\{s: s\right.$ is a function, $\left.\operatorname{dom}(s) \in\left[\omega_{1}\right]^{m}, \operatorname{ran}(s) \subset K\right\}$
$\left\langle s_{\alpha}: \alpha<\omega_{1}\right\rangle \subset \mathrm{Fn}_{m}\left(\omega_{1}, K\right)$ is dom-disjoint iff $\operatorname{dom}\left(s_{\alpha}\right) \cap \operatorname{dom}\left(s_{\beta}\right)=\emptyset$

A blackbox theorem

Definition

Let G be a graph on $\omega_{1} \times K, m \in \omega$.

A blackbox theorem

Definition

Let G be a graph on $\omega_{1} \times K, m \in \omega$. We say that G is m-solid if given any dom-disjoint sequence $\left\langle s_{\alpha}: \alpha<\omega_{1}\right\rangle \subset \mathrm{Fn}_{m}\left(\omega_{1}, K\right)$ there are
G is called strongly solid iff it is m-solid for each $m \in \omega$.

A blackbox theorem

Definition

Let G be a graph on $\omega_{1} \times K, m \in \omega$. We say that G is m-solid if given any dom-disjoint sequence $\left\langle s_{\alpha}: \alpha<\omega_{1}\right\rangle \subset \mathrm{Fn}_{m}\left(\omega_{1}, K\right)$ there are $\alpha<\beta<\omega_{1}$ such that

$$
\left[s_{\alpha}, s_{\beta}\right] \subset G
$$

G is called strongly solid iff it is m-solid for each $m \in \omega$.

A blackbox theorem

Definition

Let G be a graph on $\omega_{1} \times K, m \in \omega$. We say that G is m-solid if given any dom-disjoint sequence $\left\langle s_{\alpha}: \alpha<\omega_{1}\right\rangle \subset \mathrm{Fn}_{m}\left(\omega_{1}, K\right)$ there are $\alpha<\beta<\omega_{1}$ such that

$$
\left[s_{\alpha}, s_{\beta}\right] \subset G
$$

G is called strongly solid iff it is m-solid for each $m \in \omega$.

A blackbox theorem

Let G be a graph on $\omega_{1} \times K, m \in \omega$. We say that G is m-solid if given any dom-disjoint sequence $\left\langle s_{\alpha}: \alpha<\omega_{1}\right\rangle \subset \operatorname{Fn}_{m}\left(\omega_{1}, K\right)$ there are $\alpha<\beta<\omega_{1}$ such that

$$
\left[s_{\alpha}, s_{\beta}\right] \subset G .
$$

G is called strongly solid iff it is m-solid for each $m \in \omega$.

Theorem (-)

Assume $2^{\omega_{1}}=\omega_{2}$. If G is a strongly solid graph on $\omega_{1} \times K$, then for each $m \in \omega$ in some (c.c.c. generic) extension W of V we have $W \models$ " G is m-solid $+\mathrm{MA}_{\omega_{1}}$ holds"

A blackbox theorem

Let G be a graph on $\omega_{1} \times K, m \in \omega$. We say that G is m-solid if given any dom-disjoint sequence $\left\langle s_{\alpha}: \alpha<\omega_{1}\right\rangle \subset \operatorname{Fn}_{m}\left(\omega_{1}, K\right)$ there are $\alpha<\beta<\omega_{1}$ such that

$$
\left[s_{\alpha}, s_{\beta}\right] \subset G .
$$

G is called strongly solid iff it is m-solid for each $m \in \omega$.

Theorem (-)

Assume $2^{\omega_{1}}=\omega_{2}$. If G is a strongly solid graph on $\omega_{1} \times K$, then for each $m \in \omega$ in some (c.c.c. generic) extension W of V we have

$$
W \models \text { " } G \text { is } m \text {-solid }+\mathrm{MA}_{\omega_{1}} \text { holds" }
$$

Smooth graphs

Theorem (-)

It is consistent that $M A_{\aleph_{1}}$ holds and there is a non-trivial, almost smooth graph on ω_{1}.

Smooth graphs

Theorem (-)

It is consistent that $M A_{\aleph_{1}}$ holds and there is a non-trivial, almost smooth graph on ω_{1}.

Proof

- Coding: Given a graph C on ω_{1} define a suitable K and a graph $G(C)$ on $\omega_{1} \times K \mathrm{~s} . \mathrm{t}$.
(a) If $G(C)$ is 1 -solid then C is non-trivial
(b) If $G(C)$ is 1 -solid and $M A_{\aleph_{1}}$ holds then C is almost smooth. (c) $G(C)$ is strongly solid provided C has some property (P)
- Using GCH construct a graph on ω_{1} with property (P)
- Black Box Theorem:

- Theorem:
$W \models$ " C is non-trivial, almost smooth and MA holds."

Smooth graphs

Theorem (-)

It is consistent that $M A_{\aleph_{1}}$ holds and there is a non-trivial, almost smooth graph on ω_{1}.

Proof

- Coding: Given a graph C on ω_{1} define a suitable K and a graph $G(C)$ on $\omega_{1} \times K \mathrm{~s} . \mathrm{t}$.
(a) If $G(C)$ is 1 -solid then C is non-trivial
(b) If $G(C)$ is 1 -solid and $M A_{x}$, holds then C is almost smooth.
(c) $G(C)$ is strongly solid provided C has some property (P)
- Using GCH construct a graph on ω_{1} with property (P)
- Black Box Theorem:

- Theorem:
$W \models$ " C is non-trivial, almost smooth and MA w_{1} holds."

Smooth graphs

Theorem (-)

It is consistent that $M A_{\aleph_{1}}$ holds and there is a non-trivial, almost smooth graph on ω_{1}.

Proof

- Coding: Given a graph C on ω_{1} define a suitable K and a graph $G(C)$ on $\omega_{1} \times K$ s. t.
(a) If $G(C)$ is 1 -solid then C is non-trivial
(b) If $G(C)$ is 1 -solid and $M A_{\aleph_{1}}$ holds then C is almost smooth.
(c) $G(C)$ is strongly solid provided C has some property (P)
- Using GCH construct a graph on ω_{1} with property (P)
- Black Box Theorem:

- Theorem:
$W \models$ " C is non-trivial, almost smooth and $M_{\omega_{1}}$ holds."

Smooth graphs

Theorem (-)

It is consistent that $M A_{\aleph_{1}}$ holds and there is a non-trivial, almost smooth graph on ω_{1}.

Proof

- Coding: Given a graph C on ω_{1} define a suitable K and a graph $G(C)$ on $\omega_{1} \times K \mathrm{~s} . \mathrm{t}$.
(a) If $G(C)$ is 1 -solid then C is non-trivial
(b) If $G(C)$ is 1 -solid and $M A_{\aleph_{1}}$ holds then C is almost smooth.
(c) $G(C)$ is strongly solid provided C has some property (P)
- Using GCH construct a graph on ω_{1} with property (P)
- Black Box Theorem:

- Theorem:
$W \models$ " C is non-trivial, almost smooth and $\mathrm{MA}_{\omega_{1}}$ holds."

Smooth graphs

Theorem (-)

It is consistent that $M A_{\aleph_{1}}$ holds and there is a non-trivial, almost smooth graph on ω_{1}.

