From Finite to Infinite

Lajos Soukup

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences

Infinite Graphs, 2007

Soukup, L (Rényi Institute)

From Finite to Infinite

Banff 2007 1 / 74

- the methods of generalizations
- proof of a "finite" theorem vs proof of its "infinite" version.
- basic proof methods
- set-theoretic tools
- nice problems

- the methods of generalizations
- proof of a "finite" theorem vs proof of its "infinite" version.
- basic proof methods
- set-theoretic tools
- nice problems

the methods of generalizations

- proof of a "finite" theorem vs proof of its "infinite" version.
- basic proof methods
- set-theoretic tools
- nice problems

- the methods of generalizations
- proof of a "finite" theorem vs proof of its "infinite" version.
- basic proof methods
- set-theoretic tools
- nice problems

- the methods of generalizations
- proof of a "finite" theorem vs proof of its "infinite" version.
- basic proof methods
- set-theoretic tools
- nice problems

- the methods of generalizations
- proof of a "finite" theorem vs proof of its "infinite" version.
- basic proof methods
- set-theoretic tools

nice problems

- the methods of generalizations
- proof of a "finite" theorem vs proof of its "infinite" version.
- basic proof methods
- set-theoretic tools
- nice problems

A finite graph G = (V, E) is connected iff given any partition (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

Theorem

An **arbitrary** graph G = (V, E) is **connected** iff given any **partition** (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

イロト イ理ト イヨト イヨト

Proof

Let $A = \{z \in V : \exists x - z - path\}$. There is no edge between A and $V \setminus A$. A = V.

A finite graph G = (V, E) is connected iff given any partition (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

Theorem

An **arbitrary** graph G = (V, E) is **connected** iff given any **partition** (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

・ロ・ ・ 一 ・ ・ ヨ ・ ・ ヨ ・ ・

Proof

Let $A = \{z \in V : \exists x \text{-} z \text{-path}\}$. There is no edge between A and $V \setminus A$ A = V.

A finite graph G = (V, E) is connected iff given any partition (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

Theorem

An **arbitrary** graph G = (V, E) is **connected** iff given any **partition** (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

Proof

```
Let A = \{z \in V : \exists x - z - path\}.
There is no edge between A and V \setminus A.
A = V.
```

A finite graph G = (V, E) is connected iff given any partition (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

Theorem

An **arbitrary** graph G = (V, E) is **connected** iff given any **partition** (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

Proof

```
Let A = \{z \in V : \exists x \text{-} z \text{-path}\}.
There is no edge between A and V \setminus A
A = V.
```

A finite graph G = (V, E) is connected iff given any partition (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

Theorem

An **arbitrary** graph G = (V, E) is **connected** iff given any **partition** (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

Proof

```
Let A = \{z \in V : \exists x \text{-} z \text{-} path\}.
```

```
There is no edge between A and V \setminus A.
```

A finite graph G = (V, E) is connected iff given any partition (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

Theorem

An **arbitrary** graph G = (V, E) is **connected** iff given any **partition** (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

Proof

```
Let A = \{z \in V : \exists x \text{-} z \text{-} path\}.
```

There is no edge between A and $V \setminus A$.

A finite graph G = (V, E) is connected iff given any partition (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

Theorem

An **arbitrary** graph G = (V, E) is **connected** iff given any **partition** (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

・ロト ・ 四ト ・ ヨト ・ ヨト

Proof

Let $A = \{z \in V : \exists x \text{-} z \text{-} path\}.$

There is no edge between A and $V \setminus A$.

A finite graph G = (V, E) is connected iff given any partition (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

Theorem

An arbitrary graph G = (V, E) is connected iff given any partition (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

Proof

Let $A = \{z \in V : \exists x \text{-} z \text{-} path\}.$

There is no edge between A and $V \setminus A$.

A finite graph G = (V, E) is connected iff given any partition (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

Theorem

An **arbitrary** graph G = (V, E) is **connected** iff given any **partition** (V_0, V_1) of the vertices into two non-empty sets there is an edge between V_0 and V_1 .

Proof

Let $A = \{z \in V : \exists x \text{-} z \text{-} path\}.$

There is no edge between A and $V \setminus A$.

Finite case

Theorem

Every **finite** connected graph G = (V, E) has a spanning tree.

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

First Proof

Let $T = \langle V, F \rangle$ be a **minimal** connected subgraph of *G*. Then *T* can not contain a circle, so it is a spanning tree. **no infinite version**

Finite case

Theorem

Every **finite** connected graph G = (V, E) has a spanning tree.

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

First Proof

Let $T = \langle V, F \rangle$ be a **minimal** connected subgraph of *G*. Then *T* can not contain a circle, so it is a spanning tree. **no infinite version**

Finite case

Theorem

Every **finite** connected graph G = (V, E) has a spanning tree.

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

First Proof

Let $T = \langle V, F \rangle$ be a **minimal** connected subgraph of *G*. Then *T* can not contain a circle, so it is a spanning tree. **no infinite version**

Finite case

Theorem

Every **finite** connected graph G = (V, E) has a spanning tree.

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

First Proof

Let $T = \langle V, F \rangle$ be a **minimal** connected subgraph of *G*. Then *T* can not contain a circle, so it is a spanning tree. **no infinite version**

Finite case

Theorem

Every finite connected graph G = (V, E) has a spanning tree.

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

First Proof

Let $T = \langle V, F \rangle$ be a **minimal** connected subgraph of *G*. Then *T* can not contain a circle, so it is a spanning tree. **no infinite version**

Finite case

Theorem

Every finite connected graph G = (V, E) has a spanning tree.

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

First Proof

Let $T = \langle V, F \rangle$ be a **minimal** connected subgraph of *G*. Then *T* can not contain a circle, so it is a spanning tree. **no infinite version** how to get a minimal connected subgraph of an infinite graph? an infinite graph *G* may contain a decreasing chain G_0, G_1, \ldots of connected subgraphs of *G* such that $V(G_i) = V(G)$ but $\bigcap_{i \in \mathbb{N}} E(G_i) = \emptyset$.

Finite case

Theorem

Every finite connected graph G = (V, E) has a spanning tree.

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

(I)

First Proof

Let $T = \langle V, F \rangle$ be a minimal connected subgraph of G.

Then T can not contain a circle, so it is a spanning tree.

no infinite version

Finite case

Theorem

Every finite connected graph G = (V, E) has a spanning tree.

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

(I)

First Proof

Let $T = \langle V, F \rangle$ be a **minimal** connected subgraph of *G*.

Then T can not contain a circle, so it is a spanning tree.

no infinite version

Finite case

Theorem

Every finite connected graph G = (V, E) has a spanning tree.

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

(I)

First Proof

Let $T = \langle V, F \rangle$ be a minimal connected subgraph of G.

Then T can not contain a circle, so it is a spanning tree.

no infinite version

Finite case

Theorem

Every finite connected graph G = (V, E) has a spanning tree.

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

(I)

First Proof

Let $T = \langle V, F \rangle$ be a **minimal** connected subgraph of *G*.

Then T can not contain a circle, so it is a spanning tree.

no infinite version

how to get a minimal connected subgraph of an infinite graph?

an infinite graph *G* may contain a decreasing chain $G_0, G_1, ...$ of connected subgraphs of *G* such that $V(G_i) = V(G)$ but $\bigcap_{i \in \mathbb{N}} E(G_i) = \emptyset$.

Finite case

Theorem

Every finite connected graph G = (V, E) has a spanning tree.

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

イロト イポト イヨト イヨト

First Proof

Let $T = \langle V, F \rangle$ be a minimal connected subgraph of *G*.

Then T can not contain a circle, so it is a spanning tree.

no infinite version

Finite case

Theorem

Every finite connected graph G = (V, E) has a spanning tree.

Second Proof

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

 $\mathcal{T} = \{ \text{ connected subtrees of } G \}$ $\langle \mathcal{T}, \subset \rangle$ has a maximal element T by **Zorn's lemm** Let T be a maximal connected subtree of G. There is no edge between V(T) and $V \setminus V(T)$. V(T) = V.

Finite case

Theorem

Every finite connected graph G = (V, E) has a spanning tree.

Second Proof

$T = \{ \text{ connected subtrees of } G \}$

 $\langle \mathcal{T}, \subset
angle$ has a maximal element \mathcal{T} by **Zorn's lemma**

Let T be a maximal connected subtree of G.

There is no edge between V(T) and $V \setminus V(T)$.

V(T) = V

Zorn's Lemma, Axiom of Choice. Really need?

General case

Every connected graph

G = (V, E) has a spanning tree.

Theorem

Finite case

Theorem

Every finite connected graph G = (V, E) has a spanning tree.

Second Proof

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

 $\mathcal{T} = \{ \text{ connected subtrees of } \boldsymbol{G} \}$

 $\langle \mathcal{T}, \subset \rangle$ has a maximal element T by **Zorn's lemma**

Let *T* be a maximal connected subtree of *G*.

There is no edge between V(T) and $V \setminus V(T)$.

V(T) = V

Finite case

Theorem

Every finite connected graph G = (V, E) has a spanning tree.

Second Proof

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

 $\mathcal{T} = \{ \text{ connected subtrees of } G \}$

 $\langle \mathcal{T}, \subset \rangle$ has a maximal element \mathcal{T} by **Zorn's lemma**

Let *T* be a maximal connected subtree of *G*. There is no edge between V(T) and $V \setminus V(T)$. V(T) = V.

Finite case

Theorem

Every finite connected graph G = (V, E) has a spanning tree.

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

Second Proof

 $\mathcal{T} = \{ \text{ connected subtrees of } G \}$

 $\langle T, \subset \rangle$ has a maximal element T by **Zorn's lemma**

Let T be a maximal connected subtree of G.

There is no edge between V(T) and $V \setminus V(T)$.

V(T) = V.

Finite case

Theorem

Every finite connected graph G = (V, E) has a spanning tree.

Second Proof

$$\mathcal{T} = \{ \text{ connected subtrees of } G \}$$

 $\langle \mathcal{T}, \subset \rangle$ has a maximal element T by Zorn's lemma

Let T be a maximal connected subtree of G.

There is no edge between V(T) and $V \setminus V(T)$.

V(T) = V.

Zorn's Lemma, Axiom of Choice. Really need?

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

Finite case

Theorem

Every finite connected graph G = (V, E) has a spanning tree.

Second Proof

General case

Theorem

Every connected graph G = (V, E) has a spanning tree.

$\mathcal{T} = \{ \text{ connected subtrees of } G \}$

 $\langle \mathcal{T}, \subset \rangle$ has a maximal element \mathcal{T} by Zorn's lemma

Let T be a maximal connected subtree of G.

There is no edge between V(T) and $V \setminus V(T)$.

V(T) = V.

Zorn's Lemma, Axiom of Choice. Really need?

Soukup, L (Rényi Institute)

Finite case

Theorem

Every finite connected graph G = (V, E) has a spanning tree.

Second Proof

$\mathcal{T} = \{ \text{ connected subtrees of } G \}$

 $\langle \mathcal{T}, \subset \rangle$ has a maximal element \mathcal{T} by Zorn's lemma

Let T be a maximal connected subtree of G.

There is no edge between V(T) and $V \setminus V(T)$.

V(T) = V.

Zorn's Lemma, Axiom of Choice. Really need?

Soukup, L (Rényi Institute)

General case

Every connected graph

G = (V, E) has a spanning tree.

Theorem

Theorem

If every connected graph has a spanning tree then the Axiom of Choice holds.

 $\mathcal{A} = \{A_i : i \in I\} \text{ a family of non-empty sets. } A_i \cap A_j = \emptyset$ $V = \{x\} \cup \{y_i, z_i : i \in I\} \cup \cup \{A_i : i \in I\},$ $E = \{xy_i : i \in I\} \cup \cup_{i \in I} \{y_i a, az_i : a \in A_i\}.$ G is connected, T = (V, F) spanning tree.

- (i) $\{xy_i: i \in I\} \subset F$,
- (ii) $\forall i \in I \exists !a_i \in A_i \text{ s.t. } y_i a_i, a_i z_i \in F$,
- (iii) $\forall a \in A_i \setminus \{a_i\} (y_i a \in F \text{ iff } az_i \notin F).$
- $f(i) = a_i$ is a choice function for A

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$\mathcal{A} = \{A_i : i \in I\}$ a family of non-empty sets. $A_i \cap A_j = \emptyset$

 $\mathcal{A} = \{A_i : i \in I\} \text{ a family of non-empty sets. } A_i \cap A_j = \emptyset$ $\mathbf{V} = \{x\} \cup \{y_i, z_i : i \in I\} \cup \cup \{A_i : i \in I\},$

 $\mathcal{A} = \{A_i : i \in I\} \text{ a family of non-empty sets. } A_i \cap A_j = \emptyset$ $\mathbf{V} = \{x\} \cup \{y_i, z_i : i \in I\} \cup \cup \{A_i : i \in I\},$ $\mathbf{E} = \{xy_i : i \in I\} \cup \cup_{i \in I} \{y_i a, az_i : a \in A_i\}.$

 $\mathcal{A} = \{A_i : i \in I\} \text{ a family of non-empty sets. } A_i \cap A_j = \emptyset$ $\mathbf{V} = \{x\} \cup \{y_i, z_i : i \in I\} \cup \cup \{A_i : i \in I\},$ $\mathbf{E} = \{xy_i : i \in I\} \cup \cup_{i \in I} \{y_i a, az_i : a \in A_i\}.$ G is connected,

 $\mathcal{A} = \{A_i : i \in I\} \text{ a family of non-empty sets. } A_i \cap A_j = \emptyset$ $\mathsf{V} = \{x\} \cup \{y_i, z_i : i \in I\} \cup \cup \{A_i : i \in I\},$ $\mathsf{E} = \{xy_i : i \in I\} \cup \cup_{i \in I} \{y_i a, az_i : a \in A_i\}.$ $G \text{ is connected, } T = (\mathsf{V}, \mathsf{F}) \text{ spanning tree.}$

 $\mathcal{A} = \{A_i : i \in I\} \text{ a family of non-empty sets. } A_i \cap A_j = \emptyset$ $\mathbf{V} = \{x\} \cup \{y_i, z_i : i \in I\} \cup \cup \{A_i : i \in I\},$ $\mathbf{E} = \{xy_i : i \in I\} \cup \cup_{i \in I} \{y_i a, az_i : a \in A_i\}.$ $G \text{ is connected, } \mathbf{T} = (\mathbf{V}, \mathbf{F}) \text{ spanning tree.}$

(i) $\{xy_i : i \in I\} \subset F$,

 $\mathcal{A} = \{A_i : i \in I\} \text{ a family of non-empty sets. } A_i \cap A_j = \emptyset$ $\mathbf{V} = \{x\} \cup \{y_i, z_i : i \in I\} \cup \cup \{A_i : i \in I\},$ $\mathbf{E} = \{xy_i : i \in I\} \cup \cup_{i \in I} \{y_i a, az_i : a \in A_i\}.$ $G \text{ is connected, } \mathbf{T} = (\mathbf{V}, \mathbf{F}) \text{ spanning tree.}$

(i) $\{xy_i : i \in I\} \subset F$, (ii) $\forall i \in I \exists !a_i \in A_i \text{ s.t. } y_ia_i, a_iz_i \in F$,

 $\mathcal{A} = \{A_i : i \in I\}$ a family of non-empty sets. $A_i \cap A_i = \emptyset$ $V = \{x\} \cup \{y_i, z_i : i \in I\} \cup \cup \{A_i : i \in I\},\$ $\boldsymbol{E} = \{\boldsymbol{x}\boldsymbol{y}_i : i \in I\} \cup \bigcup_{i \in I} \{\boldsymbol{y}_i \boldsymbol{a}, \boldsymbol{a}\boldsymbol{z}_i : \boldsymbol{a} \in \boldsymbol{A}_i\}.$ G is connected, T = (V, F) spanning tree.

(i) $\{xy_i : i \in I\} \subset F$, (ii) $\forall i \in I \exists !a_i \in A_i \text{ s.t. } y_ia_i, a_iz_i \in F$, (iii) $\forall a \in A_i \setminus \{a_i\} (y_i a \in F \text{ iff } az_i \notin F).$

Soukup, L (Rénvi Institute)

From Finite to Infinite

 $\mathcal{A} = \{A_i : i \in I\} \text{ a family of non-empty sets. } A_i \cap A_j = \emptyset$ $\mathbf{V} = \{x\} \cup \{y_i, z_i : i \in I\} \cup \cup \{A_i : i \in I\},$ $\mathbf{E} = \{xy_i : i \in I\} \cup \cup_{i \in I} \{y_i a, az_i : a \in A_i\}.$ $G \text{ is connected, } \mathbf{T} = (\mathbf{V}, \mathbf{F}) \text{ spanning tree.}$

(i)
$$\{xy_i : i \in I\} \subset F$$
,
(ii) $\forall i \in I \exists !a_i \in A_i \text{ s.t. } y_ia_i, a_iz_i \in F$,
(iii) $\forall a \in A_i \setminus \{a_i\} (y_ia \in F \text{ iff } az_i \notin F)$.

 $-f(i) = a_i$ is a choice function for A

Soukup, L (Rényi Institute)

Definition

Let G = (V, E) be a graph. A **partition** (A, B) of V is called **unfriendly** iff every vertex has at least as many neighbor in the other class as in its own.

Image: A matrix and a matrix

- **- -** - **-** - **-**

Definition

Let G = (V, E) be a graph. A **partition** (A, B) of V is called **unfriendly** iff every vertex has at least as many neighbor in the other class as in its own.

Observation

Every finite graph has an unfriendly partition.

Definition

Let G = (V, E) be a graph. A **partition** (A, B) of V is called **unfriendly** iff every vertex has at least as many neighbor in the other class as in its own.

Observation

Every finite graph has an unfriendly partition.

Unfriendly Partition Conjecture

Every graph has an unfriendly partition.

- A 🖻 🕨

Definition

Let G = (V, E) be a graph. A **partition** (A, B) of V is called **unfriendly** iff every vertex has at least as many neighbor in the other class as in its own.

Observation

Every finite graph has an unfriendly partition.

Unfriendly Partition Conjecture

Every graph has an unfriendly partition.

Theorem (Shelah)

There is an uncountable graph without an unfriendly partition.

Soukup, L (Rényi Institute)

イロト イポト イヨト イヨト

Soukup, L (Rényi Institute)

Theorem (Shelah)

Every graph has a **partition into three pieces** such that every vertex has at least as many neighbor in the two other classes as in its own.

Theorem (Shelah)

Every graph has a **partition into three pieces** such that every vertex has at least as many neighbor in the two other classes as in its own.

Theorem

Every locally finite graph has an unfriendly partition.

- A 🖻 🕨

Proof: locally finite graphs have unfriendly partitions

Soukup, L (Rényi Institute)

From Finite to Infinite

Banff 2007 10 / 74

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Natural aproach:

Proof: locally finite graphs have unfriendly partitions

Natural aproach: König's Lemma instead of Gödel's Theorem

Natural aproach: König's Lemma instead of Gödel's Theorem $G = \langle V, E \rangle$ locally finite,

Natural aproach:**König's Lemma** instead of **Gödel's Theorem** $G = \langle V, E \rangle$ locally finite, enumerate $V = \{x_0, x_1, ...\}$ Natural aproach:**König's Lemma** instead of **Gödel's Theorem** $G = \langle V, E \rangle$ locally finite, enumerate $V = \{x_0, x_1, ...\}$ $T_n = \{(A, B) : \text{ an unfriendly partition of } G[x_0, ..., x_n]\}$ Natural aproach:**König's Lemma** instead of **Gödel's Theorem** $G = \langle V, E \rangle$ locally finite, enumerate $V = \{x_0, x_1, ...\}$ $T_n = \{(A, B) : \text{ an unfriendly partition of } G[x_0, ..., x_n]\}$ $T = \{\cup T_n, \subset\}$ Natural aproach:**König's Lemma** instead of **Gödel's Theorem** $G = \langle V, E \rangle$ locally finite, enumerate $V = \{x_0, x_1, ...\}$ $T_n = \{(A, B) : \text{ an unfriendly partition of } G[x_0, ..., x_n]\}$ $T = \{\cup T_n, \subset\}$ can not apply König's Lemma Natural aproach: **König's Lemma** instead of **Gödel's Theorem** $G = \langle V, E \rangle$ locally finite, enumerate $V = \{x_0, x_1, ...\}$ $T_n = \{(A, B) : \text{ an unfriendly partition of } G[x_0, ..., x_n]\}$ $T = \{\cup T_n, \subset\}$ can not apply König's Lemma $T_n \neq$ the *n*th-level of T

Theorem (Gödel)

A theory T has a model provided every finite subset of T has a model.

Soukup, L (Rényi Institute)

・ロト ・ 同ト ・ ヨト ・ ヨ

G = (V, E) locally finite graph

.

イロト イポト イヨト イヨ

G = (V, E) locally finite graph Language: $\{c_v : v \in V\}$ constant symbols, R_A and R_B are unary relation symbols.

.

・ロト ・ 同ト ・ ヨト ・ ヨ

G = (V, E) locally finite graph Language: $\{c_v : v \in V\}$ constant symbols, R_A and R_B are unary relation symbols. Formulas: ψ : $\forall x \ (R_A(x) \leftrightarrow \neg R_B(x))$

・ロト ・ 同ト ・ ヨト ・ ヨ

G = (V, E) locally finite graph **Language:** $\{c_v : v \in V\}$ constant symbols, R_A and R_B are unary relation symbols. Formulas: ψ : $\forall x \ (R_A(x) \leftrightarrow \neg R_B(x))$ for all $v \in V$ write $\mathcal{F}_V = \{C \subset E(v) : |F| \ge |E(v)|/2\}$

< □ > < □ > < □ > < □ > < □ </pre>

G = (V, E) locally finite graph **Language:** { $c_v : v \in V$ } constant symbols, R_A and R_B are unary relation symbols. **Formulas:** ψ : $\forall x \ (R_A(x) \leftrightarrow \neg R_B(x))$ for all $v \in V$ write $\mathcal{F}_V = \{C \subset E(v) : |F| \ge |E(v)|/2\}$ and put $\varphi_{V,A}$: $R_A(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_V} \bigwedge_{x \in F} R_B(c_x)$

 $\begin{array}{l} G = (V, E) \text{ locally finite graph} \\ \textbf{Language:} \{c_v : v \in V\} \text{ constant symbols, } R_A \text{ and } R_B \text{ are unary} \\ \text{relation symbols.} \\ \textbf{Formulas: } \psi : \forall x \ (R_A(x) \leftrightarrow \neg R_B(x)) \\ \text{for all } v \in V \text{ write } \mathcal{F}_v = \{C \subset E(v) : |F| \geq |E(v)|/2\} \text{ and put} \\ \varphi_{v,A} : R_A(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_B(c_x) \\ \varphi_{v,B} : R_B(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_A(c_x) \end{array}$

 $\begin{array}{l} G = (V, E) \text{ locally finite graph} \\ \textbf{Language:} \{c_v : v \in V\} \text{ constant symbols, } R_A \text{ and } R_B \text{ are unary relation symbols.} \\ \textbf{Formulas: } \psi : \forall x \; (R_A(x) \leftrightarrow \neg R_B(x)) \\ \text{for all } v \in V \text{ write } \mathcal{F}_v = \{C \subset E(v) : |F| \geq |E(v)|/2\} \text{ and put} \\ \varphi_{v,A} : \; R_A(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_B(c_x) \\ \varphi_{v,B} : \; R_B(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_A(c_x) \\ \textbf{Theory: } T = \{\psi, \varphi_{v,A}, \varphi_{v,B} : v \in V\} \end{array}$

 $\begin{array}{l} G = (V, E) \text{ locally finite graph} \\ \textbf{Language:} \{c_v : v \in V\} \text{ constant symbols, } R_A \text{ and } R_B \text{ are unary relation symbols.} \\ \textbf{Formulas: } \psi : \forall x \; (R_A(x) \leftrightarrow \neg R_B(x)) \\ \text{for all } v \in V \text{ write } \mathcal{F}_v = \{C \subset E(v) : |F| \geq |E(v)|/2\} \text{ and put} \\ \varphi_{v,A} : \; R_A(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_B(c_x) \\ \varphi_{v,B} : \; R_B(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_A(c_x) \\ \textbf{Theory: } T = \{\psi, \varphi_{v,A}, \varphi_{v,B} : v \in V\} \end{array}$

Claim

Every $T' \in [T]^{<\omega}$ has a model.

イロト イ理ト イヨト イヨト 三星

 $\begin{array}{l} G = (V, E) \text{ locally finite graph} \\ \textbf{Language:} \; \{c_v : v \in V\} \text{ constant symbols, } R_A \text{ and } R_B \text{ are unary relation symbols.} \\ \textbf{Formulas: } \psi : \forall x \; (R_A(x) \leftrightarrow \neg R_B(x)) \\ \text{for all } v \in V \text{ write } \mathcal{F}_v = \{C \subset E(v) : |F| \geq |E(v)|/2\} \text{ and put} \\ \varphi_{v,A} : \; R_A(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_B(c_x) \\ \varphi_{v,B} : \; R_B(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_A(c_x) \\ \textbf{Theory: } T = \{\psi, \varphi_{v,A}, \varphi_{v,B} : v \in V\} \end{array}$

Claim

Every $T' \in [T]^{<\omega}$ has a model.

Let $W = \{v : c_v \text{ occurs in } T'\}.$

イロト イ理ト イヨト イヨト 三星

 $\begin{array}{l} G = (V, E) \text{ locally finite graph} \\ \textbf{Language:} \{c_v : v \in V\} \text{ constant symbols, } R_A \text{ and } R_B \text{ are unary relation symbols.} \\ \textbf{Formulas: } \psi : \forall x \; (R_A(x) \leftrightarrow \neg R_B(x)) \\ \text{for all } v \in V \text{ write } \mathcal{F}_v = \{C \subset E(v) : |F| \geq |E(v)|/2\} \text{ and put} \\ \varphi_{v,A} : R_A(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_B(c_x) \\ \varphi_{v,B} : R_B(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_A(c_x) \\ \textbf{Theory: } T = \{\psi, \varphi_{v,A}, \varphi_{v,B} : v \in V\} \end{array}$

Claim

Every $T' \in [T]^{<\omega}$ has a model.

Let $W = \{v : c_v \text{ occurs in } T'\}$. Then G[W] has an unfriendly partition (A, B).

イロト イポト イヨト イヨト 二年

 $\begin{array}{l} G = (V, E) \text{ locally finite graph} \\ \textbf{Language:} \{c_v : v \in V\} \text{ constant symbols, } R_A \text{ and } R_B \text{ are unary relation symbols.} \\ \textbf{Formulas: } \psi : \forall x \; (R_A(x) \leftrightarrow \neg R_B(x)) \\ \text{for all } v \in V \text{ write } \mathcal{F}_v = \{C \subset E(v) : |F| \geq |E(v)|/2\} \text{ and put} \\ \varphi_{v,A} : R_A(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_B(c_x) \\ \varphi_{v,B} : R_B(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_A(c_x) \\ \textbf{Theory: } T = \{\psi, \varphi_{v,A}, \varphi_{v,B} : v \in V\} \end{array}$

Claim

Every $T' \in [T]^{<\omega}$ has a model.

Let $W = \{v : c_v \text{ occurs in } T'\}$. Then G[W] has an unfriendly partition (A, B). Let M be the following model: the underlying set M is W, c_v is interpreted as v for $v \in W$, and R_A is interpreted as A and R_B is interpreted as B.

Soukup, L (Rényi Institute)

 $\begin{array}{l} G = (V, E) \text{ locally finite graph} \\ \textbf{Language:} \{c_v : v \in V\} \text{ constant symbols, } R_A \text{ and } R_B \text{ are unary relation symbols.} \\ \textbf{Formulas: } \psi : \forall x \; (R_A(x) \leftrightarrow \neg R_B(x)) \\ \text{for all } v \in V \text{ write } \mathcal{F}_v = \{C \subset E(v) : |F| \geq |E(v)|/2\} \text{ and put} \\ \varphi_{v,A} : R_A(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_B(c_x) \\ \varphi_{v,B} : R_B(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_A(c_x) \\ \textbf{Theory: } T = \{\psi, \varphi_{v,A}, \varphi_{v,B} : v \in V\} \end{array}$

Claim

Every $T' \in [T]^{<\omega}$ has a model.

Let $W = \{v : c_v \text{ occurs in } T'\}$. Then G[W] has an unfriendly partition (A, B). Let M be the following model: the underlying set M is W, c_v is interpreted as v for $v \in W$, and R_A is interpreted as A and R_B is interpreted as B. $M \models T'$.

 $\begin{array}{l} G = (V, E) \text{ locally finite graph} \\ \textbf{Language:} \{c_v : v \in V\} \text{ constant symbols, } R_A \text{ and } R_B \text{ are unary relation symbols.} \\ \textbf{Formulas: } \psi : \forall x \; (R_A(x) \leftrightarrow \neg R_B(x)) \\ \text{for all } v \in V \text{ write } \mathcal{F}_v = \{C \subset E(v) : |F| \geq |E(v)|/2\} \text{ and put} \\ \varphi_{v,A} : \; R_A(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_B(c_x) \\ \varphi_{v,B} : \; R_B(c_v) \rightarrow \bigvee_{F \in \mathcal{F}_v} \bigwedge_{x \in F} R_A(c_x) \\ \textbf{Theory: } T = \{\psi, \varphi_{v,A}, \varphi_{v,B} : v \in V\} \end{array}$

Claim

Every $T' \in [T]^{<\omega}$ has a model.

Let *M* be a model of *T* and let $A = \{v \in V : M \models R_A(c_v)\}$ and $B = \{v \in V : M \models R_B(c_v)\}$.

イロン イ理 とくほどく ほどう ほ

Theorem

Every locally finite graph has an unfriendly partition.

イロト イポト イヨト イヨ

Theorem

Every locally finite graph has an unfriendly partition.

Fact

If G = (V, E) is countable and every $v \in V$ has infinite degree then G has an unfriendly partition.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem

Every locally finite graph has an unfriendly partition.

Fact

If G = (V, E) is countable and every $v \in V$ has infinite degree then G has an unfriendly partition.

Unfriendly Partition Conjecture, revised

Every countable graph has an unfriendly partition.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Soukup, L (Rényi Institute)

イロト イヨト イヨト イ

Question

Let G = (V, E) be a **locally finite** graph and $V' \subset V$ such that V' is **"rare"** (e.g the distances are large between the elements of V' in G). Is it true that every partition (A', B') of V' can be **extended** to an unfriendly partition (A, B) of G?

Question

Let G = (V, E) be a **locally finite** graph and $V' \subset V$ such that V' is **"rare"** (e.g the distances are large between the elements of V' in G). Is it true that every partition (A', B') of V' can be **extended** to an unfriendly partition (A, B) of G?

Answer

No, V. Bonifaci gave a very strong counterexample.

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem (Bonifaci)

There is a locally finite infinite graph with **exactly one** unfriendly partition.

Image: A matrix and a matrix

- 4 ∃ ▶

Theorem (Bonifaci)

There is a locally finite infinite graph with **exactly one** unfriendly partition.

vertices: in columns

Theorem (Bonifaci)

There is a locally finite infinite graph with **exactly one** unfriendly partition.

vertices: in columns edges: between neighbouring columns

Theorem (Bonifaci)

There is a locally finite infinite graph with **exactly one** unfriendly partition.

vertices: in columns edges: between neighbouring columns

Theorem (Bonifaci)

There is a locally finite infinite graph with **exactly one** unfriendly partition.

vertices: in columns edges: between neighbouring columns

Theorem (Bonifaci)

There is a locally finite infinite graph with **exactly one** unfriendly partition.

vertices: in columns **edges**: between neighbouring columns column of size *n*

Theorem (Bonifaci)

There is a locally finite infinite graph with **exactly one** unfriendly partition.

vertices: in columns edges: between neighbouring columns column of size *n* red or blue majority in the neighbouring columns

Theorem (Bonifaci)

There is a locally finite infinite graph with **exactly one** unfriendly partition.

vertices: in columns edges: between neighbouring columns column of size nred or blue majority in the neighbouring columns blue majority \implies the column is red.

Theorem (Bonifaci)

There is a locally finite infinite graph with **exactly one** unfriendly partition.

vertices: in columns edges: between neighbouring columns column of size nred or blue majority in the neighbouring columns blue majority \implies the column is red. next column is also

next column is also monochromatic: it should be **blue**.

• • • • • • • • • • • •

Soukup, L (Rényi Institute)

イロト イヨト イヨト イ

Definition

Let T = (V, E) be a tournament and let $t \in V$.

Soukup, L (Rényi Institute)

Definition

Let T = (V, E) be a tournament and let $t \in V$. *t* is a *pseudo-winner*

Image: A matrix

Definition

Let T = (V, E) be a tournament and let $t \in V$. *t* is a *pseudo-winner* iff for each $y \in V$ there is a **path of length at most** 2 which leads from *t* to *y*.

Soukup, L (Rényi Institute)

Finite case

Image: A matching of the second se

Finite case

Theorem

Every finite tournament has a pseudo-winner.

★ ∃ ► ★ ∃

Finite case

Theorem

Every finite tournament has a pseudo-winner.

Proof

If *t* has maximal out-degree then *t* is a pseudo-winner.

Image: Image:

Finite case

Theorem

Every finite tournament has a pseudo-winner.

Proof

If *t* has maximal out-degree then *t* is a pseudo-winner.

Infinite case

Image: Image:

Finite case

Theorem

Every finite tournament has a pseudo-winner.

Proof

If *t* has maximal out-degree then *t* is a pseudo-winner.

Infinite case

Observation

No pseudo-winner in $\langle \mathbb{Z}, < \rangle$.

Image: A matrix and a matrix

- < 注 → < 注

Finite case

Theorem

Every finite tournament has a pseudo-winner.

Proof

If t has maximal out-degree then t is a pseudo-winner.

Infinite case

Observation

No pseudo-winner in $\langle \mathbb{Z}, < \rangle.$

Theorem

A tournament *T* contains a pseudo-winner

Finite case

Theorem

Every finite tournament has a pseudo-winner.

Proof

If *t* has maximal out-degree then *t* is a pseudo-winner.

Infinite case

Observation

No pseudo-winner in $\langle \mathbb{Z}, < \rangle$.

Theorem

A tournament *T* contains a pseudo-winner or $\exists x \neq y \in V$ s.t. $T = Out(x) \cup In(y)$.

Finite case

Theorem

Every finite tournament has a pseudo-winner.

Proof

If t has maximal out-degree then t is a pseudo-winner.

Infinite case

Observation

No pseudo-winner in $\langle \mathbb{Z}, < \rangle$.

Theorem

A tournament *T* contains a pseudo-winner or $\exists x \neq y \in V$ s.t. $T = Out(x) \cup In(y)$.

Proof

If y is not a pseudo-winner witnessed by x, then $T = Out(x) \cup In(y).$

Quasi Kernels and Quasi Sinks

Soukup, L (Rényi Institute)

イロト イヨト イヨト イ

Theorem (Chvatal, Lovász)

Every finite digraph (i.e. directed graph) contains a quasi-kernel

- E - N

Theorem (Chvatal, Lovász)

Every finite **digraph** (i.e. directed graph) contains a **quasi-kernel** (i.e it contains an **independent set** A

Theorem (Chvatal, Lovász)

Every finite **digraph** (i.e. directed graph) contains a **quasi-kernel** (i.e it contains an **independent set** A such that for each point v

Theorem (Chvatal, Lovász)

Every finite **digraph** (i.e. directed graph) contains a **quasi-kernel** (i.e it contains an **independent set** A such that for each point v there is a **path of length at most** 2 from some point of A to v.

joint work of P. L. Erdős, A. Hajnal and —

What is the right question?

Soukup, L (Rényi Institute)

Image: A matching of the second se

joint work of P. L. Erdős, A. Hajnal and —

What is the right question?

Soukup, L (Rényi Institute)

• • • • • • • • • • • •

joint work of P. L. Erdős, A. Hajnal and —

What is the right question?

Soukup, L (Rényi Institute)

A directed graph G = (V, E) has a quasi-kernel, provided (a) or (b) below holds: (a) $\ln(x)$ is finite for each $x \in V$, (b) the chromatic number of G is finite.

• □ ▶ • • □ ▶ • □ ▶ •

A directed graph G = (V, E) has a quasi-kernel, provided (a) or (b) below holds:

(a) ln(x) is **finite** for each $x \in V$,

(b) the chromatic number of G is finite.

4 A N

A directed graph G = (V, E) has a quasi-kernel, provided (a) or (b) below holds: (a) $\ln(x)$ is finite for each $x \in V$,

(b) the chromatic number of G is finite.

A directed graph G = (V, E) has a quasi-kernel, provided (a) or (b) below holds:

- (a) $\ln(x)$ is **finite** for each $x \in V$,
- (b) the chromatic number of G is finite.

4 A N

Let G = (V, E) be a digraph.

An **independent set** *A* is a **quasi-kernel** iff for each $v \in V$ there is a **path of length at most** 2 which leads **from some points of** *A* **to** *v*. An **independent set** *B* is a **quasi-sink** iff for each $v \in V$ there is a path of length at most 2 which leads **from** *v* **to some points of** *B*.

Let G = (V, E) be a digraph. An independent set *A* is a quasi-kernel iff for each $v \in V$ there is a path of length at most 2 which leads from some points of *A* to *v*. An independent set *B* is a quasi-sink iff for each $v \in V$ there is a path of length at most 2 which leads from *v* to some points of *B*.

Let G = (V, E) be a digraph.

An independent set *A* is a **quasi-kernel** iff for each $v \in V$ there is a **path of length at most** 2 which leads from some points of *A* to *v*. An independent set *B* is a **quasi-sink** iff for each $v \in V$ there is a path of length at most 2 which leads from *v* to some points of *B*.

Let G = (V, E) be a digraph.

An independent set *A* is a quasi-kernel iff for each $v \in V$ there is a path of length at most 2 which leads from some points of *A* to *v*. An independent set *B* is a quasi-sink iff for each $v \in V$ there is a path of length at most 2 which leads from *v* to some points of *B*.

Let G = (V, E) be a digraph.

An **independent set** *A* is a **quasi-kernel** iff for each $v \in V$ there is a **path of length at most** 2 which leads **from some points of** *A* **to** *v*. An **independent set** *B* is a **quasi-sink** iff for each $v \in V$ there is a path of length at most 2 which leads **from** *v* **to some points of** *B*.

If G = (V, E) is a digraph define the *undirected* complement of the graph, $\tilde{G} = (V, \tilde{E})$ as follows: $\{x, y\} \in \tilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let G = (V, E) be a directed graph. Then V has a **partition** (V_0, V_1) such that $G[V_0]$ has a **quasi-kernel**, and $G[V_1]$ has a **quasi-sink** provided (a) or (b) below holds:

- (a) K_n ∉ G for some n ≥ 2. (Especially, if the chromatic number of G is finite.)
- (b) \widetilde{G} is locally finite.

If G = (V, E) is a digraph define the *undirected* complement of the graph, $\tilde{G} = (V, \tilde{E})$ as follows: $\{x, y\} \in \tilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let G = (V, E) be a directed graph. Then V has a **partition** (V_0, V_1) such that $G[V_0]$ has a **quasi-kernel**, and $G[V_1]$ has a **quasi-sink** provided (a) or (b) below holds:

- (a) K_n ∉ G for some n ≥ 2. (Especially, if the chromatic number of G is finite.)
- (b) \widetilde{G} is locally finite.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

If G = (V, E) is a digraph define the *undirected* complement of the graph, $\tilde{G} = (V, \tilde{E})$ as follows: $\{x, y\} \in \tilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let G = (V, E) be a directed graph. Then V has a **partition** (V_0, V_1) such that $G[V_0]$ has a **quasi-kernel**, and $G[V_1]$ has a **quasi-sink** provided (a) or (b) below holds:

- (a) K_n ∉ G for some n ≥ 2. (Especially, if the chromatic number of G is finite.)
- (b) \widetilde{G} is locally finite.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

If G = (V, E) is a digraph define the *undirected* complement of the graph, $\tilde{G} = (V, \tilde{E})$ as follows: $\{x, y\} \in \tilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let G = (V, E) be a directed graph. Then V has a partition (V_0, V_1) such that $G[V_0]$ has a **quasi-kernel**, and $G[V_1]$ has a **quasi-sink** provided (a) or (b) below holds:

(a) K_n ∉ G for some n ≥ 2. (Especially, if the chromatic number of G is finite.)

(b) G is locally finite.

If G = (V, E) is a digraph define the *undirected* complement of the graph, $\tilde{G} = (V, \tilde{E})$ as follows: $\{x, y\} \in \tilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let G = (V, E) be a directed graph. Then V has a **partition** (V_0, V_1) such that $G[V_0]$ has a **quasi-kernel**, and $G[V_1]$ has a **quasi-sink** provided (a) or (b) below holds:

(a) K_n ∉ G for some n ≥ 2. (Especially, if the chromatic number of G is finite.)

(b) G is locally finite.

If G = (V, E) is a digraph define the *undirected* complement of the graph, $\tilde{G} = (V, \tilde{E})$ as follows: $\{x, y\} \in \tilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let G = (V, E) be a directed graph. Then V has a **partition** (V_0, V_1) such that $G[V_0]$ has a **quasi-kernel**, and $G[V_1]$ has a **quasi-sink** provided (a) or (b) below holds:

(a) $K_n \not\subseteq G$ for some $n \ge 2$. (Especially, if the **chromatic number** of G is finite.)

(b) G is locally finite.

If G = (V, E) is a digraph define the *undirected* complement of the graph, $\tilde{G} = (V, \tilde{E})$ as follows: $\{x, y\} \in \tilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let G = (V, E) be a directed graph. Then V has a **partition** (V_0, V_1) such that $G[V_0]$ has a **quasi-kernel**, and $G[V_1]$ has a **quasi-sink**

provided (a) or (b) below holds:

(a) K_n ∉ G for some n ≥ 2. (Especially, if the chromatic number of G is finite.)

(b) G is locally finite.

If G = (V, E) is a digraph define the *undirected* complement of the graph, $\tilde{G} = (V, \tilde{E})$ as follows: $\{x, y\} \in \tilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let G = (V, E) be a directed graph. Then V has a **partition** (V_0, V_1) such that $G[V_0]$ has a **quasi-kernel**, and $G[V_1]$ has a **quasi-sink** provided (a) or (b) below holds:

(a) K_n ∉ G for some n ≥ 2. (Especially, if the chromatic number of G is finite.)

(b) G is locally finite.

イロト イポト イヨト イヨト 三旦

If G = (V, E) is a digraph define the *undirected* complement of the graph, $\tilde{G} = (V, \tilde{E})$ as follows: $\{x, y\} \in \tilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let G = (V, E) be a directed graph. Then V has a **partition** (V_0, V_1) such that $G[V_0]$ has a **quasi-kernel**, and $G[V_1]$ has a **quasi-sink** provided (a) or (b) below holds:

(a) K_n ∉ G for some n ≥ 2. (Especially, if the chromatic number of G is finite.)

(b) *G* is locally finite.

If G = (V, E) is a digraph define the *undirected* complement of the graph, $\tilde{G} = (V, \tilde{E})$ as follows: $\{x, y\} \in \tilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let G = (V, E) be a directed graph. Then V has a **partition** (V_0, V_1) such that $G[V_0]$ has a **quasi-kernel**, and $G[V_1]$ has a **quasi-sink** provided (a) or (b) below holds:

(a) K_n ∉ G for some n ≥ 2. (Especially, if the chromatic number of G is finite.)

(b) G is locally finite.

If G = (V, E) is a digraph define the *undirected* complement of the graph, $\tilde{G} = (V, \tilde{E})$ as follows: $\{x, y\} \in \tilde{E}$ if and only if $(x, y) \notin E$ and $(y, x) \notin E$.