Proof

- Coding: Given a graph C on ω_{1} define a suitable K and a graph $G(C)$ on $\omega_{1} \times K \mathrm{~s} . \mathrm{t}$.
(a) If $G(C)$ is 1 -solid then C is non-trivial
(b) If $G(C)$ is 1 -solid and $M A_{\aleph_{1}}$ holds then C is almost smooth.
(c) $G(C)$ is strongly solid provided C has some property (P)
- Using GCH construct a graph on ω_{1} with property (P)
- Black Box Theorem:

- Theorem:
$W \models$ " C is non-trivial, almost smooth and $\mathrm{MA}_{\omega_{1}}$ holds."

Smooth graphs

Theorem (-)

It is consistent that $M A_{\aleph_{1}}$ holds and there is a non-trivial, almost smooth graph on ω_{1}.

Proof

- Coding: Given a graph C on ω_{1} define a suitable K and a graph $G(C)$ on $\omega_{1} \times K$ s. t.
(a) If $G(C)$ is 1 -solid then C is non-trivial
(b) If $G(C)$ is 1 -solid and $M A_{\aleph_{1}}$ holds then C is almost smooth.
(c) $G(C)$ is strongly solid provided C has some property (P)
- Using GCH construct a graph on ω_{1} with property (P)
- Black Box Theorem:
$W \models$ " $G(C)$ is 1 -solid and $\mathrm{MA}_{\omega_{1}}$ holds."
- Theorem:
$W \vDash$ "C is non-trivial, almost smooth and $M A_{\omega_{1}}$ holds."

Smooth graphs

Theorem (-)

It is consistent that $M A_{\aleph_{1}}$ holds and there is a non-trivial, almost smooth graph on ω_{1}.

Proof

- Coding: Given a graph C on ω_{1} define a suitable K and a graph $G(C)$ on $\omega_{1} \times K \mathrm{~s} . \mathrm{t}$.
(a) If $G(C)$ is 1 -solid then C is non-trivial
(b) If $G(C)$ is 1 -solid and $M A_{\aleph_{1}}$ holds then C is almost smooth.
(c) $G(C)$ is strongly solid provided C has some property (P)
- Using GCH construct a graph on ω_{1} with property (P)
- Black Box Theorem: $W \models$ " $G(C)$ is 1 -solid and $\mathrm{MA}_{\omega_{1}}$ holds."
- Theorem:
$W \models$ " C is non-trivial, almost smooth and $\mathrm{MA}_{\omega_{1}}$ holds."

Selected problems
 Homomorhpism poset

Let G and H be graphs or di-graphs.

Definition
 $G \leq H$ iff that there is a homomorphism from G to H
 S is a quasi-order and so it induces an equivalence relation:
 $G \sim H$ if and only if $G \leq H$ and $H \leq G$.

Definition

The homomorphism posets G and D are the partially ordered sets of all equivalence classes of finite undirected and directed graphs, respectively, ordered by the

Selected problems
 Homomorhpism poset

Let G and H be graphs or di-graphs.

Definition

$G \leq H$ iff that there is a homomorphism from G to H
is a quasi-order and so it induces an equivalence relation:
$G \sim H$ if and only if $G \leq H$ and $H \leq G$.

Definition

The homomorphism posets \mathbb{G} and \mathbb{D} are the partially ordered sets of all equivalence classes of finite undirected and directed graphs, respectively, ordered by the

Selected problems Homomorhpism poset

Let G and H be graphs or di-graphs.

Definition

$G \leq H$ iff that there is a homomorphism from G to H
\leq is a quasi-order and so it induces an equivalence relation:

Definition

The homomorphism posets G and D are the partially ordered sets of all equivalence classes of finite undirected and directed graphs, respectively, ordered by the

Selected problems Homomorhpism poset

Let G and H be graphs or di-graphs.

Definition

$G \leq H$ iff that there is a homomorphism from G to H
\leq is a quasi-order and so it induces an equivalence relation:
$G \sim H$ if and only if $G \leq H$ and $H \leq G$.
Definition
The homomorphism posets \mathbb{G} and \mathbb{D} are the partially ordered sets of all equivalence classes of finite undirected and directed graphs, respectively, ordered by the

Selected problems Homomorhpism poset

Let G and H be graphs or di-graphs.

Definition

$G \leq H$ iff that there is a homomorphism from G to H
\leq is a quasi-order and so it induces an equivalence relation:
$G \sim H$ if and only if $G \leq H$ and $H \leq G$.

Definition

The homomorphism posets \mathbb{G} and \mathbb{D} are the partially ordered sets of all equivalence classes of finite undirected and directed graphs, respectively, ordered by the \leq.

Selected problems Homomorhpism poset

Definition

A maximal antichain A of a poset P splits if A can be partitioned into two subsets B and C such that $P=B^{\uparrow} \cup C^{\downarrow}$.

In a homomorphism poset
a maximal antichain A splits: structure theorem on (di)graphs

Selected problems Homomorhpism poset

Definition

A maximal antichain A of a poset P splits if A can be partitioned into two subsets B and C such that $P=B^{\uparrow} \cup C^{\downarrow}$.

In a homomorphism poset
a maximal antichain A splits: structure theorem on (di)graphs

Selected problems Homomorhpism poset

Definition

A maximal antichain A of a poset P splits if A can be partitioned into two subsets B and C such that $P=B^{\uparrow} \cup C^{\downarrow}$.

In a homomorphism poset
a maximal antichain A splits: structure theorem on (di)graphs

Selected problems Homomorhpism poset

Definition

A maximal antichain A of a poset P splits if A can be partitioned into two subsets B and C such that $P=B^{\uparrow} \cup C^{\downarrow}$.

In a homomorphism poset a maximal antichain A splits:

Selected problems Homomorhpism poset

Definition

A maximal antichain A of a poset P splits if A can be partitioned into two subsets B and C such that $P=B^{\uparrow} \cup C^{\downarrow}$.

In a homomorphism poset
a maximal antichain A splits: structure theorem on (di)graphs

Selected problems Homomorhpism poset \mathbb{G}

$$
A \subset P \text { splits iff } A=B \cup^{*} C \text { s.t. } P=B^{\uparrow} \cup C \downarrow
$$

\mathbb{G} is the homomorphism posets of all finite undirected graphs.

Theorem

\mathbb{G} has onlv two finite maximal antichains: $\left\{K_{1}\right\}$ and $\left\{K_{2}\right\}$

\square
Theorem (Duffus D., Erdos P.L., Nesetril J., Soukup, L.)
For each finite antichain $A \subseteq \mathbb{G}^{\prime}$

Selected problems Homomorhpism poset \mathbb{G}

$$
A \subset P \text { splits iff } A=B \cup^{*} C \text { s.t. } P=B^{\uparrow} \cup C^{\downarrow}
$$

\mathbb{G} is the homomorphism posets of all finite undirected graphs.

Theorem

\mathbb{G} has only two finite maximal antichains: $\left\{K_{1}\right\}$ and $\left\{K_{2}\right\}$.