Theorem

Let G = (V, E) be a directed graph. Then V has a **partition** (V_0, V_1) such that $G[V_0]$ has a **quasi-kernel**, and $G[V_1]$ has a **quasi-sink** provided (a) or (b) below holds:

- (a) K_n ∉ G for some n ≥ 2. (Especially, if the chromatic number of G is finite.)
- (b) \widetilde{G} is locally finite.

Theorem

For each **directed graph** G = (V, E) there are **disjoint, independent subsets** *A* and *B* of *V* such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of *A* to *v*, or from *v* to some point of *B*.

Theorem

For each directed graph G = (V, E) there are disjoint, independent subsets *A* and *B* of *V* such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of *A* to *v*, or from *v* to some point of *B*.

Theorem

For each directed graph G = (V, E) there are disjoint, independent subsets *A* and *B* of *V* such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of *A* to *v*, or from *v* to some point of *B*.

Theorem

For each **directed graph** G = (V, E) there are **disjoint**, **independent subsets** A and B of V such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of A to v, or from v to some point of B.

Theorem

For each **directed graph** G = (V, E) there are **disjoint**, **independent subsets** *A* and *B* of *V* such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of *A* to *v*, or from *v* to some point of *B*.

Theorem

For each **directed graph** G = (V, E) there are **disjoint, independent subsets** A and B of V such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of A to v, or from v to some point of B.

For each **directed graph** G = (V, E) there are **disjoint, independent subsets** A and B of V such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of A to v, or from v to some point of B.

Conjecture

For each digraph G = (V, E) there is a **partition** (V_0, V_1) of *V* such that $G[V_0]$ has a **quasi-kernel**, and $G[V_1]$ has a **quasi-sink**.

• □ ▶ • @ ▶ • E ▶ • E ▶

For each **directed graph** G = (V, E) there are **disjoint, independent subsets** A and B of V such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of A to v, or from v to some point of B.

Conjecture

For each digraph G = (V, E) there is a **partition** (V_0, V_1) of *V* such that $G[V_0]$ has a **quasi-kernel**, and $G[V_1]$ has a **quasi-sink**.

• □ ▶ • @ ▶ • E ▶ • E ▶

For each **directed graph** G = (V, E) there are **disjoint, independent subsets** A and B of V such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of A to v, or from v to some point of B.

Conjecture

For each digraph G = (V, E) there is a **partition** (V_0, V_1) of V such that $G[V_0]$ has a **quasi-kernel**, and $G[V_1]$ has a **quasi-sink**.

For each **directed graph** G = (V, E) there are **disjoint, independent subsets** A and B of V such that for each $v \in V$ there is a path of length at most 2 which leads either from some points of A to v, or from v to some point of B.

Conjecture

For each digraph G = (V, E) there is a **partition** (V_0, V_1) of V such that $G[V_0]$ has a **quasi-kernel**, and $G[V_1]$ has a **quasi-sink**.

Let T = (V, E) be a tournament, $t \in V$ and $n \in \mathbb{N}$.

t is an *n-winner* in for each *y* ∈ *v* there is a path of length at most *n* which leads from *t* to *y*.

pseudo-winner = 2-winner

Theorem

Let $T = \langle V, E \rangle$ be an infinite tournament. (1) There is an infinite tournament $T = \langle V, E \rangle$ such that T has a 3-winner, but there is **no** 2-winner in T. (2) If T has an n-winner for some $n \ge 3$ where V is the second second

Let T = (V, E) be a tournament, $t \in V$ and $n \in \mathbb{N}$. *t* is an *n*-winner iff for each $y \in V$ there is a path of length at most *n* which leads from *t* to *y*.

pseudo-winner = 2-winner

Theorem

Let $T = \langle V, E \rangle$ be an infinite tournament. (1) There is an infinite tournament $T = \langle V, E \rangle$ such that T has a 3-winner, but there is **no** 2-winner in T. (2) If T has an n-winner for some $n \ge 3$

ヘロト ヘ回ト ヘヨト ヘヨ

Let T = (V, E) be a tournament, $t \in V$ and $n \in \mathbb{N}$. *t* is an *n*-winner iff for each $y \in V$ there is a **path of length at most** *n* which leads from *t* to *y*.

pseudo-winner = 2-winner

Theorem

Let $T = \langle V, E \rangle$ be an infinite tournament. (1) There is an infinite tournament $T = \langle V, E \rangle$ such that T has a 3-winner, but there is **no** 2-winner in T. (2) If T has an n-winner for some $n \ge 3$

イロト イヨト イヨト イヨト

Let T = (V, E) be a tournament, $t \in V$ and $n \in \mathbb{N}$. *t* is an *n*-winner iff for each $y \in V$ there is a **path of length at most** *n* which leads from *t* to *y*.

pseudo-winner = 2-winner

Theorem

Let $T = \langle V, E \rangle$ be an infinite tournament. (1) There is an infinite tournament $T = \langle V, E \rangle$ such that T has a 3-winner, but there is **no** 2-winner in T. (2) If T has an n-winner for some $n \ge 3$

イロト イポト イヨト イヨ

Let T = (V, E) be a tournament, $t \in V$ and $n \in \mathbb{N}$. *t* is an *n*-winner iff for each $y \in V$ there is a **path of length at most** *n* which leads from *t* to *y*.

pseudo-winner = 2-winner

Theorem

Let $T = \langle V, E \rangle$ be an infinite tournament. (1) There is an infinite tournament $T = \langle V, E \rangle$ such that T has a 3-winner, but there is no 2-winner in T. (2) If T has an n-winner for some $n \ge 3$ then T has a 3-winner.

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

Let T = (V, E) be a tournament, $t \in V$ and $n \in \mathbb{N}$. *t* is an *n*-winner iff for each $y \in V$ there is a **path of length at most** *n* which leads from *t* to *y*.

pseudo-winner = 2-winner

Theorem

Let $T = \langle V, E \rangle$ be an infinite tournament. (1) There is an infinite tournament $T = \langle V, E \rangle$ such that T has a **3-winner**, but there is **no 2-winner** in T. (2) If T has an n-winner for some n > 3

Let T = (V, E) be a tournament, $t \in V$ and $n \in \mathbb{N}$. *t* is an *n*-winner iff for each $y \in V$ there is a **path of length at most** *n* which leads from *t* to *y*.

pseudo-winner = 2-winner

Theorem

Let $T = \langle V, E \rangle$ be an infinite tournament. (1) There is an infinite tournament $T = \langle V, E \rangle$ such that T has a 3-winner, but there is **no** 2-winner in T. (2) If T has an *n*-winner for some $n \ge 3$ then T has a 3-winner.

Let T = (V, E) be a tournament, $t \in V$ and $n \in \mathbb{N}$. *t* is an *n*-winner iff for each $y \in V$ there is a **path of length at most** *n* which leads from *t* to *y*.

pseudo-winner = 2-winner

Theorem

Let $T = \langle V, E \rangle$ be an infinite tournament. (1) There is an infinite tournament $T = \langle V, E \rangle$ such that T has a **3-winner**, but there is **no 2-winner** in T. (2) If T has an *n*-winner for some $n \ge 3$ then T has a **3-winner**.

A **digraph with terminal vertices** is a triple G = (V, E, T), where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the **terminal vertices of** G, the elements of $N = V \setminus T$ are the **nonterminal vertices of** G.

Construct $G \odot G = (W, F, S)$ from *G* as follows: keep the terminal vertices and **blow up** each nonterminal vertex *v* to a (disjoint) copy G_v of *G*. $T_{G \odot G} = T_G \cup \bigcup_{v \in V} T_{G_v}, N_{G \odot G} = \bigcup_{v \in V} N_{G_v}$ The edges are "inherited" from *G* in the natural way.

• □ ▶ • • □ ▶ • □ ▶ •

Definition

A digraph with terminal vertices is a triple G = (V, E, T), where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N = V \setminus T$ are the nonterminal vertices of G.

Construct $G \odot G = (W, F, S)$ from *G* as follows: keep the terminal vertices and **blow up** each nonterminal vertex *v* to a (disjoint) copy G_v of *G*. $T_{G \odot G} = T_G \cup \bigcup_{v \in V} T_{G_v}, N_{G \odot G} = \bigcup_{v \in V} N_{G_v}$ The edges are "inherited" from *G* in the natural way.

G

イロト イポト イヨト イヨ

Definition

A digraph with terminal vertices is a triple G = (V, E, T), where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N = V \setminus T$ are the nonterminal vertices of G.

Construct $G \odot G = (W, F, S)$ from *G* as follows: keep the terminal vertices and **blow up** each nonterminal vertex *v* to a (disjoint) copy G_v of *G*. $T_{G \odot G} = T_G \cup \bigcup_{v \in V} T_{G_v}, N_{G \odot G} = \bigcup_{v \in V} N_{G_v}$ The edges are "inherited" from *G* in the natural way.

G

イロト イポト イヨト イヨト

Definition

A digraph with terminal vertices is a triple G = (V, E, T), where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N = V \setminus T$ are the nonterminal vertices of G.

Construct $G \odot G = (W, F, S)$ from *G* as follows: keep the terminal vertices and **blow up** each nonterminal vertex *v* to a (disjoint) copy G_v of *G*. $T_{G \odot G} = T_G \cup \bigcup_{v \in V} T_{G_v}, N_{G \odot G} = \bigcup_{v \in V} N_{G_v}$ The edges are "inherited" from *G* in the natural way.

G

イロト イポト イヨト イヨト

Definition

A digraph with terminal vertices is a triple G = (V, E, T), where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N = V \setminus T$ are the nonterminal vertices of G.

Construct $G \odot G = (W, F, S)$ from G as follows: keep the terminal vertices and **blow up** each nonterminal vertex v to a (disjoint) copy G_v of G. $T_{G \odot G} = T_G \cup \bigcup_{v \in V} T_{G_v}, N_{G \odot G} = \bigcup_{v \in V} N_{G_v}$ The edges are "inherited" from G in the natural way.

_____O ___ > O ____ > ● ____ ●

G

・ロン ・聞と ・ 聞と ・ 聞と

Definition

A digraph with terminal vertices is a triple G = (V, E, T), where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N = V \setminus T$ are the nonterminal vertices of G.

Construct $G \odot G = (W, F, S)$ from *G* as follows: keep the terminal vertices and **blow up** each nonterminal vertex *v* to a (disjoint) copy G_v of *G*.

 $T_{G \odot G} = T_G \cup \bigcup_{v \in V} T_{G_v}, N_{G \odot G} = \bigcup_{v \in V} N_{G_v}$ The edges are "inherited" from *G* in the natural way.

Definition

A digraph with terminal vertices is a triple G = (V, E, T), where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N = V \setminus T$ are the nonterminal vertices of G.

Construct $G \odot G = (W, F, S)$ from *G* as follows: keep the terminal vertices and **blow up** each nonterminal vertex *v* to a (disjoint) copy G_v of *G*. $T_{G \odot G} = T_G \cup \bigcup_{v \in V} T_{G_v}, N_{G \odot G} = \bigcup_{v \in V} N_{G_v}$

A digraph with terminal vertices is a triple G = (V, E, T), where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N = V \setminus T$ are the nonterminal vertices of G.

Construct $G \odot G = (W, F, S)$ from *G* as follows: keep the terminal vertices and **blow up** each nonterminal vertex *v* to a (disjoint) copy G_v of *G*. $T_{G \odot G} = T_G \cup \bigcup_{v \in V} T_{G_v}, N_{G \odot G} = \bigcup_{v \in V} N_{G_v}$

A digraph with terminal vertices is a triple G = (V, E, T), where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N = V \setminus T$ are the nonterminal vertices of G.

Construct $G \odot G = (W, F, S)$ from *G* as follows: keep the terminal vertices and **blow up** each nonterminal vertex *v* to a (disjoint) copy G_v of *G*. $T_{G \odot G} = T_G \cup \bigcup_{v \in V} T_{G_v}, N_{G \odot G} = \bigcup_{v \in V} N_{G_v}$

A digraph with terminal vertices is a triple G = (V, E, T), where (V, E) is a digraph and $\emptyset \neq T \subset V$. The elements of T are the terminal vertices of G, the elements of $N = V \setminus T$ are the nonterminal vertices of G.

Construct $G \odot G = (W, F, S)$ from *G* as follows: keep the terminal vertices and **blow up** each nonterminal vertex *v* to a (disjoint) copy G_v of *G*. $T_{G \odot G} = T_G \cup \bigcup_{v \in V} T_{G_v}, N_{G \odot G} = \bigcup_{v \in V} N_{G_v}$

 $G[T_G]$ is an **induced subgraph** of $(G \odot G)[T_{G \odot G}]$. Now we can repeat the procedure above using $G \odot G$ instead of G to get $(G \odot G) \odot (G \odot G)$. Hence we obtain a sequence $\langle G_n : n \in \mathbb{N} \rangle$ of digraphs with terminal vertices, $G_n = \langle V_n, E_n, T_n \rangle$ s. t. $G_0[T_0] \subset G_1[T_1] \subset G_2[T_2] \subset \ldots$ Take

$\mathbf{G}^{\infty} = \bigcup \{ \mathbf{G}_n[\mathbf{T}_n] : n \in \mathbb{N} \}.$

$G[T_G]$ is an **induced subgraph** of $(G \odot G)[T_{G \odot G}]$.

Now we can repeat the procedure above using $G \odot G$ instead of G to get $(G \odot G) \odot (G \odot G)$. Hence we obtain a sequence $\langle G_n : n \in \mathbb{N} \rangle$ of digraphs with terminal vertices, $G_n = \langle V_n, E_n, T_n \rangle$ s. t. $G_0[T_0] \subset G_1[T_1] \subset G_2[T_2] \subset \ldots$ Take

$\mathbf{G}^{\infty} = \bigcup \{ \mathbf{G}_n[\mathbf{T}_n] : n \in \mathbb{N} \}.$

• • • • • • • • • • • • •

 $G[T_G]$ is an **induced subgraph** of $(G \odot G)[T_{G \odot G}]$. Now we can repeat the procedure above using $G \odot G$ instead of G to get $(G \odot G) \odot (G \odot G)$.

Hence we obtain a sequence $\langle G_n : n \in \mathbb{N} \rangle$ of digraphs with terminal vertices, $G_n = \langle V_n, E_n, T_n \rangle$ s. t. $G_0[T_0] \subset G_1[T_1] \subset G_2[T_2] \subset \ldots$ Take

$\mathbf{G}^{\infty} = \bigcup \{ \mathbf{G}_n[\mathbf{T}_n] : n \in \mathbb{N} \}.$

 $G[T_G]$ is an **induced subgraph** of $(G \odot G)[T_{G \odot G}]$. Now we can repeat the procedure above using $G \odot G$ instead of G to get $(G \odot G) \odot (G \odot G)$. Hence we obtain a sequence $\langle G_n : n \in \mathbb{N} \rangle$ of digraphs with terminal vertices, $G_n = \langle V_n, E_n, T_n \rangle$ s. t. $G_0[T_0] \subset G_1[T_1] \subset G_2[T_2] \subset \ldots$ Take

$$\mathbf{G}^{\infty} = \bigcup \{ \mathbf{G}_n[\mathbf{T}_n] : n \in \mathbb{N} \}.$$

 $G[T_G]$ is an **induced subgraph** of $(G \odot G)[T_{G \odot G}]$. Now we can repeat the procedure above using $G \odot G$ instead of G to get $(G \odot G) \odot (G \odot G)$. Hence we obtain a sequence $\langle G_n : n \in \mathbb{N} \rangle$ of digraphs with terminal vertices, $G_n = \langle V_n, E_n, T_n \rangle$ s. t. $G_0[T_0] \subset G_1[T_1] \subset G_2[T_2] \subset \ldots$ Take

$$\mathbf{G}^{\infty} = \bigcup \{ \mathbf{G}_n[\mathbf{T}_n] : n \in \mathbb{N} \}.$$

Theorem

Let G = (V, E, T) be a **finite tournament with terminal vertices**. T. F. A. E:

- (i) G^{∞} has a 3-winner,
- (ii) $\ln(v) \neq \emptyset$ for each $v \in V \setminus T$.
- T. F. A. E.:
- (a) G^{∞} has a 2-winner
- (b) there is 2-winner $v \in T$ in G.

Theorem

Theorem

Let G = (V, E, T) be a finite tournament with terminal vertices. T. F. A. E:

(i) G^{∞} has a 3-winner,

(ii) $\ln(v) \neq \emptyset$ for each $v \in V \setminus T$.

T. F. A. E.:

(a) G^{∞} has a 2-winner

(b) there is 2-winner $v \in T$ in G.

Theorem

Theorem

Let G = (V, E, T) be a finite tournament with terminal vertices. T. F. A. E:

(i) G^{∞} has a 3-winner,

(ii)
$$\ln(v) \neq \emptyset$$
 for each $v \in V \setminus T$.

T. F. A. E.:

(a) G^{∞} has a 2-winner

(b) there is 2-winner $v \in T$ in G.

Theorem

Theorem

Let G = (V, E, T) be a finite tournament with terminal vertices. T. F. A. E:

(i) G^{∞} has a 3-winner,

(ii)
$$\ln(v) \neq \emptyset$$
 for each $v \in V \setminus T$.

T. F. A. E.:

(a) G^{∞} has a 2-winner

(b) there is 2-winner $v \in T$ in G.

Theorem

Theorem

Let G = (V, E, T) be a finite tournament with terminal vertices. T. F. A. E:

(i) G^{∞} has a 3-winner,

(ii)
$$\ln(v) \neq \emptyset$$
 for each $v \in V \setminus T$.

T. F. A. E.:

(a) G^{∞} has a 2-winner

(b) there is 2-winner $v \in T$ in G.

Theorem

Theorem

If $G = \langle V, E, T \rangle$ is a finite digraph with terminal vertices $G^{\infty} = \langle V^{\infty}, E^{\infty} \rangle$, then there is a **partition** (V_0, V_1) of V^{∞} such that $G^{\infty}[V_0]$ has a **quasi-kernel**, and $G^{\infty}[V_1]$ has a **quasi-sink**.

Theorem

If $G = \langle V, E, T \rangle$ is a finite digraph with terminal vertices $G^{\infty} = \langle V^{\infty}, E^{\infty} \rangle$, then there is a partition (V_0, V_1) of V^{∞} such that $G^{\infty}[V_0]$ has a **quasi-kernel**, and $G^{\infty}[V_1]$ has a **quasi-sink**.

Theorem

If $G = \langle V, E, T \rangle$ is a finite digraph with terminal vertices $G^{\infty} = \langle V^{\infty}, E^{\infty} \rangle$, then there is a **partition** (V_0, V_1) of V^{∞} such that $G^{\infty}[V_0]$ has a **quasi-kernel**, and $G^{\infty}[V_1]$ has a **quasi-sink**.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fix a graph G = (V, E) and a subset S of vertices called **terminals**. A **multiway cut** is a **set of edges** whose removal disconnects each terminal from the others. The **multiway cut problem** is to find the **minimal size** of a multiway cut denoted by $\pi_{G,S}$.

Fix a graph G = (V, E)

< A

Fix a graph G = (V, E) and a subset S of vertices called **terminals**.

Fix a graph G = (V, E) and a subset S of vertices called **terminals**. A **multiway cut** is a **set of edges** whose removal disconnects each terminal from the others.

Fix a graph G = (V, E) and a subset S of vertices called **terminals**. A **multiway cut** is a **set of edges** whose removal disconnects each terminal from the others. The **multiway cut problem** is to find the **minimal size** of a multiway cut denoted by $\pi_{G,S}$.

If $\vec{G} = (V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of **edge-disjoint directed paths** from some element of *A* into some element of *B*.

< □ > < □ > < □ > < □ > < □ </pre>

If $\vec{G} = (V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of **edge-disjoint directed paths** from some element of *A* into some element of *B*.

Definition

If $\vec{G} = (V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of **edge-disjoint directed paths** from some element of *A* into some element of *B*.

Definition

If $\vec{G} = (V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of **edge-disjoint directed paths** from some element of *A* into some element of *B*.

S₁

Definition

If G = (V, E) is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges,

S₂

 $S = \{s_1, s_2, s_3\}$

t

If $\vec{G} = (V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of **edge-disjoint directed paths** from some element of *A* into some element of *B*.

S₁

Definition

If G = (V, E) is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges, then let

$$\nu_{\vec{\mathsf{G}},\mathsf{S}} = \sum_{s \in S} \lambda(\vec{\mathsf{G}},\mathsf{S}-s,s)$$

S₂

 $S = \{s_1, s_2, s_3\}$

t

If $\vec{G} = (V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of **edge-disjoint directed paths** from some element of *A* into some element of *B*.

S₁

Definition

If G = (V, E) is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges, then let

$$\nu_{\vec{\mathsf{G}},\mathsf{S}} = \sum_{s \in S} \lambda(\vec{\mathsf{G}},\mathsf{S}-s,s)$$

$$\lambda(\vec{G}, S - s_3, s_3) = 1,$$

If $\vec{G} = (V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of **edge-disjoint directed paths** from some element of *A* into some element of *B*.

S₁

Definition

If G = (V, E) is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges, then let

$$\nu_{\vec{\mathsf{G}},\mathsf{S}} = \sum_{\mathsf{S} \in \mathsf{S}} \lambda(\vec{\mathsf{G}},\mathsf{S}-\mathsf{S},\mathsf{S})$$

$$\lambda(\vec{G}, S - s_3, s_3) = 1, \lambda(\vec{G}, S - s_2, s_2) = 1,$$

S₂

 $S = \{s_1, s_2, s_3\}$

t

If $\vec{G} = (V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of **edge-disjoint directed paths** from some element of *A* into some element of *B*.

S1

Definition

If G = (V, E) is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges, then let

$$\nu_{\vec{\mathsf{G}},\mathsf{S}} = \sum_{s \in S} \lambda(\vec{\mathsf{G}},\mathsf{S}-s,s)$$

$$\lambda(\vec{G}, S - s_3, s_3) = 1, \lambda(\vec{G}, S - s_2, s_2) = 1, \lambda(\vec{G}, S - s_1, s_1) = 0,$$

 $t = \{s_1, s_2, s_3\}$

S₂

If $\vec{G} = (V, E)$ is a directed graph and $A, B \subset V$ let $\lambda(\vec{G}, A, B)$ be the maximal number of **edge-disjoint directed paths** from some element of *A* into some element of *B*.

S₁

Definition

If G = (V, E) is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges, then let

$$\nu_{\vec{\mathsf{G}},\mathsf{S}} = \sum_{s\in\mathsf{S}} \lambda(\vec{\mathsf{G}},\mathsf{S}-s,s)$$

$$\lambda(\vec{G}, S - s_3, s_3) = 1, \lambda(\vec{G}, S - s_2, s_2) = 1, \lambda(\vec{G}, S - s_1, s_1) = 0, \nu_{\vec{G}, S} = 2$$

 S_2 t $S = \{S_1, S_2, S_3\}$

Theorem (P. L. Erdős, A. Frank, L. Székely)

If G = (V, E) is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges,

Theorem (P. L. Erdős, A. Frank, L. Székely)

If G = (V, E) is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges, then $\nu_{\vec{G},S} \leq \pi_{G,S}$.

Theorem (P. L. Erdős, A. Frank, L. Székely)

If G = (V, E) is a finite graph, $S \subset V$, and \vec{G} is obtained from G by an orientation of the edges, then $\nu_{\vec{G},S} \leq \pi_{G,S}$.

Theorem (E. Dahjhaus, D. S. Johson, C. H. Papadimitriou, P.D. Seymout, M. Yannakakis)

The multiway cut problem is NP-complete.

G - S is a tree.

Soukup, L (Rényi Institute)

G - S is a tree.

G - S is a tree.

Image: A match a ma

G - S is a tree.

< ロト < 回 > < 回 >

Theorem (P. L. Erdős, L. Székely)

If G = (V, E) is a finite graph, $S \subset V$ such that G - S is tree, then

$$\max_{\vec{G}} \nu_{\vec{G},S} = \pi_{G,S}.$$

where the maximum is taken over all orientations \vec{G} of G.

Soukup, L (Rényi Institute)

< ∃ ►

If G = (V, E) is a finite graph,

A .

If G = (V, E) is a finite graph, $S \subset V$ such that G - S is tree,

< 🗇 🕨

If G = (V, E) is a finite graph, $S \subset V$ such that G - S is tree, then there is an orientation \vec{G} of G,

If G = (V, E) is a finite graph, $S \subset V$ such that G - S is tree, then there is an orientation \vec{G} of G, and for each $s \in S$ there is an edge-disjoint family \mathcal{P}_s of (S - s, s)-paths in \vec{G}

.∃ ▶ ∢

If G = (V, E) is a finite graph, $S \subset V$ such that G - S is tree, then there is an orientation \vec{G} of G, and for each $s \in S$ there is an edge-disjoint family \mathcal{P}_s of (S - s, s)-paths in \vec{G} and for each $P \in \mathcal{P}_s$ we can pick an edge $e_P \in P$

If G = (V, E) is a finite graph, $S \subset V$ such that G - S is tree, then there is an orientation \vec{G} of G, and for each $s \in S$ there is an edge-disjoint family \mathcal{P}_s of (S - s, s)-paths in \vec{G} and for each $P \in \mathcal{P}_s$ we can pick an edge $e_P \in P$ such that

$$\{ e_{\mathcal{P}} : \mathcal{P} \in \mathcal{P}_s ext{ for some } s \in \mathbf{S} \}$$

is a *multiway cut* (in G for S).

(4) (3) (4) (4) (4)

,

Soukup, L (Rényi Institute)

・ロト ・ 日 ・ ・ ヨ ト ・

If G = (V, E) is a graph,

,

Soukup, L (Rényi Institute)

イロト イポト イヨト イヨ

,

If G = (V, E) is a graph, $S \subset V$ is finite such that G - S is tree

イロン イ理 とくほとく ほ

If G = (V, E) is a graph, $S \subset V$ is finite such that G - S is tree without infinite trails,

If G = (V, E) is a graph, $S \subset V$ is finite such that G - S is tree without infinite trails, then there is an orientation \vec{G} of G,

If G = (V, E) is a graph, $S \subset V$ is finite such that G - S is tree **without** infinite trails, then there is an orientation \vec{G} of G, and for each $s \in S$ there is an edge-disjoint family \mathcal{P}_s of (S - s, s)-paths in \vec{G}

(4) (5) (4) (5)

If G = (V, E) is a graph, $S \subset V$ is finite such that G - S is tree without infinite trails, then there is an orientation \vec{G} of G, and for each $s \in S$ there is an edge-disjoint family \mathcal{P}_s of (S - s, s)-paths in \vec{G} and for each $P \in \mathcal{P}_s$ we can pick an edge $e_P \in P$

(3)

If G = (V, E) is a graph, $S \subset V$ is finite such that G - S is tree without infinite trails, then there is an orientation \vec{G} of G, and for each $s \in S$ there is an edge-disjoint family \mathcal{P}_s of (S - s, s)-paths in \vec{G} and for each $P \in \mathcal{P}_s$ we can pick an edge $e_P \in P$ such that

$$\{e_{\mathcal{P}}: \mathcal{P} \in \mathcal{P}_s \text{ for some } s \in S\}$$

is a multiway cut (in G for S).

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposition

Let G = (V, E) be a finite directed graph, and $A, B \subset V$ s.t

Soukup, L (Rényi Institute)

Proposition

Let G = (V, E) be a finite directed graph, and $A, B \subset V$ s.t (1) in(a) = 0 and out(a) = 1 for each $a \in A$,

Proposition

Let G = (V, E) be a finite directed graph, and $A, B \subset V$ s.t

- (1) in(a) = 0 and out(a) = 1 for each $a \in A$,
- (2) in(b) = 1 and out(b) = 0 for each $b \in B$,

Proposition

Let G = (V, E) be a finite directed graph, and $A, B \subset V$ s.t

- (1) in(a) = 0 and out(a) = 1 for each $a \in A$,
- (2) in(b) = 1 and out(b) = 0 for each $b \in B$,
- (3) $in(x) \leq out(x)$ for each $x \in V \setminus (A \cup b)$.

Proposition

Let G = (V, E) be a finite directed graph, and $A, B \subset V$ s.t

- (1) in(a) = 0 and out(a) = 1 for each $a \in A$,
- (2) in(b) = 1 and out(b) = 0 for each $b \in B$,
- (3) $in(x) \leq out(x)$ for each $x \in V \setminus (A \cup b)$.

Then there is a family \mathcal{P} of edge-disjoint *A*-*B*-paths s .t. \mathcal{P} covers *A*.

Proposition

Let G = (V, E) be a finite directed graph, and $A, B \subset V$ s.t

- (1) in(a) = 0 and out(a) = 1 for each $a \in A$,
- (2) in(b) = 1 and out(b) = 0 for each $b \in B$,
- (3) $in(x) \leq out(x)$ for each $x \in V \setminus (A \cup b)$.

Then there is a family \mathcal{P} of edge-disjoint *A*-*B*-paths s .t. \mathcal{P} covers *A*.

Proposition

Let G = (V, E) be a finite directed graph, and $A, B \subset V$ s.t

- (1) in(a) = 0 and out(a) = 1 for each $a \in A$,
- (2) in(b) = 1 and out(b) = 0 for each $b \in B$,
- (3) $in(x) \leq out(x)$ for each $x \in V \setminus (A \cup b)$.

Then there is a family \mathcal{P} of edge-disjoint *A*-*B*-paths s .t. \mathcal{P} covers *A*.

< ∃ >

Proposition

Let G = (V, E) be a finite directed graph, and $A, B \subset V$ s.t

- (1) in(a) = 0 and out(a) = 1 for each $a \in A$,
- (2) in(b) = 1 and out(b) = 0 for each $b \in B$,
- (3) $in(x) \leq out(x)$ for each $x \in V \setminus (A \cup b)$.

Then there is a family \mathcal{P} of edge-disjoint *A*-*B*-paths s .t. \mathcal{P} covers *A*.

< ∃ >

Let G = (V, E) be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t

< □ > < □ > < □ > < □ > < □ </pre>

Let G = (V, E) be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t

(1) in(a) = 0 and out(a) = 1 for each $a \in A$,

Let G = (V, E) be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t (1) in(a) = 0 and out(a) = 1 for each $a \in A$,

(2) in(b) = 1 and out(b) = 0 for each $b \in B$,

4 A N

- **→ → →**

Let G = (V, E) be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t

- (1) in(a) = 0 and out(a) = 1 for each $a \in A$,
- (2) in(b) = 1 and out(b) = 0 for each $b \in B$,
- (3) $in(x) \leq out(x)$ for each $x \in V \setminus (A \cup B)$.

Let G = (V, E) be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t

- (1) in(a) = 0 and out(a) = 1 for each $a \in A$,
- (2) in(b) = 1 and out(b) = 0 for each $b \in B$,
- (3) $in(x) \leq out(x)$ for each $x \in V \setminus (A \cup B)$.

Then there is a family \mathcal{P} of edge-disjoint *A*-*B*-paths s .t. \mathcal{P} covers *A*.

- **→ → →**

Let G = (V, E) be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t

- (1) in(a) = 0 and out(a) = 1 for each $a \in A$,
- (2) in(b) = 1 and out(b) = 0 for each $b \in B$,
- (3) $in(x) \leq out(x)$ for each $x \in V \setminus (A \cup B)$.

Then there is a family \mathcal{P} of edge-disjoint *A*-*B*-paths s .t. \mathcal{P} covers *A*.

Proof.

G is countable:

イロン 不得 とく ヨン イヨン

Let G = (V, E) be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t

- (1) in(a) = 0 and out(a) = 1 for each $a \in A$,
- (2) in(b) = 1 and out(b) = 0 for each $b \in B$,
- (3) $in(x) \leq out(x)$ for each $x \in V \setminus (A \cup B)$.

Then there is a family \mathcal{P} of edge-disjoint *A*-*B*-paths s .t. \mathcal{P} covers *A*.

Proof.

G is countable: easy induction:

ヘロン 人間 とくほ とくほう

Let G = (V, E) be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t

- (1) in(a) = 0 and out(a) = 1 for each $a \in A$,
- (2) in(b) = 1 and out(b) = 0 for each $b \in B$,
- (3) $in(x) \leq out(x)$ for each $x \in V \setminus (A \cup B)$.

Then there is a family \mathcal{P} of edge-disjoint A-B-paths s .t. \mathcal{P} covers A.

Proof.

G is countable: easy induction: if *P* is an *A*-*B*-path then G - P satisfies (1)–(3)

イロン 不得 とく ヨン イヨン

Let G = (V, E) be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t

- (1) in(a) = 0 and out(a) = 1 for each $a \in A$,
- (2) in(b) = 1 and out(b) = 0 for each $b \in B$,
- (3) $in(x) \leq out(x)$ for each $x \in V \setminus (A \cup B)$.

Then there is a family \mathcal{P} of edge-disjoint A-B-paths s .t. \mathcal{P} covers A.

Proof.

G is countable: easy induction: if *P* is an *A*-*B*-path then G - P satisfies (1)–(3) If *G* is uncountable

イロン 不得 とく ヨン イヨン

Let G = (V, E) be a directed graph which does not contain infinite directed trail, and let $A, B \subset V$ s.t

- (1) in(a) = 0 and out(a) = 1 for each $a \in A$,
- (2) in(b) = 1 and out(b) = 0 for each $b \in B$,
- (3) $in(x) \leq out(x)$ for each $x \in V \setminus (A \cup B)$.

Then there is a family \mathcal{P} of edge-disjoint A-B-paths s .t. \mathcal{P} covers A.

Proof.

G is countable: easy induction: if *P* is an *A*-*B*-path then G - P satisfies (1)–(3) If *G* is uncountable then we may got stuck at some point

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト … ヨ

< ロ ト < 回 ト < 回 ト < 三</p>

< ロ ト < 回 ト < 回 ト < 三</p>

< ロ ト < 回 ト < 回 ト < 三</p>

Inductive construction, but using the right enumeration

Inductive construction, but using the **right enumeration** Partition *V* into countable sets $\{C_{\alpha} : \alpha < \omega_1\}$

Image: A matrix and a matrix

Inductive construction, but using the **right enumeration** Partition *V* into countable sets $\{C_{\alpha} : \alpha < \omega_1\}$ Enumerate $A = \{a_{\xi} : \xi < \omega_1\}$ such that $C_0 \cap A = \{a_0, a_1, \dots\}, C_1 \cap A = \{a_{\omega}, a_{\omega+1}, \dots\},$

Inductive construction, but using the **right enumeration** Partition *V* into countable sets { $C_{\alpha} : \alpha < \omega_1$ } Enumerate $A = \{a_{\xi} : \xi < \omega_1\}$ such that $C_0 \cap A = \{a_0, a_1, \dots\}, C_1 \cap A = \{a_{\omega}, a_{\omega+1}, \dots\},$ By transfinite induction find edge-disjoint families \mathcal{P}_{α} of *A*-*B* paths in $G[\cup \{C_{\xi} : \xi \leq \alpha\}]$ such that \mathcal{P}_{α} covers $C_{\alpha} \cap A$.

(4) (5) (4) (5)

Partition *V* into countable sets { $C_{\alpha} : \alpha < \omega_1$ } s.t

Partition *V* into countable sets $\{C_{\alpha} : \alpha < \omega_1\}$ s.t • if $x \in C_{\alpha}$ with $|In(x)| \le \omega$ then $In(x) \subset \cup \{C_{\xi} : \xi \le \alpha\}$.

• □ ▶ • • □ ▶ • □ ▶ •

Partition V into countable sets $\{C_{\alpha} : \alpha < \omega_1\}$ s.t

- if $x \in C_{\alpha}$ with $|In(x)| \leq \omega$ then $In(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.
- if $x \in C_{\alpha}$ with $|Out(x)| \leq \omega$ then $Out(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.

Partition V into countable sets $\{C_{\alpha} : \alpha < \omega_1\}$ s.t

- if $x \in C_{\alpha}$ with $|In(x)| \leq \omega$ then $In(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.
- if $x \in C_{\alpha}$ with $|Out(x)| \leq \omega$ then $Out(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.
- if $x \in C_{\alpha}$ with $|Out(x)| > \omega$ then $Out(x) \cap C_{\beta}$ is infinite for each $\alpha \leq \beta < \omega_1$.

Partition V into countable sets $\{C_{\alpha} : \alpha < \omega_1\}$ s.t

- if $x \in C_{\alpha}$ with $|In(x)| \leq \omega$ then $In(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.
- if $x \in C_{\alpha}$ with $|Out(x)| \leq \omega$ then $Out(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.
- if $x \in C_{\alpha}$ with $|Out(x)| > \omega$ then $Out(x) \cap C_{\beta}$ is infinite for each $\alpha \leq \beta < \omega_1$.

How to get such a partition?

Partition V into countable sets { $C_{\alpha} : \alpha < \omega_1$ } s.t

- if $x \in C_{\alpha}$ with $|In(x)| \leq \omega$ then $In(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.
- if $x \in C_{\alpha}$ with $|Out(x)| \leq \omega$ then $Out(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.
- if $x \in C_{\alpha}$ with $|Out(x)| > \omega$ then $Out(x) \cap C_{\beta}$ is infinite for each $\alpha \leq \beta < \omega_1$.

How to get such a partition? How to get the right properties of such a partition?

.

Partition V into countable sets $\{C_{\alpha} : \alpha < \omega_1\}$ s.t

- if $x \in C_{\alpha}$ with $|In(x)| \leq \omega$ then $In(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.
- if $x \in C_{\alpha}$ with $|Out(x)| \leq \omega$ then $Out(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.
- if $x \in C_{\alpha}$ with $|Out(x)| > \omega$ then $Out(x) \cap C_{\beta}$ is infinite for each $\alpha \leq \beta < \omega_1$.

How to get such a partition? How to get the right properties of such a partition? Elementary submodels

.

Let θ be a large regular cardinals.

Let θ be a large regular cardinals. $\theta = (2^{|G|})^+$

イロト イポト イヨト イヨ

Image: A matrix and a matrix

Let θ be a large regular cardinals. $\theta = (2^{|G|})^+$ transitive closure of a set *x* is $x \cup (\cup x) \cup (\cup \cup x) \cup ...$ Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ .

Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ .

 $\mathcal{H}(\theta) = \langle \mathcal{H}(\theta), \in, \prec \rangle$, where \prec is a well-ordering

- **→ → →**

Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ .

 $\mathcal{H}(\theta) = \langle H(\theta), \in, \prec \rangle$, where \prec is a well-ordering Let $\langle M_{\alpha} : \alpha < \omega_1 \rangle$ be an increasing continuous chain of countable elementary submodels of $\mathcal{H}(\theta)$ with $G, A \in M_0$.

Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ .

 $\mathcal{H}(\theta) = \langle H(\theta), \in, \prec \rangle$, where \prec is a well-ordering Let $\langle M_{\alpha} : \alpha < \omega_1 \rangle$ be an increasing continuous chain of countable elementary submodels of $\mathcal{H}(\theta)$ with $G, A \in M_0$. i.e.

(1) M_{α} is a countable elementary submodel of $\mathcal{H}(\theta)$ for $\alpha < \omega_1$

(4) (5) (4) (5)

Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ .

 $\mathcal{H}(\theta) = \langle H(\theta), \in, \prec \rangle$, where \prec is a well-ordering Let $\langle M_{\alpha} : \alpha < \omega_1 \rangle$ be an increasing continuous chain of countable elementary submodels of $\mathcal{H}(\theta)$ with $G, A \in M_0$. i.e.

(1) M_{α} is a countable elementary submodel of $\mathcal{H}(\theta)$ for $\alpha < \omega_1$

(2)
$$\langle M_{\beta} : \beta \leq \alpha \rangle \in M_{\alpha+1}$$
,

(4) (5) (4) (5)

Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ .

 $\mathcal{H}(\theta) = \langle H(\theta), \in, \prec \rangle$, where \prec is a well-ordering Let $\langle M_{\alpha} : \alpha < \omega_1 \rangle$ be an increasing continuous chain of countable elementary submodels of $\mathcal{H}(\theta)$ with $G, A \in M_0$. i.e.

(1) M_{α} is a countable elementary submodel of $\mathcal{H}(\theta)$ for $\alpha < \omega_1$

(2)
$$\langle M_{\beta} : \beta \leq \alpha \rangle \in M_{\alpha+1}$$
,

(3) $M_{\alpha} = \bigcup \{ M_{\beta} : \beta < \alpha \}$ provided α is limit

(日)

Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ .

 $\mathcal{H}(\theta) = \langle H(\theta), \in, \prec \rangle$, where \prec is a well-ordering Let $\langle M_{\alpha} : \alpha < \omega_1 \rangle$ be an **increasing continuous chain of countable elementary submodels** of $\mathcal{H}(\theta)$ with $G, A \in M_0$. i.e.

(1) M_{α} is a countable elementary submodel of $\mathcal{H}(\theta)$ for $\alpha < \omega_1$

(2)
$$\langle M_{\beta} : \beta \leq \alpha \rangle \in M_{\alpha+1}$$
,

- (3) $M_{\alpha} = \bigcup \{ M_{\beta} : \beta < \alpha \}$ provided α is limit
- (4) $G, A \in M_0$.

Let $H(\theta)$ be the family of sets whose transitive closure has cardinality less than θ .

 $\mathcal{H}(\theta) = \langle H(\theta), \in, \prec \rangle$, where \prec is a well-ordering Let $\langle M_{\alpha} : \alpha < \omega_1 \rangle$ be an **increasing continuous chain of countable elementary submodels** of $\mathcal{H}(\theta)$ with $G, A \in M_0$. i.e.

(1) M_{α} is a countable elementary submodel of $\mathcal{H}(\theta)$ for $\alpha < \omega_1$

(2)
$$\langle M_{\beta} : \beta \leq \alpha \rangle \in M_{\alpha+1}$$
,

(3)
$$M_{\alpha} = \bigcup \{ M_{\beta} : \beta < \alpha \}$$
 provided α is limit

(4) $G, A \in M_0$.

Let $C_0 = M_0 \cap V$ and $C_n = (M_{n+1} \setminus M_n) \cap V$ for $0 < n < \omega$ and $C_{\alpha} = (M_{\alpha+1} \setminus M_{\alpha}) \cap V$ for $\omega \le \alpha < \omega_1$.

< ∃ ►

(*) if $x \in C_{\alpha}$ with $|In(x)| \leq \omega$ then $In(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.

(*) if $x \in C_{\alpha}$ with $|In(x)| \leq \omega$ then $In(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.

 $\mathcal{H}(\theta) \models$ " *In*(*x*) has an enumeration $\vec{x} = \langle x_n : n < \omega \rangle$ "

(*) if $x \in C_{\alpha}$ with $|In(x)| \leq \omega$ then $In(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.

 $\mathcal{H}(\theta) \models \text{``} In(x)$ has an enumeration $\vec{x} = \langle x_n : n < \omega \rangle$ " $M_{\alpha+1} \models \text{``} In(x)$ has an enumeration $\vec{x} = \langle x_n : n < \omega \rangle$ "

(*) if $x \in C_{\alpha}$ with $|In(x)| \leq \omega$ then $In(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.

 $\mathcal{H}(\theta) \models " In(x)$ has an enumeration $\vec{x} = \langle x_n : n < \omega \rangle$ " $M_{\alpha+1} \models " In(x)$ has an enumeration $\vec{x} = \langle x_n : n < \omega \rangle$ " there is $\vec{x} \in M_{\alpha+1}$ s.t. $M_{\alpha+1} \models "\vec{x}$ is an enumeration of In(x)"

★ ∃ > ★

(*) if $x \in C_{\alpha}$ with $|In(x)| \leq \omega$ then $In(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.

 $\mathcal{H}(\theta) \models$ " In(x) has an enumeration $\vec{x} = \langle x_n : n < \omega \rangle$ " $M_{\alpha+1} \models$ " In(x) has an enumeration $\vec{x} = \langle x_n : n < \omega \rangle$ " there is $\vec{x} \in M_{\alpha+1}$ s.t. $M_{\alpha+1} \models$ " \vec{x} is an enumeration of In(x)" $\mathcal{H}(\theta) \models \vec{x}$ is an enumeration of In(x)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

(*) if $x \in C_{\alpha}$ with $|In(x)| \leq \omega$ then $In(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.