\square
Theorem (Duffus D., Erdos P.L., Nesetril J., Soukup, L.)
For each finite antichain $A \subset \mathbb{G}^{\prime}$

Selected problems
 Homomorhpism poset \mathbb{G}

$A \subset P$ splits iff $A=B \cup^{*} C$ s.t. $P=B^{\uparrow} \cup C^{\downarrow}$
\mathbb{G} is the homomorphism posets of all finite undirected graphs.
Theorem
\mathbb{G} has only two finite maximal antichains: $\left\{K_{1}\right\}$ and $\left\{K_{2}\right\}$.
Let $\mathbb{G}^{\prime}=\mathbb{G} \backslash\left\{K_{1}, K_{2}\right\}$.
Theorem (Duffus D., Erdos P.L., Nesetril J., Soukup, L.)
For each finite antichain $A \subset \mathbb{G}^{\prime}$

Selected problems
 Homomorhpism poset \mathbb{G}

$A \subset P$ splits iff $A=B \cup^{*} C$ s.t. $P=B^{\uparrow} \cup C^{\downarrow}$
\mathbb{G} is the homomorphism posets of all finite undirected graphs.

Theorem

\mathbb{G} has only two finite maximal antichains: $\left\{K_{1}\right\}$ and $\left\{K_{2}\right\}$.
Let $\mathbb{G}^{\prime}=\mathbb{G} \backslash\left\{K_{1}, K_{2}\right\}$.
Theorem (Duffus D., Erdos P.L., Nesetri J., Soukup, L.)
For each finite antichain $A \subseteq \mathbb{G}^{\prime}$

Selected problems
 Homomorhpism poset \mathbb{G}

$A \subset P$ splits iff $A=B \cup^{*} C$ s.t. $P=B^{\uparrow} \cup C^{\downarrow}$
\mathbb{G} is the homomorphism posets of all finite undirected graphs.
Theorem
\mathbb{G} has only two finite maximal antichains: $\left\{K_{1}\right\}$ and $\left\{K_{2}\right\}$.
Let $\mathbb{G}^{\prime}=\mathbb{G} \backslash\left\{K_{1}, K_{2}\right\}$.
Theorem (Duffus D., Erdos P.L., Nesetril J., Soukup, L.)
For each finite antichain $A \subseteq \mathbb{G}^{\prime}$ there are maximal antichains splits and A_{1} does not split.

Selected problems
 Homomorhpism poset \mathbb{G}

$A \subset P$ splits iff $A=B \cup^{*} C$ s.t. $P=B^{\uparrow} \cup C^{\downarrow}$
\mathbb{G} is the homomorphism posets of all finite undirected graphs.
Theorem
\mathbb{G} has only two finite maximal antichains: $\left\{K_{1}\right\}$ and $\left\{K_{2}\right\}$.
Let $\mathbb{G}^{\prime}=\mathbb{G} \backslash\left\{K_{1}, K_{2}\right\}$.
Theorem (Duffus D., Erdos P.L., Nesetril J., Soukup, L.)
For each finite antichain $A \subseteq \mathbb{G}^{\prime}$ there are maximal antichains $A_{0}, A_{1} \supset A$ such that A_{0} splits and A_{1} does not split.

Selected problems
 Homomorhpism poset \mathbb{G}

$A \subset P$ splits iff $A=B \cup^{*} C$ s.t. $P=B^{\uparrow} \cup C^{\downarrow}$
\mathbb{G} is the homomorphism posets of all finite undirected graphs.
Theorem
\mathbb{G} has only two finite maximal antichains: $\left\{K_{1}\right\}$ and $\left\{K_{2}\right\}$.
Let $\mathbb{G}^{\prime}=\mathbb{G} \backslash\left\{K_{1}, K_{2}\right\}$.
Theorem (Duffus D., Erdos P.L., Nesetril J., Soukup, L.)
For each finite antichain $A \subseteq \mathbb{G}^{\prime}$ there are maximal antichains $A_{0}, A_{1} \supset A$ such that A_{0} splits and A_{1} does not split.

Selected problems Homomorhpism poset \mathbb{D}

\mathbb{D} is the homomorphism posets of all finite directed graphs.
Theorem (Foniok-Nešetřil-Tardif)a full description of the finite maximal antichains in \mathbb{D}
Corollary (Foniok-Nešetřil-Tardif)
Everv finite maximal antichain splits in ID.
What about infinite antichains in \mathbb{D} ?
Theorem (Duffus, D., Erdos P.L., Nesetril J, Soukup, L)
There are both splitting and non-splitting maximal infinite antichains in
\square

Selected problems Homomorhpism poset \mathbb{D}

\mathbb{D} is the homomorphism posets of all finite directed graphs.

Theorem (Foniok-Nešetřil-Tardif)

 a full description of the finite maximal antichains in \mathbb{D}.
Corollary (Foniok-Nešetřil-Tardif)
 Every finite maximal antichain splits in \mathbb{D}.

What about infinite antichains in \mathbb{D} ?

Theorem (Duffus, D., Erdos P.L., Nesetril J, Soukup, L)

There are both splitting and non-splitting maximal infinite antichains in

Selected problems Homomorhpism poset \mathbb{D}

\mathbb{D} is the homomorphism posets of all finite directed graphs.

Theorem (Foniok-Nešetřil-Tardif)

 a full description of the finite maximal antichains in \mathbb{D}.
Corollary (Foniok-Nešetřil-Tardif)

Every finite maximal antichain splits in \mathbb{D}.

What about infinite antichains in \mathbb{D} ?

There are both splitting and non-splitting maximal infinite antichains in

Selected problems Homomorhpism poset \mathbb{D}

\mathbb{D} is the homomorphism posets of all finite directed graphs.

Theorem (Foniok-Nešetřil-Tardif)

 a full description of the finite maximal antichains in \mathbb{D}.
Corollary (Foniok-Nešetřil-Tardif)

Every finite maximal antichain splits in \mathbb{D}.

What about infinite antichains in \mathbb{D} ?

There are both splitting and non-splitting maximal infinite antichains in

Selected problems Homomorhpism poset \mathbb{D}

\mathbb{D} is the homomorphism posets of all finite directed graphs.
Theorem (Foniok-Nešetřil-Tardif)
a full description of the finite maximal antichains in \mathbb{D}.

Corollary (Foniok-Nešeť̌il-Tardif)

Every finite maximal antichain splits in \mathbb{D}.

What about infinite antichains in \mathbb{D} ?
Theorem (Duffus, D., Erdos P.L., Nesetril J, Soukup, L)
There are both splitting and non-splitting maximal infinite antichains in \mathbb{D}.

Selected problems Homomorhpism poset \mathbb{D}

There are both splitting and non-splitting maximal infinite antichains in \mathbb{D}.

Question
 Assume that $A \subset \mathbb{D}$ is a maximal antichain, $A=B \cup^{*} C, A=B^{\uparrow} \cup C$ Is it true that $|B|=|C|=\omega$?

Theorem (Bodirsky M., Erdos L. P., Schahcht M., Soukup L.)

Assume that $A \subset \mathbb{D}$ is an infinite maximal antichain, $A=B \cup^{*} C$, $A=B^{\uparrow} \cup C^{\downarrow}$. Then $|B|$

Selected problems
 Homomorhpism poset \mathbb{D}

There are both splitting and non-splitting maximal infinite antichains in \mathbb{D}.

Question

Assume that $A \subset \mathbb{D}$ is a maximal antichain, $A=B \cup^{*} C, A=B^{\uparrow} \cup C^{\downarrow}$. Is it true that $|B|=|C|=\omega$?

Theorem (Bodirsky M., Erdos L. P., Schahcht M., Soukup L.)

 Assume that $A \subset \mathbb{D}$ is an infinite maximal antichain, $A=B \cup^{*} C$, $A=B^{\uparrow} \cup C \downarrow$. Then $|B|$
Selected problems Homomorhpism poset ID

There are both splitting and non-splitting maximal infinite antichains in \mathbb{D}.