 $\mathcal{H}(\theta) \models " In(x)$ has an enumeration $\vec{x} = \langle x_n : n < \omega \rangle"$ $M_{\alpha+1} \models " In(x)$ has an enumeration $\vec{x} = \langle x_n : n < \omega \rangle"$ there is $\vec{x} \in M_{\alpha+1}$ s.t. $M_{\alpha+1} \models "\vec{x}$ is an enumeration of In(x)" $\mathcal{H}(\theta) \models \vec{x}$ is an enumeration of In(x) \vec{x} is an enumeration of In(x)

▲ 圖 ▶ ▲ 国 ▶ ▲ 国

(*) if $x \in C_{\alpha}$ with $|In(x)| \leq \omega$ then $In(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.

 $\begin{aligned} \mathcal{H}(\theta) &\models \text{``} In(x) \text{ has an enumeration } \vec{x} = \langle x_n : n < \omega \rangle^{"} \\ M_{\alpha+1} &\models \text{``} In(x) \text{ has an enumeration } \vec{x} = \langle x_n : n < \omega \rangle^{"} \\ \text{there is } \vec{x} \in M_{\alpha+1} \text{ s.t. } M_{\alpha+1} \models \text{``} \vec{x} \text{ is an enumeration of } In(x)^{"} \\ \mathcal{H}(\theta) &\models \vec{x} \text{ is an enumeration of } In(x) \\ \vec{x} \text{ is an enumeration of } In(x) \\ \text{Since } \omega \subset M_{\alpha+1} \text{ we have } \vec{x}(n) \in M_{\alpha+1} \text{ for each } n \in \omega \end{aligned}$

< □ > < □ > < □ > < □ > < □ </pre>

(*) if $x \in C_{\alpha}$ with $|In(x)| \leq \omega$ then $In(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.

 $\begin{array}{l} \mathcal{H}(\theta) \models " \ \textit{In}(x) \ \text{has an enumeration } \vec{x} = \langle x_n : n < \omega \rangle " \\ M_{\alpha+1} \models " \ \textit{In}(x) \ \text{has an enumeration } \vec{x} = \langle x_n : n < \omega \rangle " \\ \text{there is } \vec{x} \in M_{\alpha+1} \ \text{s.t.} \ M_{\alpha+1} \models " \vec{x} \ \text{is an enumeration of } \textit{In}(x) " \\ \mathcal{H}(\theta) \models \vec{x} \ \text{is an enumeration of } \textit{In}(x) \\ \vec{x} \ \text{is an enumeration of } \textit{In}(x) \\ \vec{x} \ \text{is an enumeration of } \textit{In}(x) \\ \text{Since } \omega \subset M_{\alpha+1} \ \text{we have } \vec{x}(n) \in M_{\alpha+1} \ \text{for each } n \in \omega \\ \text{So } \ \textit{In}(x) \subset M_{\alpha+1}. \end{array}$

イロン イヨン イヨン イヨ

(*) if $x \in C_{\alpha}$ with $|In(x)| \leq \omega$ then $In(x) \subset \cup \{C_{\xi} : \xi \leq \alpha\}$.

 $\begin{array}{l} \mathcal{H}(\theta) \models " \ \text{In}(x) \text{ has an enumeration } \vec{x} = \langle x_n : n < \omega \rangle " \\ M_{\alpha+1} \models " \ \text{In}(x) \text{ has an enumeration } \vec{x} = \langle x_n : n < \omega \rangle " \\ \text{there is } \vec{x} \in M_{\alpha+1} \text{ s.t. } M_{\alpha+1} \models " \vec{x} \text{ is an enumeration of } \text{In}(x) " \\ \mathcal{H}(\theta) \models \vec{x} \text{ is an enumeration of } \text{In}(x) \\ \vec{x} \text{ is an enumeration of } \text{In}(x) \\ \text{Since } \omega \subset M_{\alpha+1} \text{ we have } \vec{x}(n) \in M_{\alpha+1} \text{ for each } n \in \omega \\ \text{So } \text{In}(x) \subset M_{\alpha+1}. \\ \cup \{ C_{\xi} : \xi \leq \alpha \} = V \cap M_{\alpha+1}. \end{array}$

• □ ▶ • • □ ▶ • □ ▶ •

Chromatic number of product of graphs

Hedetniemi's Conjecture

If min{ $\chi(G), \chi(H)$ } $\geq n \in \mathbb{N}$ then $\chi(G \times H) \geq n$.

Image: A matrix and a matrix

- A 🖻 🕨

Hedetniemi's Conjecture

If min{ $\chi(G), \chi(H)$ } $\geq n \in \mathbb{N}$ then $\chi(G \times H) \geq n$.

Theorem (El-Sahar, Sauer)

If $\min{\chi(G), \chi(H)} \ge 4$ then $\chi(G \times H) \ge 4$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Hedetniemi's Conjecture

If min{ $\chi(G), \chi(H)$ } $\geq n \in \mathbb{N}$ then $\chi(G \times H) \geq n$.

Theorem (El-Sahar, Sauer)

If $\min\{\chi(G), \chi(H)\} \ge 4$ then $\chi(G \times H) \ge 4$.

Theorem (Hajnal)

If $\chi(\mathbf{G}), \chi(\mathbf{H}) \geq \omega$ then $\chi(\mathbf{G} \times \mathbf{H}) \geq \omega$.

Soukup, L (Rényi Institute)

イロト イヨト イヨト イヨト

If
$$\chi(G) \ge \omega$$
 and $\chi(H) \ge n + 1$ then $\chi(G \times H) \ge n + 1$.

f:
$$V(G) \times V(H) \rightarrow n$$
.

V(H)

V(G)

Banff 2007

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国

4

Soukup, L (Rényi Institute)

From Finite to Infinite

 $f: V(G) \times V(H) \to n. \ \mathcal{I} = \{V' \subset V(G) : \chi(G[V']) < \omega\}.$

V(H)

V(G)

Banff 2007

イロト イポト イヨト イヨ

46/74

Soukup, L (Rényi Institute)

From Finite to Infinite

 $\frac{f}{I}: V(G) \times V(H) \to n. \quad \mathcal{I} = \{ V' \subset V(G) : \chi(G[V']) < \omega \}.$ There is an ultrafilter \mathcal{U} on V(G) s.t. $\mathcal{U} \cap \mathcal{I} = \emptyset$.

V(H)

V(G)

Banff 2007

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Soukup, L (Rényi Institute)

From Finite to Infinite

 $\begin{array}{l} \underbrace{f: \ V(G) \times V(H) \to n. \ \mathcal{I} = \{ V' \subset V(G) : \chi(G[V']) < \omega \}. \\ \hline \text{There is an ultrafilter } \mathcal{U} \text{ on } V(G) \text{ s.t. } \mathcal{U} \cap \mathcal{I} = \emptyset. \\ (*) \ \forall U \in \mathcal{U} \ (\exists v_0, v_1 \in U) \ v_0 v_1 \in E(G). \end{array}$

Soukup, L (Rényi Institute)

Banff 2007 46 / 74

 $\begin{array}{l} \underbrace{f:} V(G) \times V(H) \to n. \ \mathcal{I} = \{V' \subset V(G) : \chi(G[V']) < \omega\}.\\ \hline \text{There is an ultrafilter } \mathcal{U} \text{ on } V(G) \text{ s.t. } \mathcal{U} \cap \mathcal{I} = \emptyset.\\ (*) \ \forall U \in \mathcal{U} \ (\exists v_0, v_1 \in U) \ v_0 v_1 \in E(G).\\ \hline \text{For } w \in V(H) \text{ and } i < n \text{ let } U(w, i) = \{v \in V(G) : f(v, w) = i\} \end{array}$

 $\begin{array}{l} \underbrace{f: V(G) \times V(H) \rightarrow n. \ \mathcal{I} = \{V' \subset V(G) : \chi(G[V']) < \omega\}. \\ \hline \text{There is an ultrafilter } \mathcal{U} \text{ on } V(G) \text{ s.t. } \mathcal{U} \cap \mathcal{I} = \emptyset. \\ (*) \ \forall U \in \mathcal{U} \ (\exists v_0, v_1 \in U) \ v_0 v_1 \in E(G). \\ \hline \text{For } w \in V(H) \text{ and } i < n \text{ let } U(w, i) = \{v \in V(G) : f(v, w) = i\} \\ V(G) = U(w, 0) \cup \cdots \cup U(w, n - 1). \end{array}$

Soukup, L (Rényi Institute)

Banff 2007 46 / 74

 $\begin{array}{l} f: V(G) \times V(H) \to n. \ \mathcal{I} = \{V' \subset V(G) : \chi(G[V']) < \omega\}.\\ \hline \text{There is an ultrafilter } \mathcal{U} \text{ on } V(G) \text{ s.t. } \mathcal{U} \cap \mathcal{I} = \emptyset.\\ (*) \ \forall U \in \mathcal{U} \ (\exists v_0, v_1 \in U) \ v_0 v_1 \in E(G).\\ \hline \text{For } w \in V(H) \text{ and } i < n \text{ let } U(w, i) = \{v \in V(G) : f(v, w) = i\}\\ V(G) = U(w, 0) \cup \cdots \cup U(w, n - 1).\\ \forall w \in V(H) \ \exists g(w) < n \ U(w, g(w)) \in \mathcal{U} \end{array}$


```
\begin{array}{l} f: V(G) \times V(H) \to n. \ \mathcal{I} = \{V' \subset V(G) : \chi(G[V']) < \omega\}.\\ \hline \text{There is an ultrafilter } \mathcal{U} \text{ on } V(G) \text{ s.t. } \mathcal{U} \cap \mathcal{I} = \emptyset.\\ (*) \ \forall U \in \mathcal{U} \ (\exists v_0, v_1 \in U) \ v_0 v_1 \in E(G).\\ \hline \text{For } w \in V(H) \text{ and } i < n \text{ let } U(w, i) = \{v \in V(G) : f(v, w) = i\}\\ V(G) = U(w, 0) \cup \cdots \cup U(w, n - 1).\\ \forall w \in V(H) \ \exists g(w) < n \ U(w, g(w)) \in \mathcal{U}\\ g : V(H) \to n \end{array}
```

V(H)

V(G)

(4) (5) (4) (5)

 $\begin{array}{l} f: V(G) \times V(H) \to n. \ \mathcal{I} = \{V' \subset V(G) : \chi(G[V']) < \omega\}.\\ \hline \text{There is an ultrafilter } \mathcal{U} \text{ on } V(G) \text{ s.t. } \mathcal{U} \cap \mathcal{I} = \emptyset.\\ (*) \ \forall U \in \mathcal{U} \ (\exists v_0, v_1 \in U) \ v_0 v_1 \in E(G).\\ \hline \text{For } w \in V(H) \text{ and } i < n \text{ let } U(w, i) = \{v \in V(G) : f(v, w) = i\}\\ V(G) = U(w, 0) \cup \cdots \cup U(w, n - 1).\\ \forall w \in V(H) \ \exists g(w) < n \ U(w, g(w)) \in \mathcal{U}\\ g : V(H) \to n \ \exists w_0 w_1 \in E(H) \text{ s.t. } g(w_0) = g(w_1). \end{array}$

V(G)

Banff 2007

A (10) A (10) A (10)

Soukup, L (Rényi Institute)

If $\chi(G) \ge \omega$ and $\chi(H) \ge n+1$ then $\chi(G \times H) \ge n+1$.

f: $V(G) \times V(H) \rightarrow n$. $\mathcal{I} = \{V' \subset V(G) : \chi(G[V']) < \omega\}$. There is an ultrafilter \mathcal{U} on V(G) s.t. $\mathcal{U} \cap \mathcal{I} = \emptyset$. (*) $\forall U \in \mathcal{U} (\exists v_0, v_1 \in U) v_0 v_1 \in E(G).$ For $w \in V(H)$ and i < n let $U(w, i) = \{v \in V(G) : f(v, w) = i\}$ $V(G) = U(w, 0) \cup \cdots \cup U(w, n-1).$ $\forall w \in V(H) \exists g(w) < n \ U(w, g(w)) \in \mathcal{U}$ $g: V(H) \rightarrow n \exists w_0 w_1 \in E(H) \text{ s.t. } g(w_0) = g(w_1).$ $U = U(w_0, q(w_0)) \cap U(w_1, q(w_1)) \in \mathcal{U}$

Soukup, L (Rényi Institute)

If $\chi(G) \ge \omega$ and $\chi(H) \ge n + 1$ then $\chi(G \times H) \ge n + 1$.

f: $V(G) \times V(H) \rightarrow n$. $\mathcal{I} = \{V' \subset V(G) : \chi(G[V']) < \omega\}$. There is an **ultrafilter** \mathcal{U} on V(G) s.t. $\mathcal{U} \cap \mathcal{I} = \emptyset$. (*) $\forall U \in \mathcal{U} (\exists v_0, v_1 \in U) v_0 v_1 \in E(G)$. For $w \in V(H)$ and i < n let $U(w, i) = \{v \in V(G) : f(v, w) = i\}$ $V(G) = U(w, 0) \cup \cdots \cup U(w, n - 1)$. $\forall w \in V(H) \exists g(w) < n \ U(w, g(w)) \in \mathcal{U}$ $g : V(H) \rightarrow n \ \exists w_0 w_1 \in E(H)$ s.t. $g(w_0) = g(w_1)$. $U = U(w_0, g(w_0)) \cap U(w_1, g(w_1)) \in \mathcal{U} \ \exists v_0, v_1 \in U$ s.t. $v_0 v_1 \in E(G)$.

Soukup, L (Rényi Institute)

Banff 2007 46 / 74

If $\chi(G) \ge \omega$ and $\chi(H) \ge n + 1$ then $\chi(G \times H) \ge n + 1$.

$$\begin{split} & f: V(G) \times V(H) \to n. \ \mathcal{I} = \{V' \subset V(G) : \chi(G[V']) < \omega\}. \\ & \text{There is an ultrafilter } \mathcal{U} \text{ on } V(G) \text{ s.t. } \mathcal{U} \cap \mathcal{I} = \emptyset. \\ & (*) \ \forall U \in \mathcal{U} \ (\exists v_0, v_1 \in U) \ v_0 v_1 \in E(G). \\ & \text{For } w \in V(H) \text{ and } i < n \text{ let } U(w, i) = \{v \in V(G) : f(v, w) = i\} \\ & V(G) = U(w, 0) \cup \cdots \cup U(w, n - 1). \\ & \forall w \in V(H) \ \exists g(w) < n \ U(w, g(w)) \in \mathcal{U} \\ & g: V(H) \to n \ \exists w_0 w_1 \in E(H) \text{ s.t. } g(w_0) = g(w_1). \\ & U = U(w_0, g(w_0)) \cap U(w_1, g(w_1)) \in \mathcal{U} \ \exists v_0, v_1 \in U \text{ s.t. } v_0 v_1 \in E(G). \\ & \langle v_0, w_0 \rangle \langle v_1, w_1 \rangle \in E(G \times H). \end{split}$$

Soukup, L (Rényi Institute)

Banff 2007 46 / 74

If $\chi(G) \ge \omega$ and $\chi(H) \ge n+1$ then $\chi(G \times H) \ge n+1$.

f: $V(G) \times V(H) \rightarrow n$. $\mathcal{I} = \{V' \subset V(G) : \chi(G[V']) < \omega\}$. There is an ultrafilter \mathcal{U} on V(G) s.t. $\mathcal{U} \cap \mathcal{I} = \emptyset$. (*) $\forall U \in \mathcal{U} (\exists v_0, v_1 \in U) v_0 v_1 \in E(G).$ For $w \in V(H)$ and i < n let $U(w, i) = \{v \in V(G) : f(v, w) = i\}$ $V(G) = U(w, 0) \cup \cdots \cup U(w, n-1).$ $\forall w \in V(H) \exists g(w) < n \ U(w, g(w)) \in \mathcal{U}$ $g: V(H) \rightarrow n \exists w_0 w_1 \in E(H) \text{ s.t. } g(w_0) = g(w_1).$ $U = U(w_0, g(w_0)) \cap U(w_1, g(w_1)) \in \mathcal{U} \quad \exists v_0, v_1 \in U \text{ s.t. } v_0 v_1 \in E(G).$ $\langle v_0, w_0 \rangle \langle v_1, w_1 \rangle \in E(G \times H).$ $f(\langle v_0, w_0 \rangle) = g(w_0) = g(w_1) = f(\langle v_1, w_1 \rangle).$

Soukup, L (Rényi Institute)

If $\chi(G) \ge \omega$ and $\chi(H) \ge n + 1$ then $\chi(G \times H) \ge n + 1$.

$$\begin{split} &f: V(G) \times V(H) \to n. \ \mathcal{I} = \{V' \subset V(G) : \chi(G[V']) < \omega\}. \\ &\text{There is an ultrafilter } \mathcal{U} \text{ on } V(G) \text{ s.t. } \mathcal{U} \cap \mathcal{I} = \emptyset. \\ &(*) \ \forall U \in \mathcal{U} \ (\exists v_0, v_1 \in U) \ v_0 v_1 \in E(G). \\ &\text{For } w \in V(H) \text{ and } i < n \text{ let } U(w, i) = \{v \in V(G) : f(v, w) = i\} \\ &V(G) = U(w, 0) \cup \cdots \cup U(w, n - 1). \\ &\forall w \in V(H) \ \exists g(w) < n \ U(w, g(w)) \in \mathcal{U} \\ &g: V(H) \to n \ \exists w_0 w_1 \in E(H) \text{ s.t. } g(w_0) = g(w_1). \\ &U = U(w_0, g(w_0)) \cap U(w_1, g(w_1)) \in \mathcal{U} \ \exists v_0, v_1 \in U \text{ s.t. } v_0 v_1 \in E(G). \\ &\langle v_0, w_0 \rangle \ \langle v_1, w_1 \rangle \in E(G \times H). \ f(\langle v_0, w_0 \rangle) = g(w_0) = g(w_1) = f(\langle v_1, w_1 \rangle). \end{split}$$

Theorem (Hajnal)

There are two ω_1 -chromatic graphs G and H on ω_1 such that $\chi(G \times H) = \omega$.

Image: A matrix and a matrix

- A 🖻 🕨

Theorem (Hajnal)

There are two ω_1 -chromatic graphs G and H on ω_1 such that $\chi(G \times H) = \omega$.

Theorem (-)

It is consistent with GCH that there are two ω_2 -chromatic graphs G and H on ω_2 s. t. $\chi(G \times H) = \omega$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Hajnal)

There are two ω_1 -chromatic graphs G and H on ω_1 such that $\chi(G \times H) = \omega$.

Theorem (-)

It is consistent with GCH that there are two ω_2 -chromatic graphs G and H on ω_2 s. t. $\chi(G \times H) = \omega$.

Problem

Is it consistent with GCH that there are two ω_3 -chromatic graphs G and H on ω_3 s. t. $\chi(G \times H) = \omega$?

イロン イ理 とくほどく ほどう ほ

Combinatorial principles Consistency proofs without tears

independence proofs are rather sophisticated

Image: A matrix and a matrix

- A 🖻 🕨

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians

Image: A matrix and a matrix

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians

Solution:

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians
- **Solution: isolate** a relatively small number of **principles**, i.e. independent statements

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians
- **Solution: isolate** a relatively small number of **principles**, i.e. independent statements
 - that are simple to formulate

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians
- **Solution: isolate** a relatively small number of **principles**, i.e. independent statements
 - that are simple to formulate
 - that are **useful** in the sense that they have many interesting consequences.

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians
- **Solution: isolate** a relatively small number of **principles**, i.e. independent statements
 - that are simple to formulate
 - that are **useful** in the sense that they have many interesting consequences.

combinatorial principles

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians
- **Solution: isolate** a relatively small number of **principles**, i.e. independent statements
 - that are simple to formulate
 - that are **useful** in the sense that they have many interesting consequences.

combinatorial principles Continuum Hypothesis,

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians
- **Solution: isolate** a relatively small number of **principles**, i.e. independent statements
 - that are simple to formulate
 - that are **useful** in the sense that they have many interesting consequences.

combinatorial principles Continuum Hypothesis, Martin's Axiom

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians
- **Solution: isolate** a relatively small number of **principles**, i.e. independent statements
 - that are simple to formulate
 - that are **useful** in the sense that they have many interesting consequences.

combinatorial principles Continuum Hypothesis, Martin's Axiom Other models?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- independence proofs are rather sophisticated
- the results themselves are usually of interest to "ordinary" mathematicians
- **Solution: isolate** a relatively small number of **principles**, i.e. independent statements
 - that are simple to formulate
 - that are **useful** in the sense that they have many interesting consequences.
- combinatorial principles

Continuum Hypothesis, Martin's Axiom

Other models?

principles which describe the Cohen Model

(3)

Soukup, L (Rényi Institute)

Any κ -fold cover of \mathbb{R} by intervals can be partitioned into κ subcovers.

- A 🖻 🕨

Any κ -fold cover of \mathbb{R} by intervals can be partitioned into κ subcovers.

Theorem (M. Elekes, T. Matrai, –)

Any κ -fold cover of \mathbb{R} by intervals can be partitioned into κ subcovers.

Theorem (M. Elekes, T. Matrai, –)

 any ω₁-fold cover of ℝⁿ by polytopes can be partitioned into ω₁ subcovers.

Any κ -fold cover of \mathbb{R} by intervals can be partitioned into κ subcovers.

Theorem (M. Elekes, T. Matrai, –)

- any ω₁-fold cover of ℝⁿ by polytopes can be partitioned into ω₁ subcovers.
- R² has an ω-fold cover by rectangles which can not be partitioned into two subcovers.

Any κ -fold cover of \mathbb{R} by intervals can be partitioned into κ subcovers.