Question

Assume that $A \subset \mathbb{D}$ is a maximal antichain, $A=B \cup^{*} C, A=B^{\uparrow} \cup C^{\downarrow}$. Is it true that $|B|=|C|=\omega$?

Theorem (Bodirsky M., Erdos L. P., Schahcht M., Soukup L.)

Assume that $A \subset \mathbb{D}$ is an infinite maximal antichain, $A=B \cup^{*} C$, $A=B^{\uparrow} \cup C^{\downarrow}$. Then $|B|=\omega$.

Selected problems Homomorhpism poset

the girth of a graph is the length of a shortest cycle contained in the graph.

Theorem (Paul Erdós, 1959)

Definition

The homom orphism poset \mathbb{G} is the partially ordered set of all equivalence classes of countable undirected graphs ordered by the

Selected problems Homomorhpism poset

the girth of a graph is the length of a shortest cycle contained in the graph.

```
Theorem (Paul Erdős, 1959)
```


Definition

The homomorphism poset \mathbb{G}_{ω} is the partially ordered set of all equivalence classes of countable undirected graphs ordered by the

Selected problems Homomorhpism poset

the girth of a graph is the length of a shortest cycle contained in the graph.

Theorem (Paul Erdős, 1959)
$\forall k, \ell \in \mathbb{N} \exists G$ s. $t . \chi(G)>k$ and $\operatorname{girth}(G)>\ell$.

Definition

The homomorphism poset \mathbb{G}_{ω} is the partially ordered set of all equivalence classes of countable undirected graphs ordered by the \leq.

Selected problems
 Homomorhpism poset

Theorem (Nesetril, Shelah)

If A is a 1-element maximal antichain in \mathbb{G}_{ω} then $A=\left\{K_{1}\right\},\left\{K_{2}\right\}$ or $\left\{K_{\omega}\right\}$.

Need: infinite version of Erdős theorem.

$\forall k, \ell \in \mathbb{N} \exists G \mathrm{~s} . \mathrm{i} . \chi(G)>k$ and girth (G)
$\chi(G)>k$ iff $G \not \leq K_{k}$.

Coniecture

If $H \in \mathbb{G}_{\omega}, K_{\omega} \not 又 H$ and $\ell \in \mathbb{N}$ then $\exists G \in \mathbb{G}_{\omega}$ s.t. $G \not 又 H$ and
girth (G)

Selected problems
 Homomorhpism poset

Theorem (Nesetril, Shelah)

If A is a 1-element maximal antichain in \mathbb{G}_{ω} then $A=\left\{K_{1}\right\},\left\{K_{2}\right\}$ or $\left\{K_{\omega}\right\}$.

Conjecture
Conjecture: If A is a finite maximal antichain in \mathbb{G}_{ω} then $A \cap \mathbb{G} \neq \emptyset$

Need: infinite version of Erdős theorem

$\forall k, \ell \in \mathbb{N} \exists G$ s. t. $\chi(G)>k$ and girth (G)
$\chi(G)>k$ iff $G \notin K_{k}$.
Conjecture
If $H \in \mathbb{G}_{\omega}, K_{\omega} \nless H$ and $\ell \in \mathbb{N}$ then $\exists G \in \mathbb{G}_{\omega}$ s.t. $G \nless H$ and
girth(G)

Selected problems Homomorhpism poset

Theorem (Nesetril, Shelah)

If A is a 1-element maximal antichain in \mathbb{G}_{ω} then $A=\left\{K_{1}\right\},\left\{K_{2}\right\}$ or $\left\{K_{\omega}\right\}$.

Conjecture

Conjecture: If A is a finite maximal antichain in \mathbb{G}_{ω} then $A \cap \mathbb{G} \neq \emptyset$.

```
Need: infinite version of Erdős theorem.
\forallk,\ell\in\mathbb{N}\existsG\mathrm{ s. t. }\chi(G)>k\mathrm{ and girth(G)}\(G)
\chi(G)>k iff G\not<Kk.
Conjecture
If }H\in\mp@subsup{\mathbb{G}}{\omega}{},\mp@subsup{K}{\omega}{}\not又H\mathrm{ and }\ell\in\mathbb{N}\mathrm{ then }\existsG\in\mp@subsup{\mathbb{G}}{\omega}{}\mathrm{ s.t. }G\not又H\mathrm{ and
```

girth(G)

Selected problems Homomorhpism poset

Theorem (Nesetril, Shelah)

If A is a 1-element maximal antichain in \mathbb{G}_{ω} then $A=\left\{K_{1}\right\},\left\{K_{2}\right\}$ or $\left\{K_{\omega}\right\}$.

Conjecture

Conjecture: If A is a finite maximal antichain in \mathbb{G}_{ω} then $A \cap \mathbb{G} \neq \emptyset$.

Need: infinite version of Erdős theorem.

Selected problems Homomorhpism poset

Theorem (Nesetril, Shelah)

If A is a 1-element maximal antichain in \mathbb{G}_{ω} then $A=\left\{K_{1}\right\},\left\{K_{2}\right\}$ or $\left\{K_{\omega}\right\}$.

Conjecture

Conjecture: If A is a finite maximal antichain in \mathbb{G}_{ω} then $A \cap \mathbb{G} \neq \emptyset$.

Need: infinite version of Erdős theorem.
$\forall k, \ell \in \mathbb{N} \exists G$ s. t. $\chi(G)>k$ and girth $(G)>\ell$.
$\chi(G)>k$ iff $G \not \leq K_{k}$.

Conjecture

If $H \in \mathbb{G}_{\omega}, K_{\omega} \not \subset H$ and $l \in \mathbb{N}$ then $\exists G \in \mathbb{G}_{\omega}$ s.t. $G \not \subset H$ and
girth (G)

Selected problems Homomorhpism poset

Theorem (Nesetril, Shelah)

If A is a 1-element maximal antichain in \mathbb{G}_{ω} then $A=\left\{K_{1}\right\},\left\{K_{2}\right\}$ or $\left\{K_{\omega}\right\}$.

Conjecture

Conjecture: If A is a finite maximal antichain in \mathbb{G}_{ω} then $A \cap \mathbb{G} \neq \emptyset$.
Need: infinite version of Erdős theorem.
$\forall k, \ell \in \mathbb{N} \exists G$ s. t. $\chi(G)>k$ and $\operatorname{girth}(G)>\ell$.
$\chi(G)>k$ iff $G \not \leq K_{k}$.

Conjecture

If $H \in \mathbb{G}_{\omega}, K_{\omega} \not 又 H$ and $\ell \in \mathbb{N}$ then $\exists G \in \mathbb{G}_{\omega}$ s.t. $G \not \leq H$ and
girth (G)

Selected problems Homomorhpism poset

Theorem (Nesetril, Shelah)

If A is a 1-element maximal antichain in \mathbb{G}_{ω} then $A=\left\{K_{1}\right\},\left\{K_{2}\right\}$ or $\left\{K_{\omega}\right\}$.

Conjecture

Conjecture: If A is a finite maximal antichain in \mathbb{G}_{ω} then $A \cap \mathbb{G} \neq \emptyset$.