Theorem (M. Elekes, T. Matrai, –)

- any ω₁-fold cover of ℝⁿ by polytopes can be partitioned into ω₁ subcovers.
- R² has an ω-fold cover by rectangles which can not be partitioned into two subcovers.
- CH ⇒ any ω₁-fold cover of ℝⁿ by closed sets can be partitioned into ω₁ subcovers.

Any κ -fold cover of \mathbb{R} by intervals can be partitioned into κ subcovers.

Theorem (M. Elekes, T. Matrai, –)

- any ω₁-fold cover of ℝⁿ by polytopes can be partitioned into ω₁ subcovers.
- R² has an ω-fold cover by rectangles which can not be partitioned into two subcovers.
- CH ⇒ any ω₁-fold cover of ℝⁿ by closed sets can be partitioned into ω₁ subcovers.
- If MA_{ω1} then there is an ω1-fold cover of ℝⁿ by closed sets which can not be partitioned into ω1 subcovers.

• • • • • • • • • • • •

(*): any ω_1 -fold cover of \mathbb{R}^n by closed sets can be partitioned into ω_1 subcovers.

(*): any ω_1 -fold cover of \mathbb{R}^n by closed sets can be partitioned into ω_1 subcovers.

(1) $CH \Longrightarrow (*)$. (2) If MA_{ω_1} then $\neg(*)$.

(*): any ω_1 -fold cover of \mathbb{R}^n by closed sets can be partitioned into ω_1 subcovers.

(1) $CH \Longrightarrow (*)$. (2) If MA_{ω_1} then $\neg(*)$.

Definition

A poset P has the weak Freese-Nation property

(*): any ω_1 -fold cover of \mathbb{R}^n by closed sets can be partitioned into ω_1 subcovers.

(1) $CH \Longrightarrow (*)$. (2) If MA_{ω_1} then $\neg(*)$.

Definition

A poset *P* has the weak Freese-Nation property iff $\exists f : P \rightarrow [P]^{\leq \omega}$

(*): any ω_1 -fold cover of \mathbb{R}^n by closed sets can be partitioned into ω_1 subcovers.

(1) $CH \Longrightarrow (*)$. (2) If MA_{ω_1} then $\neg(*)$.

Definition

A poset *P* has the weak Freese-Nation property iff $\exists f : P \to [P]^{\leq \omega}$ s.t. $\forall \{p, q\} \in [P]^2$, $p \leq_P q$, $\exists r \in f(p) \cap f(q)$ with $p \leq_P r \leq_P q$.

(*): any ω_1 -fold cover of \mathbb{R}^n by closed sets can be partitioned into ω_1 subcovers.

(1) $CH \Longrightarrow (*)$. (2) If MA_{ω_1} then $\neg(*)$.

Definition

A poset *P* has the weak Freese-Nation property iff $\exists f : P \to [P]^{\leq \omega}$ s.t. $\forall \{p, q\} \in [P]^2$, $p \leq_P q$, $\exists r \in f(p) \cap f(q)$ with $p \leq_P r \leq_P q$.

Theorem (Fuchino, -)

In the Cohen modell $\langle P(\omega), \subset \rangle$ has the weak Freese-Nation property

イロト イ理ト イヨト イヨト 三星

(*): any ω_1 -fold cover of \mathbb{R}^n by closed sets can be partitioned into ω_1 subcovers.

(1) $CH \Longrightarrow (*)$. (2) If MA_{ω_1} then $\neg(*)$.

Definition

A poset *P* has the weak Freese-Nation property iff $\exists f : P \to [P]^{\leq \omega}$ s.t. $\forall \{p, q\} \in [P]^2$, $p \leq_P q$, $\exists r \in f(p) \cap f(q)$ with $p \leq_P r \leq_P q$.

Theorem (Fuchino, -)

In the Cohen modell $\langle P(\omega), \subset \rangle$ has the weak Freese-Nation property

イロト イ理ト イヨト イヨト 三星

(*): any ω_1 -fold cover of \mathbb{R}^n by closed sets can be partitioned into ω_1 subcovers.

(1) $CH \Longrightarrow (*)$. (2) If MA_{ω_1} then $\neg(*)$.

Definition

A poset *P* has the weak Freese-Nation property iff $\exists f : P \to [P]^{\leq \omega}$ s.t. $\forall \{p, q\} \in [P]^2$, $p \leq_P q$, $\exists r \in f(p) \cap f(q)$ with $p \leq_P r \leq_P q$.

Theorem (Fuchino, –)

In the Cohen modell $\langle P(\omega), \subset \rangle$ has the weak Freese-Nation property

Theorem (M. Elekes, T. Matrai, -)

If $\langle P(\omega), \subset \rangle$ has the weak Freese-Nation property then (*) holds.

Covers of \mathbb{R}^n

(*): any ω_1 -fold cover of \mathbb{R}^n by closed sets can be partitioned into ω_1 subcovers.

(1) $CH \Longrightarrow (*)$. (2) If MA_{ω_1} then $\neg(*)$.

Definition

A poset *P* has the weak Freese-Nation property iff $\exists f : P \to [P]^{\leq \omega}$ s.t. $\forall \{p, q\} \in [P]^2$, $p \leq_P q$, $\exists r \in f(p) \cap f(q)$ with $p \leq_P r \leq_P q$.

Theorem (Fuchino, –)

In the Cohen modell $\langle P(\omega), \subset \rangle$ has the weak Freese-Nation property

Theorem (M. Elekes, T. Matrai, -)

If $\langle P(\omega), \subset \rangle$ has the weak Freese-Nation property then (*) holds.

Covers of \mathbb{R}^n

(*): any ω_1 -fold cover of \mathbb{R}^n by closed sets can be partitioned into ω_1 subcovers.

(1) $CH \Longrightarrow (*)$. (2) If MA_{ω_1} then $\neg(*)$.

Definition

A poset *P* has the weak Freese-Nation property iff $\exists f : P \to [P]^{\leq \omega}$ s.t. $\forall \{p, q\} \in [P]^2$, $p \leq_P q$, $\exists r \in f(p) \cap f(q)$ with $p \leq_P r \leq_P q$.

Theorem (Fuchino, –)

In the Cohen modell $\langle P(\omega), \subset \rangle$ has the weak Freese-Nation property

Theorem (M. Elekes, T. Matrai, -)

If $\langle P(\omega), \subset \rangle$ has the weak Freese-Nation property then (*) holds. So (*)+ $\neg CH$ is consistent.

When a principle fails

Soukup, L (Rényi Institute)

・ロト ・ 日 ・ ・ ヨ ト ・

T: statement

Soukup, L (Rényi Institute)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

T: statement Con(T)?

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

T: statement Con(T)? Plan: Pick a principle *P* and prove that *P* implies *T*.

- 3 >

T: statement Con(T)? **Plan:** Pick a principle *P* and prove that *P* implies *T*. can't prove that *P* implies *T*

Image: A matrix and a matrix

T: statement Con(T)? **Plan**: Pick a principle P and prove that P implies T. can't prove that P implies T**Problem**: Prove that P does not imply T

Image: A matrix and a matrix

K.A.Kierstead and P.J.Nyikos: Are there infinite graphs which are **very homogeneous**

• • • • • • • • • • • •

Image: A matrix and a matrix

イロト イポト イヨト イヨ

 $G = \langle \omega_1, E \rangle$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 $G = \langle \omega_1, E \rangle$

How to measure homogeneity of a graph G?

Image: A matrix and a matrix

 ${m G}=\langle \omega_1,{m E}
angle$

How to measure homogeneity of a graph G?

I(G): isomorphism classes of induced uncountable subgraphs of G.

(4) (5) (4) (5)

 ${m G}=\langle \omega_1,{m E}
angle$

How to measure homogeneity of a graph G?

I(G): isomorphism classes of induced uncountable subgraphs of G.

(I(G)| is small,

★ Ξ ► < Ξ ►</p>

 $G = \langle \omega_1, E \rangle$

How to measure homogeneity of a graph G?

I(G): isomorphism classes of induced uncountable subgraphs of G.

- I(G) | I(G)| is small,
- **2** $G \cong G[A]$ for many $A \subset \omega_1$.

.

G is smooth iff |I(G)| = 1

G is smooth iff
$$|I(G)| = 1$$

Fact

A smooth graph is either complete or empty.

イロト イポト イヨト イヨ

G is smooth iff
$$|I(G)| = 1$$

Fact

A smooth graph is either complete or empty.

Proof.

イロト イヨト イヨト イヨト

G is **smooth** iff
$$|I(G)| = 1$$

Fact

A smooth graph is either complete or empty.

Proof.

•
$$\mathbf{x} \in \omega_1$$
, w.l.o.g $|\mathbf{E}(\mathbf{x})| = \omega_1$.

イロト イポト イヨト イヨ

G is smooth iff
$$|I(G)| = 1$$

Fact

A smooth graph is either complete or empty.

Proof.

•
$$x \in \omega_1$$
, w.l.o.g $|E(x)| = \omega_1$.

•
$$G \cong G[\{x\} \cup E(x)]$$

イロト イポト イヨト イヨ

G is smooth iff
$$|I(G)| = 1$$

Fact

A smooth graph is either complete or empty.

Proof.

•
$$x \in \omega_1$$
, w.l.o.g $|E(x)| = \omega_1$.

• $G \cong G[\{x\} \cup E(x)]$

•
$$\exists v \in \omega_1 \ \omega_1 = \{v\} \cup E(v)$$

イロト イポト イヨト イヨ

G is smooth iff
$$|I(G)| = 1$$

Fact

A smooth graph is either complete or empty.

Proof.

•
$$x \in \omega_1$$
, w.l.o.g $|E(x)| = \omega_1$.

- $G \cong G[\{x\} \cup E(x)]$
- $\exists \mathbf{v} \in \omega_1 \ \omega_1 = \{\mathbf{v}\} \cup \mathbf{E}(\mathbf{v})$
- $\forall W \in [V]^{\omega_1} \exists w \in W \ W \subset \{w\} \cup E(w)$

Image: A matrix and a matrix

- A 🖻 🕨

G is smooth iff
$$|I(G)| = 1$$

Fact

A smooth graph is either complete or empty.

Proof.

•
$$x \in \omega_1$$
, w.l.o.g $|E(x)| = \omega_1$.

- $G \cong G[\{x\} \cup E(x)]$
- $\exists \mathbf{v} \in \omega_1 \ \omega_1 = \{\mathbf{v}\} \cup \mathbf{E}(\mathbf{v})$
- $\forall W \in [V]^{\omega_1} \exists w \in W \ W \subset \{w\} \cup E(w)$
- G is complete

- E - N

Theorem (K.A.Kierstead and P.J.Nyikos)

If G is a non-trivial graph on ω_1 then $|I(G)| \ge \omega$.

Theorem (K.A.Kierstead and P.J.Nyikos)

If G is a non-trivial graph on ω_1 then $|I(G)| \ge \omega$.

Theorem (Hajnal, Nagy, –)

(1) $|I(G)| \ge 2^{\omega}$ for each non-trivial graph G on ω_1 .

Theorem (K.A.Kierstead and P.J.Nyikos)

If G is a non-trivial graph on ω_1 then $|I(G)| \ge \omega$.

Theorem (Hajnal, Nagy, –)

(1) $|I(G)| \ge 2^{\omega}$ for each non-trivial graph G on ω_1 . (2) Under \Diamond^+ there exists a non-trivial graph G on ω_1 with $|I(G)| = \omega_1$.

(4) (5) (4) (5)

Theorem (K.A.Kierstead and P.J.Nyikos)

If G is a non-trivial graph on ω_1 then $|I(G)| \ge \omega$.

Theorem (Hajnal, Nagy, -)

(1) $|I(G)| \ge 2^{\omega}$ for each non-trivial graph G on ω_1 . (2) Under \Diamond^+ there exists a non-trivial graph G on ω_1 with $|I(G)| = \omega_1$.

Theorem (Shelah, -)

Assume that GCH holds and every Aronszajn-tree is special. Then $|I(G)| = 2^{\omega_1}$ for each non-trivial graph $G = \langle \omega_1, E \rangle$.

イロト イポト イヨト イヨト 三星

イロト イヨト イヨト イ

Theorem (Hajnal, Nagy, -)

If CH holds then there is a non-trivial, almost smooth graph on ω_1 .

Theorem (Hajnal, Nagy, -)

If CH holds then there is a non-trivial, almost smooth graph on ω_1 .

Problem

Is there a non-trivial, almost smooth graph on ω_1 ?

Theorem (Hajnal, Nagy, -)

If CH holds then there is a non-trivial, almost smooth graph on ω_1 .

Problem

Is there a non-trivial, almost smooth graph on ω_1 ?

Theorem (Hajnal, Nagy, -)

If CH holds then there is a non-trivial, almost smooth graph on ω_1 .

Problem

Is there a non-trivial, almost smooth graph on ω_1 ?

Does Martin's Axiom imply that there is no non-trivial, almost smooth graph on ω_1 ?

Theorem (–)

It is consistent that MA_{\aleph_1} holds and there is a non-trivial, almost smooth graph on ω_1 .

Soukup, L (Rényi Institute)

Image: A matrix and a matrix

→ ∃ →

A blackbox theorem

Soukup, L (Rényi Institute)

イロト イヨト イヨト イ

$\operatorname{Fn}_{m}(\omega_{1}, K) = \{s : s \text{ is a function, } \operatorname{dom}(s) \in [\omega_{1}]^{m}, \operatorname{ran}(s) \subset K\}$

 $\operatorname{Fn}_{m}(\omega_{1}, K) = \{s : s \text{ is a function, } \operatorname{dom}(s) \in [\omega_{1}]^{m}, \operatorname{ran}(s) \subset K\}$

 $\langle \mathbf{s}_{\alpha} : \alpha < \omega_1 \rangle \subset \mathsf{Fn}_m(\omega_1, K)$ is *dom-disjoint* iff dom $(\mathbf{s}_{\alpha}) \cap \mathsf{dom}(\mathbf{s}_{\beta}) = \emptyset$

< 🗇 🕨 < 🖃 🕨

Definition

Let *G* be a graph on $\omega_1 \times K$, $m \in \omega$.

Definition

Let *G* be a graph on $\omega_1 \times K$, $m \in \omega$. We say that *G* is *m*-solid if given any dom-disjoint sequence $\langle s_{\alpha} : \alpha < \omega_1 \rangle \subset \operatorname{Fn}_m(\omega_1, K)$ there are $\alpha < \beta < \omega_1$ such that

 $[\mathbf{s}_{\alpha},\mathbf{s}_{\beta}]\subset \mathbf{G}.$

G is called **strongly solid** iff it is *m*-solid for each $m \in \omega$.

Definition

Let *G* be a graph on $\omega_1 \times K$, $m \in \omega$. We say that *G* is *m*-solid if given any **dom-disjoint sequence** $\langle s_{\alpha} : \alpha < \omega_1 \rangle \subset \operatorname{Fn}_m(\omega_1, K)$ there are $\alpha < \beta < \omega_1$ such that

 $[\mathbf{s}_{\alpha},\mathbf{s}_{\beta}]\subset \mathbf{G}.$

G is called *strongly solid* iff it is *m*-solid for each $m \in \omega$.

Definition

Let *G* be a graph on $\omega_1 \times K$, $m \in \omega$. We say that *G* is *m*-solid if given any **dom-disjoint sequence** $\langle s_{\alpha} : \alpha < \omega_1 \rangle \subset \operatorname{Fn}_m(\omega_1, K)$ there are $\alpha < \beta < \omega_1$ such that

 $[\mathbf{s}_{\alpha},\mathbf{s}_{\beta}]\subset \mathbf{G}.$

G is called *strongly solid* iff it is *m*-solid for each $m \in \omega$.

Let *G* be a graph on $\omega_1 \times K$, $m \in \omega$. We say that *G* is *m*-solid if given any dom-disjoint sequence $\langle s_{\alpha} : \alpha < \omega_1 \rangle \subset \operatorname{Fn}_m(\omega_1, K)$ there are $\alpha < \beta < \omega_1$ such that

 $[\mathbf{s}_{\alpha},\mathbf{s}_{\beta}]\subset \mathbf{G}.$

G is called *strongly solid* iff it is *m*-solid for each $m \in \omega$.

Theorem (–)

Assume $2^{\omega_1} = \omega_2$. If G is a **strongly solid** graph on $\omega_1 \times K$, then for each $m \in \omega$ in some (c.c.c. generic) extension W of V we have

 $W \models$ "*G* is *m*-solid + MA_{ω_1} holds"

Let *G* be a graph on $\omega_1 \times K$, $m \in \omega$. We say that *G* is *m*-solid if given any dom-disjoint sequence $\langle s_{\alpha} : \alpha < \omega_1 \rangle \subset \operatorname{Fn}_m(\omega_1, K)$ there are $\alpha < \beta < \omega_1$ such that

 $[\mathbf{s}_{\alpha},\mathbf{s}_{\beta}]\subset \mathbf{G}.$

G is called *strongly solid* iff it is *m*-solid for each $m \in \omega$.

Theorem (-)

Assume $2^{\omega_1} = \omega_2$. If G is a **strongly solid** graph on $\omega_1 \times K$, then for each $m \in \omega$ in some (c.c.c. generic) extension W of V we have

 $W \models$ "*G* is *m*-solid + MA_{ω_1} holds"

Theorem (-)

It is consistent that MA_{\aleph_1} holds and there is a non-trivial, almost smooth graph on ω_1 .

Proof

- Coding: Given a graph C on ω₁ define a suitable K and a graph G(C) on ω₁ × K s. t.
 - (a) If G(C) is 4-solid then C is non-trivial
 - $\{0,1\}$ is 1-solid and $MA_{\rm eq}$ holds then C is almost smooth
 - G(C) is strongly solid provided C has some property (P)
- Using GCH construct a graph on ω_1 with property (P)
- Black Box Theorem:
 - $W \models "G(C)$ is 1-solid and MA_{ω_1} holds."
- Theorem:

 $W \models$ "C is non-trivial, almost smooth and MA_{ω}, holds."

Theorem (-)

It is consistent that MA_{\aleph_1} holds and there is a non-trivial, almost smooth graph on ω_1 .

Proof

- **Coding:** Given a graph *C* on ω_1 define a suitable *K* and a graph G(C) on $\omega_1 \times K$ s. t.
 - (a) If G(C) is 1-solid then C is non-trivial
 - (b) If G(C) is 1-solid and MA_{\aleph_1} holds then C is almost smooth.
 - (c) G(C) is strongly solid provided C has some property (P)
- Using GCH construct a graph on ω_1 with property (P)
- Black Box Theorem:
 W ⊨ "G(C) is 1-solid and MA_{ω1} holds."
- Theorem:

 $W\models$ "C is non-trivial, almost smooth and MA $_{\omega_1}$ holds."

Theorem (-)

It is consistent that MA_{\aleph_1} holds and there is a non-trivial, almost smooth graph on ω_1 .

Proof

- **Coding:** Given a graph *C* on ω_1 define a suitable *K* and a graph G(C) on $\omega_1 \times K$ s. t.
 - (a) If G(C) is 1-solid then C is non-trivial
 - b) If G(C) is 1-solid and MA_{\aleph_1} holds then C is almost smooth.
 - (c) G(C) is strongly solid provided C has some property (P)
- Using GCH construct a graph on ω_1 with property (P)
- Black Box Theorem: $W \models "G(C)$ is 1-solid and MA_{ω_1} holds."
- Theorem:

 $W \models$ "*C* is non-trivial, almost smooth and MA_{ω_1} holds."

Theorem (-)

It is consistent that MA_{\aleph_1} holds and there is a non-trivial, almost smooth graph on ω_1 .

Proof

- Coding: Given a graph C on ω₁ define a suitable K and a graph G(C) on ω₁ × K s. t.
 - (a) If G(C) is 1-solid then C is non-trivial
 - (b) If G(C) is 1-solid and MA_{\aleph_1} holds then C is almost smooth.
 - (c) G(C) is strongly solid provided C has some property (P)
- Using GCH construct a graph on ω_1 with property (P)
- Black Box Theorem:
 W ⊨ "G(C) is 1-solid and MA_{ω1} holds."
- Theorem:

 $W\models$ "C is non-trivial, almost smooth and MA_{ω_1} holds."

Theorem (-)

It is consistent that MA_{\aleph_1} holds and there is a non-trivial, almost smooth graph on ω_1 .

Proof

- Coding: Given a graph C on ω₁ define a suitable K and a graph G(C) on ω₁ × K s. t.
 - (a) If G(C) is 1-solid then C is non-trivial
 - (b) If G(C) is 1-solid and MA_{\aleph_1} holds then C is almost smooth.
 - (c) G(C) is strongly solid provided C has some property (P)
- Using GCH construct a graph on ω_1 with property (P)
- Black Box Theorem:
 W ⊨ "G(C) is 1-solid and MA_{ω1} holds."
- Theorem:

 $W \models$ "*C* is non-trivial, almost smooth and MA_{ω_1} holds."

Theorem (–)

It is consistent that MA_{\aleph_1} holds and there is a non-trivial, almost smooth graph on ω_1 .

Proof

- Coding: Given a graph C on ω₁ define a suitable K and a graph G(C) on ω₁ × K s. t.
 - (a) If G(C) is 1-solid then C is non-trivial
 - (b) If G(C) is 1-solid and MA_{\aleph_1} holds then C is almost smooth.
 - (c) G(C) is strongly solid provided C has some property (P)
- Using GCH construct a graph on ω_1 with property (P)
- Black Box Theorem:
 W ⊨ "G(C) is 1-solid and MA_{ω₁} holds."
- Theorem:

 $W \models$ "*C* is non-trivial, almost smooth and MA_{ω_1} holds."

Theorem (–)

It is consistent that MA_{\aleph_1} holds and there is a non-trivial, almost smooth graph on ω_1 .

Proof

- Coding: Given a graph C on ω₁ define a suitable K and a graph G(C) on ω₁ × K s. t.
 - (a) If G(C) is 1-solid then C is non-trivial
 - (b) If G(C) is 1-solid and MA_{\aleph_1} holds then C is almost smooth.
 - (c) G(C) is strongly solid provided C has some property (P)
- Using GCH construct a graph on ω_1 with property (P)
- Black Box Theorem:
 - $W \models$ "G(C) is 1-solid and MA_{ω_1} holds."
- Theorem:

 $W\models$ "C is non-trivial, almost smooth and MA_{ω_1} holds."

Theorem (–)

It is consistent that MA_{\aleph_1} holds and there is a non-trivial, almost smooth graph on ω_1 .

Proof

- **Coding:** Given a graph *C* on ω_1 define a suitable *K* and a graph G(C) on $\omega_1 \times K$ s. t.
 - (a) If G(C) is 1-solid then C is non-trivial
 - (b) If G(C) is 1-solid and MA_{\aleph_1} holds then C is almost smooth.
 - (c) G(C) is strongly solid provided C has some property (P)
- Using GCH construct a graph on ω_1 with property (P)
- Black Box Theorem:

 $W \models "G(C)$ is 1-solid and MA_{ω_1} holds."

• Theorem:

 $W \models$ "*C* is non-trivial, almost smooth and MA_{ω_1} holds."

Definition

 $G \leq H$ iff that there is a **homomorphism** from G to H

 \leq is a **quasi-order** and so it induces an equivalence relation: $G \sim H$ if and only if $G \leq H$ and $H \leq G$.

Definition

The **homomorphism posets** \mathbb{G} and \mathbb{D} are the partially ordered sets of all equivalence classes of **finite undirected** and **directed graphs**, respectively, **ordered by the** \leq .

ヘロト ヘ回ト ヘヨト ヘヨ

Definition

 $G \leq H$ iff that there is a **homomorphism** from G to H

 \leq is a **quasi-order** and so it induces an equivalence relation: $G \sim H$ if and only if $G \leq H$ and $H \leq G$.

Definition

The **homomorphism posets** \mathbb{G} and \mathbb{D} are the partially ordered sets of all equivalence classes of **finite undirected** and **directed graphs**, respectively, **ordered by the** \leq .

ヘロト ヘ回ト ヘヨト ヘヨ

Definition

 $G \leq H$ iff that there is a **homomorphism** from G to H

 \leq is a **quasi-order** and so it induces an equivalence relation: $G \sim H$ if and only if $G \leq H$ and $H \leq G$.

Definition

The **homomorphism posets** \mathbb{G} and \mathbb{D} are the partially ordered sets of all equivalence classes of **finite undirected** and **directed graphs**, respectively, **ordered by the** \leq .

イロト イヨト イヨト イヨト

Definition

 $G \leq H$ iff that there is a **homomorphism** from G to H

 \leq is a **quasi-order** and so it induces an equivalence relation: **G** ~ *H* if and only if **G** \leq *H* and *H* \leq **G**.

Definition

The **homomorphism posets** \mathbb{G} and \mathbb{D} are the partially ordered sets of all equivalence classes of **finite undirected** and **directed graphs**, respectively, **ordered by the** \leq .

イロト イヨト イヨト イヨト

Definition

 $G \leq H$ iff that there is a **homomorphism** from G to H

 \leq is a **quasi-order** and so it induces an equivalence relation: $G \sim H$ if and only if $G \leq H$ and $H \leq G$.

Definition

The **homomorphism posets** \mathbb{G} and \mathbb{D} are the partially ordered sets of all equivalence classes of **finite undirected** and **directed graphs**, respectively, **ordered by the** \leq .

イロト イポト イヨト イヨト

A maximal antichain *A* of a poset *P* splits if *A* can be partitioned into two subsets *B* and *C* such that $P = B^{\uparrow} \cup C^{\downarrow}$.

In a homomorphism poset a maximal antichain A splits: structure theorem on (di)graphs

A maximal antichain *A* of a poset *P* splits if *A* can be partitioned into two subsets *B* and *C* such that $P = B^{\uparrow} \cup C^{\downarrow}$.

In a homomorphism poset a maximal antichain A splits: structure theorem on (di)graphs

A maximal antichain *A* of a poset *P* splits if *A* can be partitioned into two subsets *B* and *C* such that $P = B^{\uparrow} \cup C^{\downarrow}$.

In a homomorphism poset

a maximal antichain A splits: structure theorem on (di)graphs

A maximal antichain *A* of a poset *P* splits if *A* can be partitioned into two subsets *B* and *C* such that $P = B^{\uparrow} \cup C^{\downarrow}$.

In a homomorphism poset a maximal antichain A splits: structure theorem on (di)graphs

A maximal antichain *A* of a poset *P* splits if *A* can be partitioned into two subsets *B* and *C* such that $P = B^{\uparrow} \cup C^{\downarrow}$.

In a homomorphism poset a maximal antichain A splits: structure theorem on (di)graphs

G is the homomorphism posets of all finite undirected graphs.

Theorem

G has only two finite maximal antichains: $\{K_1\}$ and $\{K_2\}$.

Let $\mathbb{G}' = \mathbb{G} \setminus \{K_1, K_2\}.$

Theorem (Duffus D., Erdos P.L., Nesetril J., Soukup, L.)

For each finite antichain $A \subseteq \mathbb{G}'$ there are maximal antichains $A_0, A_1 \supset A$ such that A_0 splits and A_1 does not split.

ヘロト ヘ回ト ヘヨト ヘヨ

$\ensuremath{\mathbb{G}}$ is the homomorphism posets of all finite undirected graphs.

Theorem

 \mathbb{G} has only two finite maximal antichains: {K₁} and {K₂}.

Let $\mathbb{G}' = \mathbb{G} \setminus \{K_1, K_2\}.$

Theorem (Duffus D., Erdos P.L., Nesetril J., Soukup, L.)

For each finite antichain $A \subseteq \mathbb{G}'$ there are maximal antichains $A_0, A_1 \supset A$ such that A_0 splits and A_1 does not split.

ヘロト ヘ回ト ヘヨト ヘヨ

 $\ensuremath{\mathbb{G}}$ is the homomorphism posets of all finite undirected graphs.

Theorem

 \mathbb{G} has only two finite maximal antichains: {*K*₁} and {*K*₂}.

Let $\mathbb{G}' = \mathbb{G} \setminus \{K_1, K_2\}.$

Theorem (Duffus D., Erdos P.L., Nesetril J., Soukup, L.)

For each finite antichain $A \subseteq \mathbb{G}'$ there are maximal antichains $A_0, A_1 \supset A$ such that A_0 splits and A_1 does not split.

イロト イヨト イヨト イヨト

 $\ensuremath{\mathbb{G}}$ is the homomorphism posets of all finite undirected graphs.

Theorem

 \mathbb{G} has only two finite maximal antichains: {*K*₁} and {*K*₂}.

Let $\mathbb{G}' = \mathbb{G} \setminus \{K_1, K_2\}.$

Theorem (Duffus D., Erdos P.L., Nesetril J., Soukup, L.)

For each finite antichain $A \subseteq \mathbb{G}'$ there are maximal antichains $A_0, A_1 \supset A$ such that A_0 splits and A_1 does not split.

イロト イヨト イヨト イヨト

 $\ensuremath{\mathbb{G}}$ is the homomorphism posets of all finite undirected graphs.

Theorem

 \mathbb{G} has only two finite maximal antichains: {*K*₁} and {*K*₂}.

Let $\mathbb{G}' = \mathbb{G} \setminus \{K_1, K_2\}.$

Theorem (Duffus D., Erdos P.L., Nesetril J., Soukup, L.)

For each finite antichain $A \subseteq \mathbb{G}'$ there are maximal antichains $A_0, A_1 \supset A$ such that A_0 splits and A_1 does not split.

 $\ensuremath{\mathbb{G}}$ is the homomorphism posets of all finite undirected graphs.

Theorem

 \mathbb{G} has only two finite maximal antichains: {*K*₁} and {*K*₂}.

Let $\mathbb{G}' = \mathbb{G} \setminus \{K_1, K_2\}.$

Theorem (Duffus D., Erdos P.L., Nesetril J., Soukup, L.)

For each finite antichain $A \subseteq \mathbb{G}'$ there are maximal antichains $A_0, A_1 \supset A$ such that A_0 splits and A_1 does not split.

 $\ensuremath{\mathbb{G}}$ is the homomorphism posets of all finite undirected graphs.

Theorem

 \mathbb{G} has only two finite maximal antichains: {*K*₁} and {*K*₂}.

Let $\mathbb{G}' = \mathbb{G} \setminus \{K_1, K_2\}.$

Theorem (Duffus D., Erdos P.L., Nesetril J., Soukup, L.)

For each finite antichain $A \subseteq \mathbb{G}'$ there are maximal antichains $A_0, A_1 \supset A$ such that A_0 splits and A_1 does not split.

$\ensuremath{\mathbb{D}}$ is the homomorphism posets of all finite directed graphs.

Theorem (Foniok-Nešetřil-Tardif)

a full description of the finite maximal antichains in $\mathbb D$.

Corollary (Foniok-Nešetřil-Tardif)

Every **finite** maximal antichain splits in \mathbb{D} .

What about infinite antichains in \mathbb{D} ?

Theorem (Duffus, D., Erdos P.L., Nesetril J, Soukup, L)

There are both splitting and non-splitting maximal infinite antichains in \mathbb{D} .

Soukup, L (Rényi Institute)

 $\ensuremath{\mathbb{D}}$ is the homomorphism posets of all finite directed graphs.

Theorem (Foniok-Nešetřil-Tardif)

a full description of the finite maximal antichains in $\mathbb D$.

Corollary (Foniok-Nešetřil-Tardif)

Every **finite** maximal antichain splits in \mathbb{D} .

What about infinite antichains in \mathbb{D} ?

Theorem (Duffus, D., Erdos P.L., Nesetril J, Soukup, L)

There are both splitting and non-splitting maximal infinite antichains in \mathbb{D} .

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

 $\ensuremath{\mathbb{D}}$ is the homomorphism posets of all finite directed graphs.

Theorem (Foniok-Nešetřil-Tardif)

a full description of the finite maximal antichains in $\ensuremath{\mathbb{D}}$.

Corollary (Foniok-Nešetřil-Tardif)

Every finite maximal antichain splits in \mathbb{D} .

What about infinite antichains in \mathbb{D} ?

Theorem (Duffus, D., Erdos P.L., Nesetril J, Soukup, L)

There are both splitting and non-splitting maximal infinite antichains in \mathbb{D} .

Soukup, L (Rényi Institute)

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

 $\ensuremath{\mathbb{D}}$ is the homomorphism posets of all finite directed graphs.

Theorem (Foniok-Nešetřil-Tardif)

a full description of the finite maximal antichains in $\ensuremath{\mathbb{D}}$.

Corollary (Foniok-Nešetřil-Tardif)

Every finite maximal antichain splits in \mathbb{D} .

What about infinite antichains in \mathbb{D} ?

Theorem (Duffus, D., Erdos P.L., Nesetril J, Soukup, L)

There are both splitting and non-splitting maximal infinite antichains in \mathbb{D} .

Soukup, L (Rényi Institute)

• • • • • • • • • • • •

 $\ensuremath{\mathbb{D}}$ is the homomorphism posets of all finite directed graphs.

Theorem (Foniok-Nešetřil-Tardif)

a full description of the finite maximal antichains in $\ensuremath{\mathbb{D}}$.

Corollary (Foniok-Nešetřil-Tardif)

Every finite maximal antichain splits in \mathbb{D} .

What about infinite antichains in \mathbb{D} ?

Theorem (Duffus, D., Erdos P.L., Nesetril J, Soukup, L)

There are both splitting and non-splitting maximal infinite antichains in \mathbb{D} .

There are both splitting and non-splitting maximal infinite antichains in \mathbb{D} .

Question

Assume that $A \subset \mathbb{D}$ is a maximal antichain, $A = B \cup^* C$, $A = B^{\uparrow} \cup C^{\downarrow}$. Is it true that $|B| = |C| = \omega$?

Theorem (Bodirsky M., Erdos L. P., Schahcht M., Soukup L.) Assume that $A \subset \mathbb{D}$ is an infinite maximal antichain, $A = B \cup^* C$,

 $A = B^{\uparrow} \cup C^{\downarrow}$. Then $|B| = \omega$.

There are both splitting and non-splitting maximal infinite antichains in \mathbb{D} .

Question

Assume that $A \subset \mathbb{D}$ is a maximal antichain, $A = B \cup^* C$, $A = B^{\uparrow} \cup C^{\downarrow}$. Is it true that $|B| = |C| = \omega$?

Theorem (Bodirsky M., Erdos L. P., Schahcht M., Soukup L.) Assume that $A \subset \mathbb{D}$ is an infinite maximal antichain, $A = B \cup^* C$, $A = B^{\uparrow} \cup C^{\downarrow}$. Then $|B| = \omega$.

There are both splitting and non-splitting maximal infinite antichains in \mathbb{D} .

Question

Assume that $A \subset \mathbb{D}$ is a maximal antichain, $A = B \cup^* C$, $A = B^{\uparrow} \cup C^{\downarrow}$. Is it true that $|B| = |C| = \omega$?

Theorem (Bodirsky M., Erdos L. P., Schahcht M., Soukup L.)

Assume that $A \subset \mathbb{D}$ is an infinite maximal antichain, $A = B \cup^* C$, $A = B^{\uparrow} \cup C^{\downarrow}$. Then $|B| = \omega$.

the **girth** of a graph is the **length of a shortest cycle** contained in the graph.

Theorem (Paul Erdős, 1959)

 $\forall k, \ell \in \mathbb{N} \exists G \text{ s. t. } \chi(G) > k \text{ and } girth(G) > \ell.$

Definition

The **homomorphism poset** \mathbb{G}_{ω} is the partially ordered set of all equivalence classes of **countable undirected graphs ordered by the** \leq .

ヘロト 人間 ト 人 ヨ ト 人 ヨ

the **girth** of a graph is the **length of a shortest cycle** contained in the graph.

Theorem (Paul Erdős, 1959)

 $\forall k, \ell \in \mathbb{N} \exists G \text{ s. } t. \ \chi(G) > k \text{ and } girth(G) > \ell.$

Definition

The **homomorphism poset** \mathbb{G}_{ω} is the partially ordered set of all equivalence classes of **countable undirected graphs ordered by the** \leq .

イロト イヨト イヨト イヨト

the **girth** of a graph is the **length of a shortest cycle** contained in the graph.

Theorem (Paul Erdős, 1959)

 $\forall k, \ell \in \mathbb{N} \exists G \text{ s. } t. \ \chi(G) > k \text{ and } girth(G) > \ell.$

Definition

The **homomorphism poset** \mathbb{G}_{ω} is the partially ordered set of all equivalence classes of **countable undirected graphs ordered by the** \leq .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem (Nesetril, Shelah)

If A is a 1-element maximal antichain in \mathbb{G}_{ω} then $A = \{K_1\}, \{K_2\}$ or $\{K_{\omega}\}.$

Conjecture

Conjecture: If A is a finite maximal antichain in \mathbb{G}_{ω} then $A \cap \mathbb{G} \neq \emptyset$.

Need: infinite version of Erdős theorem.

 $\forall k, \ell \in \mathbb{N} \exists G \text{ s. t. } \chi(G) > k \text{ and } \operatorname{girth}(G) > \ell.$

 $\chi(\mathbf{G}) > \mathbf{k} \text{ iff } \mathbf{G} \not\leq \mathbf{K}_{\mathbf{k}}.$

Conjecture

If $H \in \mathbb{G}_{\omega}$, $K_{\omega} \not\leq H$ and $\ell \in \mathbb{N}$ then $\exists G \in \mathbb{G}_{\omega}$ s.t. $G \not\leq H$ and girth $(G) > \ell$

Theorem (Nesetril, Shelah)

If A is a 1-element maximal antichain in \mathbb{G}_{ω} then $A = \{K_1\}, \{K_2\}$ or $\{K_{\omega}\}.$

Conjecture

Conjecture: If A is a finite maximal antichain in \mathbb{G}_{ω} then $A \cap \mathbb{G} \neq \emptyset$.

Need: infinite version of Erdős theorem.

 $\forall k, \ell \in \mathbb{N} \exists G \text{ s. t. } \chi(G) > k \text{ and } \operatorname{girth}(G) > \ell.$

 $\chi(\mathbf{G}) > \mathbf{k} \text{ iff } \mathbf{G} \leq \mathbf{K}_{\mathbf{k}}.$

Conjecture

If $H \in \mathbb{G}_{\omega}$, $K_{\omega} \not\leq H$ and $\ell \in \mathbb{N}$ then $\exists G \in \mathbb{G}_{\omega}$ s.t. $G \not\leq H$ and girth $(G) > \ell$

Theorem (Nesetril, Shelah)

If A is a 1-element maximal antichain in \mathbb{G}_{ω} then $A = \{K_1\}, \{K_2\}$ or $\{K_{\omega}\}.$

Conjecture

Conjecture: If A is a finite maximal antichain in \mathbb{G}_{ω} then $A \cap \mathbb{G} \neq \emptyset$.

Need: infinite version of Erdős theorem.

 $\forall k, \ell \in \mathbb{N} \exists G \text{ s. t. } \chi(G) > k \text{ and } girth(G) > \ell.$

 $\chi(\mathbf{G}) > \mathbf{k} \text{ iff } \mathbf{G} \leq \mathbf{K}_{\mathbf{k}}.$

Conjecture

If $H \in \mathbb{G}_{\omega}$, $K_{\omega} \not\leq H$ and $\ell \in \mathbb{N}$ then $\exists G \in \mathbb{G}_{\omega}$ s.t. $G \not\leq H$ and girth $(G) > \ell$

Theorem (Nesetril, Shelah)

If A is a 1-element maximal antichain in \mathbb{G}_{ω} then $A = \{K_1\}, \{K_2\}$ or $\{K_{\omega}\}.$

Conjecture

Conjecture: If A is a finite maximal antichain in \mathbb{G}_{ω} then $A \cap \mathbb{G} \neq \emptyset$.

Need: infinite version of Erdős theorem.

 $\forall k, \ell \in \mathbb{N} \exists G \text{ s. t. } \chi(G) > k \text{ and } \operatorname{girth}(G) > \ell.$

 $\chi(\mathbf{G}) > \mathbf{k} \text{ iff } \mathbf{G} \not\leq \mathbf{K}_{\mathbf{k}}.$

Conjecture

If $H \in \mathbb{G}_{\omega}$, $K_{\omega} \not\leq H$ and $\ell \in \mathbb{N}$ then $\exists G \in \mathbb{G}_{\omega}$ s.t. $G \not\leq H$ and girth $(G) > \ell$

Theorem (Nesetril, Shelah)

If A is a 1-element maximal antichain in \mathbb{G}_{ω} then $A = \{K_1\}, \{K_2\}$ or $\{K_{\omega}\}.$

Conjecture

Conjecture: If A is a finite maximal antichain in \mathbb{G}_{ω} then $A \cap \mathbb{G} \neq \emptyset$.

Need: infinite version of Erdős theorem.

 $\forall k, \ell \in \mathbb{N} \exists G \text{ s. t. } \chi(G) > k \text{ and } girth(G) > \ell.$

 $\chi(\mathbf{G}) > \mathbf{k} \text{ iff } \mathbf{G} \leq \mathbf{K}_{\mathbf{k}}.$

Conjecture

If $H \in \mathbb{G}_{\omega}$, $K_{\omega} \not\leq H$ and $\ell \in \mathbb{N}$ then $\exists G \in \mathbb{G}_{\omega}$ s.t. $G \not\leq H$ and girth $(G) > \ell$

Theorem (Nesetril, Shelah)

If A is a 1-element maximal antichain in \mathbb{G}_{ω} then $A = \{K_1\}, \{K_2\}$ or $\{K_{\omega}\}.$

Conjecture

Conjecture: If A is a finite maximal antichain in \mathbb{G}_{ω} then $A \cap \mathbb{G} \neq \emptyset$.

Need: infinite version of Erdős theorem.

 $\forall k, \ell \in \mathbb{N} \exists G \text{ s. t. } \chi(G) > k \text{ and } girth(G) > \ell.$

 $\chi(G) > k \text{ iff } G \not\leq K_k.$

Conjecture

If $H \in \mathbb{G}_{\omega}$, $K_{\omega} \not\leq H$ and $\ell \in \mathbb{N}$ then $\exists G \in \mathbb{G}_{\omega}$ s.t. $G \not\leq H$ and girth $(G) > \ell$

Theorem (Nesetril, Shelah)

If A is a 1-element maximal antichain in \mathbb{G}_{ω} then $A = \{K_1\}, \{K_2\}$ or $\{K_{\omega}\}.$

Conjecture

Conjecture: If A is a finite maximal antichain in \mathbb{G}_{ω} then $A \cap \mathbb{G} \neq \emptyset$.

Need: infinite version of Erdős theorem.

 $\forall k, \ell \in \mathbb{N} \exists G \text{ s. t. } \chi(G) > k \text{ and } girth(G) > \ell.$

 $\chi(\mathbf{G}) > \mathbf{k} \text{ iff } \mathbf{G} \not\leq \mathbf{K}_{\mathbf{k}}.$

Conjecture

If $H \in \mathbb{G}_{\omega}$, $K_{\omega} \not\leq H$ and $\ell \in \mathbb{N}$ then $\exists G \in \mathbb{G}_{\omega}$ s.t. $G \not\leq H$ and girth $(G) > \ell$

Perm(λ): the group of all permutations of a cardinal λ . $G \leq \text{Perm}(\lambda)$ is κ -homogeneous iff for all $X, Y \in [\lambda]^{\kappa}$ there is a $g \in G$ with g''X = Y. $G < \text{Perm}(\lambda)$ is κ -transitive iff for all 1-1 functions $x, y : \kappa \to \lambda$, there

 $G \leq \operatorname{Perm}(\lambda)$ is κ -transitive iff for all 1-1 functions $x, y : \kappa \to \lambda$, there is a $g \in G$ s.t. $g(x(\alpha)) = y(\alpha)$ for all $\alpha < \kappa$

Theorem

A finite n-homogeneous permutation group is n - 1-homogeneous.

Theorem

Soukup, L (Rényi Institute)	From Finite to Infinite	Banff 2007	68/74
	<ロ> <四> <四> <日> <日> <日> <日> <日> <日> <日> <日> <日	୬ ୯ ୯	
Continuous automorphisms of the circle.			