Need: infinite version of Erdős theorem.
$\forall k, \ell \in \mathbb{N} \exists G$ s. t. $\chi(G)>k$ and $\operatorname{girth}(G)>\ell$.
$\chi(G)>k$ iff $G \not \leq K_{k}$.
Conjecture
If $H \in \mathbb{G}_{\omega}, K_{\omega} \not \leq H$ and $\ell \in \mathbb{N}$ then $\exists G \in \mathbb{G}_{\omega}$ s.t. $G \not \leq H$ and $\operatorname{girth}(G)>\ell$

Selected problems
 Permutation group

Perm (λ) : the group of all permutations of a cardinal λ.
$G \leq \operatorname{Perm}(\lambda)$ is k-homogeneous iff for all $X, Y \in[\lambda]^{k}$ there is a
$g \in G$ with $g^{\prime \prime} X=Y$.
$G \leq \operatorname{Perm}(\lambda)$ is κ-transitive iff for all $1-1$ functions $x, y: \kappa \rightarrow \lambda$, there
is a $g \in G$ s.t. $g(x(\alpha))=y(\alpha)$ for all $\alpha<\kappa$
Theorem
A finite n-homogeneous permutation group is $n-1$-homogeneous.

Theorem

An n-homoceneous group is not necesserily n-transitive.

Proof.

Continuo us automorphisms of the circle.

Selected problems
 Permutation group

$\operatorname{Perm}(\lambda)$: the group of all permutations of a cardinal λ. $G \leq \operatorname{Perm}(\lambda)$ is κ-homogeneous iff for all $X, Y \in[\lambda]^{\kappa}$ there is a $g \in G$ with $g^{\prime \prime} X=Y$.

$G \leq \operatorname{Perm}(\lambda)$ is κ-transitive iff for all $1-1$ functions $x, y: \kappa \rightarrow \lambda$, there is a $g \in G$ s.t. $g(x(\alpha))=y(\alpha)$ for all $\alpha<\kappa$

Theorem
 A finite n-homogeneous permutation group is $n-1$-homogeneous.

Theorem

An n-homogeneous group is not necesserily n-transitive.

Proof.

Continuous automorphisms of the circle.

Selected problems
 Permutation group

$\operatorname{Perm}(\lambda)$: the group of all permutations of a cardinal λ. $G \leq \operatorname{Perm}(\lambda)$ is κ-homogeneous iff for all $X, Y \in[\lambda]^{\kappa}$ there is a $g \in G$ with $g^{\prime \prime} X=Y$.
$G \leq \operatorname{Perm}(\lambda)$ is κ-transitive iff for all 1-1 functions $x, y: \kappa \rightarrow \lambda$, there is a $g \in G$ s.t. $g(x(\alpha))=y(\alpha)$ for all $\alpha<\kappa$

Theorem
 A finite n-homogeneous permutation group is n - 1-homogeneous.

Theorem

An n-homogeneous group is not necesserily n-transitive.

Proof:

Continuous automorphisms of the circle.

Selected problems
 Permutation group

$\operatorname{Perm}(\lambda)$: the group of all permutations of a cardinal λ. $G \leq \operatorname{Perm}(\lambda)$ is κ-homogeneous iff for all $X, Y \in[\lambda]^{\kappa}$ there is a $g \in G$ with $g^{\prime \prime} X=Y$.
$G \leq \operatorname{Perm}(\lambda)$ is κ-transitive iff for all 1-1 functions $x, y: \kappa \rightarrow \lambda$, there is a $g \in G$ s.t. $g(x(\alpha))=y(\alpha)$ for all $\alpha<\kappa$

Theorem

A finite n-homogeneous permutation group is n - 1 -homogeneous.

\square
Continuous automorphisms of the circle.

Selected problems Permutation group

Perm (λ) : the group of all permutations of a cardinal λ. $G \leq \operatorname{Perm}(\lambda)$ is κ-homogeneous iff for all $X, Y \in[\lambda]^{\kappa}$ there is a $g \in G$ with $g^{\prime \prime} X=Y$.
$G \leq \operatorname{Perm}(\lambda)$ is κ-transitive iff for all 1-1 functions $x, y: \kappa \rightarrow \lambda$, there is a $g \in G$ s.t. $g(x(\alpha))=y(\alpha)$ for all $\alpha<\kappa$

Theorem

A finite n-homogeneous permutation group is n - 1 -homogeneous.

Theorem

An n-homogeneous group is not necesserily n-transitive.

Continuous automorphisms of the circle

Selected problems
 Permutation group

Perm (λ) : the group of all permutations of a cardinal λ. $G \leq \operatorname{Perm}(\lambda)$ is κ-homogeneous iff for all $X, Y \in[\lambda]^{\kappa}$ there is a $g \in G$ with $g^{\prime \prime} X=Y$.
$G \leq \operatorname{Perm}(\lambda)$ is κ-transitive iff for all 1-1 functions $x, y: \kappa \rightarrow \lambda$, there is a $g \in G$ s.t. $g(x(\alpha))=y(\alpha)$ for all $\alpha<\kappa$

Theorem

A finite n-homogeneous permutation group is n - 1 -homogeneous.

Theorem

An n-homogeneous group is not necesserily n-transitive.

Proof.

Continuous automorphisms of the circle.

Selected problems
 Permutation group

Theorem (Hajnal)
 If $\square_{\omega_{1}}$ holds then $\exists G \leq \operatorname{Perm}\left(\omega_{2}\right) \omega_{1}$-homog, but not ω-homog.

Theorem (-)
Con(

Selected problems
 Permutation group

$$
\begin{aligned}
& \text { Theorem (Hajnal) } \\
& \text { If } \square_{\omega_{1}} \text { holds then } \exists G \leq \operatorname{Perm}\left(\omega_{2}\right) \omega_{1} \text {-homog, but not } \omega \text {-homog. }
\end{aligned}
$$

Theorem (Shelah, -)
$\operatorname{Con}\left(\forall \lambda \geq \omega_{1} \exists G \leq \operatorname{Perm}(\lambda) \omega_{1}\right.$-homog, but not w-homog.)
$\exists G \leq \operatorname{Perm}\left(\omega_{1}\right) \omega$-homogeneous, but not ω-transitive.

Selected problems
 Permutation group

$$
\begin{aligned}
& \text { Theorem (Hajnal) } \\
& \text { If } \square_{\omega_{1}} \text { holds then } \exists G \leq \operatorname{Perm}\left(\omega_{2}\right) \omega_{1} \text {-homog, but not } \omega \text {-homog. }
\end{aligned}
$$

Theorem (Shelah, -)
$\operatorname{Con}\left(\forall \lambda \geq \omega_{1} \quad \exists G \leq \operatorname{Perm}(\lambda) \omega_{1}\right.$-homog, but not w-homog.)
$\exists G \leq \operatorname{Perm}\left(\omega_{1}\right) \omega$-homogeneous, but not ω-transitive.

Theorem (-)
Con(

Selected problems
 Permutation group

Theorem (Hajnal) If $\square_{\omega_{1}}$ holds then $\exists G \leq \operatorname{Perm}\left(\omega_{2}\right) \omega_{1}$-homog, but not ω-homog.

Theorem (Shelah, -)
$\operatorname{Con}\left(\forall \lambda \geq \omega_{1} \quad \exists G \leq \operatorname{Perm}(\lambda) \omega_{1}\right.$-homog, but not ω-homog.)
$\exists G \leq \operatorname{Perm}\left(\omega_{1}\right) \omega$-homogeneous, but not ω-transitive.

Con(

Selected problems
 Permutation group

$$
\begin{aligned}
& \text { Theorem (Hajnal) } \\
& \text { If }{ }_{\square \omega_{1}} \text { holds then } \exists G \leq \operatorname{Perm}\left(\omega_{2}\right) \omega_{1} \text {-homog, but not } \omega \text {-homog. }
\end{aligned}
$$

Theorem (Shelah, -)
$\operatorname{Con}\left(\forall \lambda \geq \omega_{1} \quad \exists G \leq \operatorname{Perm}(\lambda) \omega_{1}\right.$-homog, but not ω-homog.)
$\exists G \leq \operatorname{Perm}\left(\omega_{1}\right) \omega$-homogeneous, but not ω-transitive.

Con(

Selected problems
 Permutation group

$$
\begin{aligned}
& \text { Theorem (Hajnal) } \\
& \text { If } \square_{\omega_{1}} \text { holds then } \exists G \leq \operatorname{Perm}\left(\omega_{2}\right) \omega_{1} \text {-homog, but not } \omega \text {-homog. }
\end{aligned}
$$

Theorem (Shelah, -)
$\operatorname{Con}\left(\forall \lambda \geq \omega_{1} \quad \exists G \leq \operatorname{Perm}(\lambda) \omega_{1}\right.$-homog, but not ω-homog.)
$\exists G \leq \operatorname{Perm}\left(\omega_{1}\right) \omega$-homogeneous, but not ω-transitive.

Theorem (-)

Con($\forall \lambda \geq \omega_{1} \exists G \leq \operatorname{Perm}(\lambda) \omega$-homog, but not w-transitive.)

Selected problems
 Permutation group

$$
\begin{aligned}
& \text { Theorem (Hajnal) } \\
& \text { If } \square_{\omega_{1}} \text { holds then } \exists G \leq \operatorname{Perm}\left(\omega_{2}\right) \omega_{1} \text {-homog, but not } \omega \text {-homog. }
\end{aligned}
$$

Theorem (Shelah, -)
$\operatorname{Con}\left(\forall \lambda \geq \omega_{1} \quad \exists G \leq \operatorname{Perm}(\lambda) \omega_{1}\right.$-homog, but not ω-homog.)
$\exists G \leq \operatorname{Perm}\left(\omega_{1}\right) \omega$-homogeneous, but not ω-transitive.

Theorem (-)

$\operatorname{Con}\left(\forall \lambda \geq \omega_{1} \exists G \leq \operatorname{Perm}(\lambda) \omega\right.$-homog, but not ω-transitive.)

Selected problems
 Permutation group

$$
\begin{aligned}
& \text { Theorem (Hajnal) } \\
& \text { If }_{\square \omega_{1}} \text { holds then } \exists G \leq \operatorname{Perm}\left(\omega_{2}\right) \omega_{1} \text {-homog, but not } \omega \text {-homog. }
\end{aligned}
$$

Theorem (Shelah, -)
$\operatorname{Con}\left(\forall \lambda \geq \omega_{1} \quad \exists G \leq \operatorname{Perm}(\lambda) \omega_{1}\right.$-homog, but not ω-homog.)
$\exists G \leq \operatorname{Perm}\left(\omega_{1}\right) \omega$-homogeneous, but not ω-transitive.
Theorem (-)
$\operatorname{Con}\left(\forall \lambda \geq \omega_{1} \quad \exists G \leq \boldsymbol{P e r m}(\lambda) \omega\right.$-homog, but not ω-transitive.)

Selected problems
 Permutation group

Theorem (Hajnal)

```
If}\mp@subsup{\square}{\mp@subsup{\omega}{1}{}}{}\mathrm{ holds then }\existsG\leq\operatorname{Perm}(\mp@subsup{\omega}{2}{})\mp@subsup{\omega}{1}{}\mathrm{ -homog, but not }\omega\mathrm{ -homog.
```

Theorem (Shelah, -)
$\operatorname{Con}\left(\forall \lambda \geq \omega_{1} \quad \exists G \leq \operatorname{Perm}(\lambda) \omega_{1}\right.$-homog, but not ω-homog.)
$\exists G \leq \operatorname{Perm}\left(\omega_{1}\right) \omega$-homogeneous, but not ω-transitive.
Theorem (-)
$\operatorname{Con}\left(\forall \lambda \geq \omega_{1} \quad \exists G \leq \operatorname{Perm}(\lambda) \omega\right.$-homog, but not ω-transitive.)

Euler Theorem

Theorem

(1) A finite connected graph has an Euler-circle iff the graph is Eulerian, i.e. each vertex has even degree. (2) A finite connected graph has an Euler-trail with end-vertices $v \neq w$ iff v and w are the only vertices of odd degree.

Problem (König)

When does an infinite graph G contain a one/two-way infinite Euler trail?

Euler Theorem

Theorem

(1) A finite connected graph has an Euler-circle iff the graph is Eulerian, i.e. each vertex has even degree.
(2) A finite connected graph has an Euler-trail with end-vertices $v \neq w$ iff v and w are the only vertices of odd degree.

A one-way infinite Euler trail T : a one-way infinite sequence $T=\left(x_{0}, x_{1} \ldots,\right)$ of vertices such that $\left\{x_{i} x_{i+1}: i \in \mathbb{N}\right\}$ is a $1-1$ enumeration of the edges of G. x_{0} is the end-vertex of the trail. A two-way infinite Euler trail T : a two-way infinite sequence of vertices such that $\left\{x_{i} x_{i+1}: i \in \mathbb{Z}\right\}$ is a 1-1 enumeration of the edges of G.
\square
When does an infinite graph G contain a one/two-way infinite Euler trail?

Euler Theorem

Theorem

(1) A finite connected graph has an Euler-circle iff the graph is Eulerian, i.e. each vertex has even degree.
(2) A finite connected graph has an Euler-trail with end-vertices $v \neq w$ iff v and w are the only vertices of odd degree.

A one-way infinite Euler trail T : a one-way infinite sequence $T=\left(x_{0}, x_{1} \ldots,\right)$ of vertices such that $\left\{x_{i} x_{i+1}: i \in \mathbb{N}\right\}$ is a $1-1$ enumeration of the edges of G. x_{0} is the end-vertex of the trail. A two-way infinite Euler trail T : a two-way infinite sequence $T=\left(\ldots, x_{-2}, x_{-1}, x_{0}, x_{1} \ldots,\right)$ of vertices such that $\left\{x_{i} x_{i+1}: i \in \mathbb{Z}\right\}$ is a $1-1$ enumeration of the edges of G.
\square
When does an infinite graph G contain a one/two-way infinite Euler

Euler Theorem

Theorem

(1) A finite connected graph has an Euler-circle iff the graph is Eulerian, i.e. each vertex has even degree.
(2) A finite connected graph has an Euler-trail with end-vertices $v \neq w$ iff v and w are the only vertices of odd degree.

A one-way infinite Euler trail T : a one-way infinite sequence $T=\left(x_{0}, x_{1} \ldots,\right)$ of vertices such that $\left\{x_{i} x_{i+1}: i \in \mathbb{N}\right\}$ is a $1-1$ enumeration of the edges of G. x_{0} is the end-vertex of the trail. A two-way infinite Euler trail T : a two-way infinite sequence $T=\left(\ldots, x_{-2}, x_{-1}, x_{0}, x_{1} \ldots,\right)$ of vertices such that $\left\{x_{i} x_{i+1}: i \in \mathbb{Z}\right\}$ is a $1-1$ enumeration of the edges of G.

Problem (König)

When does an infinite graph G contain a one/two-way infinite Euler trail?

Euler Theorem

Observation

The plain generalization fails for infinite graphs:
> in G each vertex has even degree, but there is no two-way infinite Euler trail,
> in H there is exactly one vertex with odd degree but there is no one-way infinite Euler trail.

Euler Theorem

Observation

The plain generalization fails for infinite graphs:
in G each vertex has even degree, but there is no two-way infinite Euler trail,
in H there is exactly one vertex with odd degree but there is no one-way infinite Euler trail.

Euler Theorem

Observation

The plain generalization fails for infinite graphs:
in G each vertex has even degree, but there is no two-way infinite Euler trail,
in H there is exactly one vertex with odd degree but there is no one-way infinite Euler trail.

Euler Theorem

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph $G=(V, E)$ has a one-way infinite Euler trail with end-vertex $v \in V$ iff (o1)-(04) below hold:
(1) G is connected, $|E(G)|=\aleph_{0}$,
(2) $d_{G}(v)$ is odd or infinite,
(3) $d_{G}\left(v^{\prime}\right)$ is even or infinite fo each $v^{\prime} \in V(G) \backslash\{v\}$,
(4) $G \backslash E^{\prime}$ has one infinite component for each finite $E^{\prime} \subset E$.
write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G), e \in E(G)$ and owit($G, v)$ holds.

Euler Theorem

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph $G=(V, E)$ has a one-way infinite Euler trail with end-vertex $v \in V$ iff (01)-(04) below hold:
(1) G is connected, $|E(G)|=\aleph_{0}$,
(2) $d_{G}(v)$ is odd or infinite,
(3) $d_{G}\left(v^{\prime}\right)$ is even or infinite for each $v^{\prime} \in V(G) \backslash\{v\}$,
(4) $G \backslash E^{\prime}$ has one infinite component for each finite $E^{\prime} \subset E$
write owit(G, v) iff (1)-(4) above hold for G and v.
Lemma
Assume that G is a graph, $v \in V(G), e \in E(G)$ and owit($G, v)$ holds.

Euler Theorem

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph $G=(V, E)$ has a one-way infinite Euler trail with end-vertex $v \in V$ iff (01)-(04) below hold:
(1) G is connected, $|E(G)|=\aleph_{0}$,
(2) $d_{G}(v)$ is odd or infinite,

。
 $d_{G}\left(v^{\prime}\right)$ is even or infinite for each $v^{\prime} \in V(G) \backslash\{v\}$,
 (4) $G \backslash E^{\prime}$ has one infinite component for each finite $E^{\prime} \subset E$

write owit(G, v) iff (1)-(4) above hold for G and v.
Lemma
Assume that G is a graph, $v \in V(G), e \in E(G)$ and owit($G, v)$ holds.

Euler Theorem

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph $G=(V, E)$ has a one-way infinite Euler trail with end-vertex $v \in V$ iff (o1)-(04) below hold:
(1) G is connected, $|E(G)|=\aleph_{0}$,
(2) $d_{G}(v)$ is odd or infinite,
(3) $d_{G}\left(v^{\prime}\right)$ is even or infinite for each $v^{\prime} \in V(G) \backslash\{v\}$,
(4) $G \backslash E^{\prime}$ has one infinite component for each finite $E^{\prime} \subset E$.
write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G), e \in E(G)$ and owit($G, v)$ holds.

Euler Theorem

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph $G=(V, E)$ has a one-way infinite Euler trail with end-vertex $v \in V$ iff (01)-(04) below hold:
(1) G is connected, $|E(G)|=\aleph_{0}$,
(2) $d_{G}(v)$ is odd or infinite,
(3) $d_{G}\left(v^{\prime}\right)$ is even or infinite for each $v^{\prime} \in V(G) \backslash\{v\}$,
(4) $G \backslash E^{\prime}$ has one infinite component for each finite $E^{\prime} \subset E$.
write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G), e \in E(G)$ and owit($G, v)$ holds.

Euler Theorem

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph $G=(V, E)$ has a one-way infinite Euler trail with end-vertex $v \in V$ iff (01)-(04) below hold:
(1) G is connected, $|E(G)|=\aleph_{0}$,
(3) $d_{G}(v)$ is odd or infinite,
(3) $d_{G}\left(v^{\prime}\right)$ is even or infinite for each $v^{\prime} \in V(G) \backslash\{v\}$,
(9) $G \backslash E^{\prime}$ has one infinite component for each finite $E^{\prime} \subset E$.
write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G), e \in E(G)$ and owit($G, v)$ holds.

Euler Theorem

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph $G=(V, E)$ has a one-way infinite Euler trail with end-vertex $v \in V$ iff (01)-(04) below hold:
(1) G is connected, $|E(G)|=\aleph_{0}$,
(2) $d_{G}(v)$ is odd or infinite,
(3) $d_{G}\left(v^{\prime}\right)$ is even or infinite for each $v^{\prime} \in V(G) \backslash\{v\}$,
(4) $G \backslash E^{\prime}$ has one infinite component for each finite $E^{\prime} \subset E$.
write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G), e \in E(G)$ and owit (G, v) holds.

Euler Theorem

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph $G=(V, E)$ has a one-way infinite Euler trail with end-vertex $v \in V$ iff (01)-(04) below hold:
(1) G is connected, $|E(G)|=\aleph_{0}$,
(2) $d_{G}(v)$ is odd or infinite,
(3) $d_{G}\left(v^{\prime}\right)$ is even or infinite for each $v^{\prime} \in V(G) \backslash\{v\}$,
(4) $G \backslash E^{\prime}$ has one infinite component for each finite $E^{\prime} \subset E$.
write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G), e \in E(G)$ and owit($G, v)$ holds.
Then there is there is a trail T with endpoints v and v^{\prime}

Euler Theorem

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph $G=(V, E)$ has a one-way infinite Euler trail with end-vertex $v \in V$ iff (o1)-(04) below hold:
(1) G is connected, $|E(G)|=\aleph_{0}$,
(2) $d_{G}(v)$ is odd or infinite,
(3) $d_{G}\left(v^{\prime}\right)$ is even or infinite for each $v^{\prime} \in V(G) \backslash\{v\}$,
(4) $G \backslash E^{\prime}$ has one infinite component for each finite $E^{\prime} \subset E$.
write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G), e \in E(G)$ and owit($G, v)$ holds.
Then there is there is a trail T with endpoints v and v^{\prime} such that $e \in E(T)$ and owit($\left.G \backslash T, v^{\prime}\right)$ holds.

Euler Theorem

Theorem (Erdős, P; Grünwald, T.; Vázsonyi, E., 1938)

A graph G has a two-way infinite Euler trail iff (t1)-(t4) below hold:
> (1) G is connected, $|E(G)|=\aleph_{0}$,
> (2) $d_{G}(v)$ is even or infinite for each $v^{\prime} \in V(G)$
> (3) $G \backslash E^{\prime}$ has at most two infinite component for each finite $E^{\prime} \subset E$.
> (4) $G \backslash E^{\prime}$ has one infinite component for a finite $E^{\prime} \subset E$ provided that every degree is even in $\left\langle V, E^{\prime}\right\rangle$

Euler Theorem

Theorem (Erdős, P; Grünwald, T.; Vázsonyi, E., 1938)

A graph G has a two-way infinite Euler trail iff (t1)-(t4) below hold:
(1) G is connected, $|E(G)|=\aleph_{0}$,
(2) $d_{G}(v)$ is even or infinite for each $v^{\prime} \in V(G)$
(3) $G \backslash E^{\prime}$ has at most two infinite component for each finite $E^{\prime} \subset E$.

44 $G \backslash E^{\prime}$ has one infinite component for a finite $E^{\prime} \subset E$ provided that every degree is even in $\left\langle V, E^{\prime}\right\rangle$

Euler Theorem

Theorem (Erdős, P; Grünwald, T.; Vázsonyi, E., 1938)

A graph G has a two-way infinite Euler trail iff (t1)-(t4) below hold:
(1) G is connected, $|E(G)|=\aleph_{0}$,
(2) $d_{G}(v)$ is even or infinite for each $v^{\prime} \in V(G)$
(8) $G \backslash E^{\prime}$ has at most two infinite component for each finite $E^{\prime} \subset E$.
(4) $G \backslash E^{\prime}$ has one infinite component for a finite $E^{\prime} \subset E$ provided that every degree is even in $\left\langle V, E^{\prime}\right\rangle$

Euler Theorem

Theorem (Erdős, P; Grünwald, T.; Vázsonyi, E., 1938)

A graph G has a two-way infinite Euler trail iff (t1)-(t4) below hold:
(1) G is connected, $|E(G)|=\aleph_{0}$,
(2) $d_{G}(v)$ is even or infinite for each $v^{\prime} \in V(G)$
(3) $G \backslash E^{\prime}$ has at most two infinite component for each finite $E^{\prime} \subset E$.
(4) $G \backslash E^{\prime}$ has one infinite compone
every degree is even in $\left\langle V, E^{\prime}\right\rangle$.

Euler Theorem

Theorem (Erdós, P; Grünwald, T.; Vázsonyi, E., 1938)

A graph G has a two-way infinite Euler trail iff (t1)-(t4) below hold:
(1) G is connected, $|E(G)|=\aleph_{0}$,
(2) $d_{G}(v)$ is even or infinite for each $v^{\prime} \in V(G)$
(3) $G \backslash E^{\prime}$ has at most two infinite component for each finite $E^{\prime} \subset E$.
(4) $G \backslash E^{\prime}$ has one infinite component for a finite $E^{\prime} \subset E$ provided that every degree is even in $\left\langle V, E^{\prime}\right\rangle$.

Euler Theorem

Theorem (Erdós, P; Grünwald, T.; Vázsonyi, E., 1938)

A graph G has a two-way infinite Euler trail iff (t1)-(t4) below hold:
(1) G is connected, $|E(G)|=\aleph_{0}$,
(2) $d_{G}(v)$ is even or infinite for each $v^{\prime} \in V(G)$
(3) $G \backslash E^{\prime}$ has at most two infinite component for each finite $E^{\prime} \subset E$.
(4) $G \backslash E^{\prime}$ has one infinite component for a finite $E^{\prime} \subset E$ provided that every degree is even in $\left\langle V, E^{\prime}\right\rangle$.

G_{2} satisfies (1)-(3) but it does not have a two-way infinite Euler trail.

Euler Theorem

write twit(G) iff (1)-(4) above hold for G.

For each finite trail T the graph $G \backslash T$ has one infinite component.

Lemma

Let G be a graph, $v \in V(G)$ and $e \in E(G)$. If twit (G) and $(*)$ hold then there is a circuit T in G such that $v \in V(T), e \in E(T)$ and twit $(G \backslash T)$.

If T witnesses that $(*)$ fails then there is a trail T^{\prime} in G such that

Euler Theorem

write twit(G) iff (1)-(4) above hold for G.
(*) For each finite trail T the graph $G \backslash T$ has one infinite component.

Lemma
 Let G be a graph, $v \in V(G)$ and $e \in E(G)$. If twit (G) and $(*)$ hold then there is a circuit T in G such that $v \in V(T), e \in E(T)$ and twit $(G \backslash T)$.

If T witnesses that $(*)$ fails then there is a trail T^{\prime} in G such that

Euler Theorem

write twit(G) iff (1)-(4) above hold for G.
(*) For each finite trail T the graph $G \backslash T$ has one infinite component.

Lemma

Let G be a graph, $v \in V(G)$ and $e \in E(G)$. If twit (G) and (*) hold then there is a circuit T in G such that $v \in V(T), e \in E(T)$ and twit $(G \backslash T)$.

If T witnesses that $(*)$ fails then there is a trail T^{\prime} in G such that

Euler Theorem

write twit(G) iff (1)-(4) above hold for G.
(*) For each finite trail T the graph $G \backslash T$ has one infinite component.

Lemma

Let G be a graph, $v \in V(G)$ and $e \in E(G)$. If twit (G) and (*) hold then there is a circuit T in G such that $v \in V(T), e \in E(T)$ and twit($G \backslash T)$.

If T witnesses that (*) fails then there is a trail T^{\prime} in G such that

Euler Theorem

write twit(G) iff (1)-(4) above hold for G.
(*) For each finite trail T the graph $G \backslash T$ has one infinite component.

Lemma

Let G be a graph, $v \in V(G)$ and $e \in E(G)$. If twit (G) and (*) hold then there is a circuit T in G such that $v \in V(T), e \in E(T)$ and twit($G \backslash T)$.

If T witnesses that (*) fails then there is a trail T^{\prime} in G such that
(1) the endpoints of T and T^{\prime} are the same, v_{1} and v_{2},
(C) $G \backslash T^{\prime}$ has exactly two componets, G_{1} and G_{2}
(ㅇ) owit $\left(G_{1}, v_{1}\right)$ and $\operatorname{owit}\left(G_{2}, v_{2}\right)$.

Euler Theorem

write twit(G) iff (1)-(4) above hold for G.
(*) For each finite trail T the graph $G \backslash T$ has one infinite component.

Lemma

Let G be a graph, $v \in V(G)$ and $e \in E(G)$. If twit (G) and (*) hold then there is a circuit T in G such that $v \in V(T), e \in E(T)$ and twit($G \backslash T)$.

If T witnesses that (*) fails then there is a trail T^{\prime} in G such that
(1) the endpoints of T and T^{\prime} are the same, v_{1} and v_{2},
(2) $G \backslash T^{\prime}$ has exactly two componets, G_{1} and G_{2}

Euler Theorem

write twit(G) iff (1)-(4) above hold for G.
(*) For each finite trail T the graph $G \backslash T$ has one infinite component.

Lemma

Let G be a graph, $v \in V(G)$ and $e \in E(G)$. If twit (G) and (*) hold then there is a circuit T in G such that $v \in V(T), e \in E(T)$ and twit($G \backslash T)$.

If T witnesses that (*) fails then there is a trail T^{\prime} in G such that
(3) the endpoints of T and T^{\prime} are the same, v_{1} and v_{2},
(2) $G \backslash T^{\prime}$ has exactly two componets, G_{1} and G_{2}
(3) $\operatorname{owit}\left(G_{1}, v_{1}\right)$ and $\operatorname{owit}\left(G_{2}, v_{2}\right)$.