Perm(λ): the group of all permutations of a cardinal λ . $G \leq \text{Perm}(\lambda)$ is κ -homogeneous iff for all $X, Y \in [\lambda]^{\kappa}$ there is a $g \in G$ with g''X = Y.

 $G \leq \text{Perm}(\lambda)$ is κ -transitive iff for all 1-1 functions $x, y : \kappa \to \lambda$, there is a $g \in G$ s.t. $g(x(\alpha)) = y(\alpha)$ for all $\alpha < \kappa$

Theorem

A finite n-homogeneous permutation group is n - 1-homogeneous.

Theorem

Soukup, L (Rényi Institute)	From Finite to Infinite	Banff 2007	68/74
		▲口> ▲圖> ▲国> ▲国> 三種	୬ବଟ
Continuous automorph			

Perm(λ): the group of all permutations of a cardinal λ . $G \leq \text{Perm}(\lambda)$ is κ -homogeneous iff for all $X, Y \in [\lambda]^{\kappa}$ there is a $g \in G$ with g''X = Y. $G \leq \text{Perm}(\lambda)$ is κ -transitive iff for all 1-1 functions $x, y : \kappa \to \lambda$, there is a $g \in G$ s.t. $g(x(\alpha)) = y(\alpha)$ for all $\alpha < \kappa$

Theorem

A finite n-homogeneous permutation group is n – 1-homogeneous.

Theorem

Perm(λ): the group of all permutations of a cardinal λ . $G \leq \text{Perm}(\lambda)$ is κ -homogeneous iff for all $X, Y \in [\lambda]^{\kappa}$ there is a $g \in G$ with g''X = Y. $G \leq \text{Perm}(\lambda)$ is κ -transitive iff for all 1-1 functions $x, y : \kappa \to \lambda$, there is a $g \in G$ s.t. $g(x(\alpha)) = y(\alpha)$ for all $\alpha < \kappa$

Theorem

A finite *n*-homogeneous permutation group is n - 1-homogeneous.

Theorem

An n-homogeneous group is not necesserily n-transitive.

Proof.

Continuous automorphisms of the circle.

イロト イポト イヨト イヨト

Perm(λ): the group of all permutations of a cardinal λ . $G \leq \text{Perm}(\lambda)$ is κ -homogeneous iff for all $X, Y \in [\lambda]^{\kappa}$ there is a $g \in G$ with g''X = Y. $G \leq \text{Perm}(\lambda)$ is κ -transitive iff for all 1-1 functions $x, y : \kappa \to \lambda$, there

is a $g \in G$ s.t. $g(x(\alpha)) = y(\alpha)$ for all $\alpha < \kappa$

Theorem

A finite *n*-homogeneous permutation group is n - 1-homogeneous.

Theorem

Perm(λ): the group of all permutations of a cardinal λ . $G \leq \text{Perm}(\lambda)$ is κ -homogeneous iff for all $X, Y \in [\lambda]^{\kappa}$ there is a $g \in G$ with g''X = Y. $G \leq \text{Perm}(\lambda)$ is κ -transitive iff for all 1-1 functions $x, y : \kappa \to \lambda$, there is a $g \in G$ s.t. $g(x(\alpha)) = y(\alpha)$ for all $\alpha < \kappa$

Theorem

A finite *n*-homogeneous permutation group is n - 1-homogeneous.

Theorem

If \square_{ω_1} holds then $\exists G \leq \operatorname{Perm}(\omega_2) \omega_1$ -homog, but not ω -homog.

Theorem (Shelah, –)

 ${\sf Con}(\,orall\lambda\geq\omega_1\,\,\exists {\sf G}\leq{\sf Perm}(\lambda)\,\omega_1$ -homog, but not ω -homog.)

 $\exists G \leq \operatorname{Perm}(\omega_1) \ \omega$ -homogeneous, but not ω -transitive.

Theorem (–)

Con($\forall \lambda \geq \omega_1 \exists G \leq \textbf{Perm}(\lambda) \omega$ -homog, but not ω -transitive.

Soukup, L (Rényi Institute)

From Finite to Infinite

Banff 2007 69 / 74

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <

If \Box_{ω_1} holds then $\exists G \leq \operatorname{Perm}(\omega_2) \omega_1$ -homog, but not ω -homog.

Theorem (Shelah, -)

Con($\forall \lambda \geq \omega_1 \exists G \leq Perm(\lambda) \omega_1$ -homog, but not ω -homog.)

 $\exists G \leq \operatorname{Perm}(\omega_1) \ \omega$ -homogeneous, but not ω -transitive.

Theorem (–)

Con($\forall \lambda \geq \omega_1 \exists G \leq \textbf{Perm}(\lambda) \omega$ -homog, but not ω -transitive.

If \square_{ω_1} holds then $\exists G \leq \operatorname{Perm}(\omega_2) \omega_1$ -homog, but not ω -homog.

Theorem (Shelah, -)

Con($\forall \lambda \geq \omega_1 \exists G \leq \operatorname{Perm}(\lambda) \omega_1$ -homog, but not ω -homog.)

 $\exists G \leq \text{Perm}(\omega_1) \ \omega$ -homogeneous, but not ω -transitive.

Theorem (–)

Con($\forall \lambda \geq \omega_1 \exists G \leq \textbf{Perm}(\lambda) \omega$ -homog, but not ω -transitive.

If \square_{ω_1} holds then $\exists G \leq \operatorname{Perm}(\omega_2) \omega_1$ -homog, but not ω -homog.

Theorem (Shelah, -)

 $Con(\forall \lambda \geq \omega_1 \exists \mathbf{G} \leq \operatorname{Perm}(\lambda) \omega_1$ -homog, but not ω -homog.)

 $\exists G \leq \operatorname{Perm}(\omega_1) \ \omega$ -homogeneous, but not ω -transitive.

Theorem (–)

Con($\forall \lambda \geq \omega_1 \exists G \leq \textbf{Perm}(\lambda) \omega$ -homog, but not ω -transitive.

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

If \square_{ω_1} holds then $\exists G \leq \operatorname{Perm}(\omega_2) \omega_1$ -homog, but not ω -homog.

Theorem (Shelah, -)

 $Con(\forall \lambda \geq \omega_1 \exists G \leq Perm(\lambda) \omega_1$ -homog, but not ω -homog.)

 $\exists G \leq \operatorname{Perm}(\omega_1) \ \omega$ -homogeneous, but not ω -transitive.

Theorem (–)

Con($\forall \lambda \geq \omega_1 \exists G \leq \text{Perm}(\lambda) \omega$ -homog, but not ω -transitive.

Soukup, L (Rényi Institute)

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

If \square_{ω_1} holds then $\exists G \leq \operatorname{Perm}(\omega_2) \omega_1$ -homog, but not ω -homog.

Theorem (Shelah, -)

 $Con(\forall \lambda \geq \omega_1 \exists G \leq Perm(\lambda) \omega_1$ -homog, but not ω -homog.)

 $\exists G \leq \text{Perm}(\omega_1) \ \omega$ -homogeneous, but not ω -transitive.

Theorem (-)

Con($\forall \lambda \geq \omega_1 \exists G \leq \operatorname{Perm}(\lambda) \omega$ -homog, but not ω -transitive.)

Soukup, L (Rényi Institute)

イロト イポト イヨト イヨト 二年

If \square_{ω_1} holds then $\exists G \leq \operatorname{Perm}(\omega_2) \omega_1$ -homog, but not ω -homog.

Theorem (Shelah, -)

 $Con(\forall \lambda \geq \omega_1 \exists G \leq Perm(\lambda) \omega_1$ -homog, but not ω -homog.)

 $\exists G \leq \operatorname{Perm}(\omega_1) \ \omega$ -homogeneous, but not ω -transitive.

Theorem (-)

Con($\forall \lambda \geq \omega_1 \exists G \leq Perm(\lambda) \omega$ -homog, but not ω -transitive.)

イロト イポト イヨト イヨト 二年

If \square_{ω_1} holds then $\exists G \leq \operatorname{Perm}(\omega_2) \omega_1$ -homog, but not ω -homog.

Theorem (Shelah, -)

 $Con(\forall \lambda \geq \omega_1 \exists G \leq Perm(\lambda) \omega_1$ -homog, but not ω -homog.)

 $\exists G \leq \operatorname{Perm}(\omega_1) \ \omega$ -homogeneous, but not ω -transitive.

Theorem (-)

 $Con(\forall \lambda \geq \omega_1 \exists G \leq Perm(\lambda) \ \omega$ -homog, but not ω -transitive.)

イロト イポト イヨト イヨト 二年

If \square_{ω_1} holds then $\exists G \leq \operatorname{Perm}(\omega_2) \omega_1$ -homog, but not ω -homog.

Theorem (Shelah, -)

 $Con(\forall \lambda \geq \omega_1 \exists G \leq Perm(\lambda) \omega_1$ -homog, but not ω -homog.)

 $\exists G \leq \text{Perm}(\omega_1) \ \omega$ -homogeneous, but not ω -transitive.

Theorem (-)

 $Con(\forall \lambda \geq \omega_1 \exists \mathbf{G} \leq \operatorname{Perm}(\lambda) \omega$ -homog, but not ω -transitive.)

(1) A finite connected graph has an Euler-circle iff the graph is Eulerian, i.e. each vertex has even degree.
(2) A finite connected graph has an Euler-trail with end-vertices v ≠ w iff v and w are the only vertices of odd degree.

A **one-way infinite Euler trail** *T*: a **one-way infinite sequence** $T = (x_0, x_1 \dots,)$ of vertices such that $\{x_i x_{i+1} : i \in \mathbb{N}\}$ is a 1–1 enumeration of the edges of *G*. x_0 is the *end-vertex* of the trail. A **two-way infinite Euler trail** *T*: a **two-way infinite sequence** $T = (\dots, x_{-2}, x_{-1}, x_0, x_1 \dots,)$ of vertices such that $\{x_i x_{i+1} : i \in \mathbb{Z}\}$ is a 1–1 enumeration of the edges of *G*.

Problem (König)

When does an infinite graph G contain a one/two-way infinite Euler trail?

(1) A finite connected graph has an Euler-circle iff the graph is Eulerian, i.e. each vertex has even degree.
(2) A finite connected graph has an Euler-trail with end-vertices v ≠ w iff v and w are the only vertices of odd degree.

A **one-way infinite Euler trail** *T*: a **one-way infinite sequence** $T = (x_0, x_1, ...,)$ of vertices such that $\{x_i x_{i+1} : i \in \mathbb{N}\}$ is a 1–1 enumeration of the edges of *G*. x_0 is the *end-vertex* of the trail. A **two-way infinite Euler trail** *T*: a **two-way infinite sequence** $T = (..., x_{-2}, x_{-1}, x_0, x_1, ...,)$ of vertices such that $\{x_i x_{i+1} : i \in \mathbb{Z}\}$ is a 1–1 enumeration of the edges of *G*.

Problem (König)

When does an infinite graph G contain a one/two-way infinite Euler trail?

(1) A finite connected graph has an Euler-circle iff the graph is Eulerian, i.e. each vertex has even degree.
(2) A finite connected graph has an Euler-trail with end-vertices v ≠ w iff v and w are the only vertices of odd degree.

A **one-way infinite Euler trail** *T*: a **one-way infinite sequence** $T = (x_0, x_1 \dots,)$ of vertices such that $\{x_i x_{i+1} : i \in \mathbb{N}\}$ is a 1–1 enumeration of the edges of *G*. x_0 is the *end-vertex* of the trail. A **two-way infinite Euler trail** *T*: a **two-way infinite sequence** $T = (\dots, x_{-2}, x_{-1}, x_0, x_1 \dots,)$ of vertices such that $\{x_i x_{i+1} : i \in \mathbb{Z}\}$ is a 1–1 enumeration of the edges of *G*.

Problem (König)

When does an infinite graph G contain a one/two-way infinite Euler trail?

(1) A finite connected graph has an Euler-circle iff the graph is Eulerian, i.e. each vertex has even degree.
(2) A finite connected graph has an Euler-trail with end-vertices v ≠ w iff v and w are the only vertices of odd degree.

A **one-way infinite Euler trail** *T*: a **one-way infinite sequence** $T = (x_0, x_1 ...,)$ of vertices such that $\{x_i x_{i+1} : i \in \mathbb{N}\}$ is a 1–1 enumeration of the edges of *G*. x_0 is the *end-vertex* of the trail. A **two-way infinite Euler trail** *T*: a **two-way infinite sequence** $T = (..., x_{-2}, x_{-1}, x_0, x_1 ...,)$ of vertices such that $\{x_i x_{i+1} : i \in \mathbb{Z}\}$ is a 1–1 enumeration of the edges of *G*.

Problem (König)

When does an infinite graph G contain a one/two-way infinite Euler trail?

Soukup, L (Rényi Institute)

From Finite to Infinite

Observation

The plain generalization fails for infinite graphs:

in *G* each vertex has even degree, but there is **no two-way infinite** Euler trail,

in *H* there is exactly one vertex with odd degree but there is **no one-way infinite Euler trail**.

< □ > < □ > < □ > < □ >

Observation

The plain generalization fails for infinite graphs:

in *G* each vertex has even degree, but there is **no two-way infinite Euler trail**,

in *H* there is exactly one vertex with odd degree but there is **no one-way infinite Euler trail**.

Observation

The plain generalization fails for infinite graphs:

in *G* each vertex has even degree, but there is **no two-way infinite Euler trail**,

in *H* there is exactly one vertex with odd degree but there is **no one-way infinite Euler trail**.

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph G = (V, E) has a **one-way infinite Euler trail with** end-vertex $v \in V$ iff (o1)-(o4) below hold:

- If G is connected, $|E(G)| = \aleph_0$,
- 2 $d_G(v)$ is odd or infinite,
- 3 $d_G(v')$ is even or infinite for each $v' \in V(G) \setminus \{v\}$,
- \bigcirc $G \setminus E'$ has one infinite component for each finite $E' \subset E$.

write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G)$, $e \in E(G)$ and owit(G, v) holds. Then there is there is a trail T with endpoints v and v' such that $e \in E(T)$ and owit(G \ T, v') holds.

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph G = (V, E) has a **one-way infinite Euler trail with** end-vertex $v \in V$ iff (o1)-(o4) below hold:

• G is connected, $|E(G)| = \aleph_0$,

2 d_G(v) is odd or infinite,

3 $d_G(v')$ is even or infinite for each $v' \in V(G) \setminus \{v\}$,

 $\P \cap G \setminus E'$ has one infinite component for each finite $E' \subset E$.

write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G)$, $e \in E(G)$ and owit(G, v) holds. Then there is there is a trail T with endpoints v and v' such that $e \in E(T)$ and owit(G \ T, v') holds.

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph G = (V, E) has a **one-way infinite Euler trail with** end-vertex $v \in V$ iff (o1)-(o4) below hold:

- G is connected, $|E(G)| = \aleph_0$,
- 2 $d_G(v)$ is odd or infinite,

3 $d_G(v')$ is even or infinite for each $v' \in V(G) \setminus \{v\}$,

 $ig] \ igG \setminus E'$ has one infinite component for each finite $E' \subset E$.

write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G)$, $e \in E(G)$ and owit(G, v) holds. Then there is there is a trail T with endpoints v and v' such that $e \in E(T)$ and owit(G \ T, v') holds.

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph G = (V, E) has a **one-way infinite Euler trail with** end-vertex $v \in V$ iff (o1)-(o4) below hold:

- G is connected, $|E(G)| = \aleph_0$,
- 2 $d_G(v)$ is odd or infinite,
- 3 $d_G(v')$ is even or infinite for each $v' \in V(G) \setminus \{v\}$,
 - igscale $G \setminus E'$ has one infinite component for each finite $E' \subset E$.

write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G)$, $e \in E(G)$ and owit(G, v) holds. Then there is there is a trail T with endpoints v and v' such that $e \in E(T)$ and owit(G \ T, v') holds.

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph G = (V, E) has a **one-way infinite Euler trail with** end-vertex $v \in V$ iff (o1)-(o4) below hold:

- G is connected, $|E(G)| = \aleph_0$,
- 2 $d_G(v)$ is odd or infinite,
- 3 $d_G(v')$ is even or infinite for each $v' \in V(G) \setminus \{v\}$,
- **③** $G \setminus E'$ has one infinite component for each finite $E' \subset E$.

write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G)$, $e \in E(G)$ and owit(G, v) holds. Then there is there is a trail T with endpoints v and v' such that $e \in E(T)$ and owit(G \ T, v') holds.

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph G = (V, E) has a **one-way infinite Euler trail with** end-vertex $v \in V$ iff (o1)-(o4) below hold:

- G is connected, $|E(G)| = \aleph_0$,
- 2 $d_G(v)$ is odd or infinite,
- **3** $d_G(v')$ is even or infinite for each $v' \in V(G) \setminus \{v\}$,
- **(9)** $G \setminus E'$ has one infinite component for each finite $E' \subset E$.

write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G)$, $e \in E(G)$ and owit(G, v) holds. Then there is there is a trail T with endpoints v and v' such that $e \in E(T)$ and owit(G \ T, v') holds.

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph G = (V, E) has a **one-way infinite Euler trail with** end-vertex $v \in V$ iff (o1)-(o4) below hold:

- G is connected, $|E(G)| = \aleph_0$,
- 2 $d_G(v)$ is odd or infinite,
- 3 $d_G(v')$ is even or infinite for each $v' \in V(G) \setminus \{v\}$,
- **3** $G \setminus E'$ has one infinite component for each finite $E' \subset E$.

write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G)$, $e \in E(G)$ and owit(G, v) holds. Then there is there is a trail T with endpoints v and v' such that $e \in E(T)$ and $owit(G \setminus T, v')$ holds

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph G = (V, E) has a **one-way infinite Euler trail with** end-vertex $v \in V$ iff (o1)-(o4) below hold:

- G is connected, $|E(G)| = \aleph_0$,
- 2 $d_G(v)$ is odd or infinite,
- 3 $d_G(v')$ is even or infinite for each $v' \in V(G) \setminus \{v\}$,
- **3** $G \setminus E'$ has one infinite component for each finite $E' \subset E$.

write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G)$, $e \in E(G)$ and owit(G, v) holds. Then there is there is a trail T with endpoints v and v' such that $e \in E(T)$ and $owit(G \setminus T, v')$ holds.

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)

A graph G = (V, E) has a **one-way infinite Euler trail with** end-vertex $v \in V$ iff (o1)-(o4) below hold:

- G is connected, $|E(G)| = \aleph_0$,
- 2 $d_G(v)$ is odd or infinite,
- 3 $d_G(v')$ is even or infinite for each $v' \in V(G) \setminus \{v\}$,
- **(9)** $G \setminus E'$ has one infinite component for each finite $E' \subset E$.

write owit(G, v) iff (1)-(4) above hold for G and v.

Lemma

Assume that G is a graph, $v \in V(G)$, $e \in E(G)$ and owit(G, v) holds. Then there is there is a trail T with endpoints v and v' such that $e \in E(T)$ and $owit(G \setminus T, v')$ holds.

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem (Erdős, P; Grünwald, T.; Vázsonyi, E., 1938)

- If G is connected, $|E(G)| = \aleph_0$,
- 2 $d_G(v)$ is even or infinite for each $v' \in V(G)$
- \bigcirc $G \setminus E'$ has at most two infinite component for each finite $E' \subset E$.
- G \ E' has one infinite component for a finite E' ⊂ E provided that every degree is even in (V, E').

Theorem (Erdős, P; Grünwald, T.; Vázsonyi, E., 1938)

- G is connected, $|E(G)| = \aleph_0$,
- 2 $d_G(v)$ is even or infinite for each $v' \in V(G)$
- \bigcirc $G \setminus E'$ has at most two infinite component for each finite $E' \subset E$.
- G \ E' has one infinite component for a finite E' ⊂ E provided that every degree is even in (V, E').

Theorem (Erdős, P; Grünwald, T.; Vázsonyi, E., 1938)

- G is connected, $|E(G)| = \aleph_0$,
- 2 $d_G(v)$ is even or infinite for each $v' \in V(G)$
- **③** $G \setminus E'$ has at most two infinite component for each finite $E' \subset E$.
- G \ E' has one infinite component for a finite E' ⊂ E provided that every degree is even in (V, E').

Theorem (Erdős, P; Grünwald, T.; Vázsonyi, E., 1938)

- G is connected, $|E(G)| = \aleph_0$,
- 2 $d_G(v)$ is even or infinite for each $v' \in V(G)$
- **③** $G \setminus E'$ has at most two infinite component for each finite $E' \subset E$.
- ③ G \ E' has one infinite component for a finite E' ⊂ E provided that every degree is even in (V, E').

Theorem (Erdős, P; Grünwald, T.; Vázsonyi, E., 1938)

- G is connected, $|E(G)| = \aleph_0$,
- 2 $d_G(v)$ is even or infinite for each $v' \in V(G)$
- **③** $G \setminus E'$ has at most two infinite component for each finite $E' \subset E$.
- G \ E' has one infinite component for a finite E' ⊂ E provided that every degree is even in (V, E').

Theorem (Erdős, P; Grünwald, T.; Vázsonyi, E., 1938)

A graph G has a two-way infinite Euler trail iff (t1)–(t4) below hold:

- G is connected, $|E(G)| = \aleph_0$,
- 2 $d_G(v)$ is even or infinite for each $v' \in V(G)$
- **③** $G \setminus E'$ has at most two infinite component for each finite $E' \subset E$.
- G \ E' has one infinite component for a finite E' ⊂ E provided that every degree is even in (V, E').

 G_2 satisfies (1)-(3) but it does not have a two-way infinite Euler trail.

(*) For each finite trail *T* the graph *G* \ *T* has **one infinite component**.

Lemma

Let G be a graph, $v \in V(G)$ and $e \in E(G)$. If twit(G) and (*) hold then there is a circuit T in G such that $v \in V(T)$, $e \in E(T)$ and twit($G \setminus T$).

If *T* witnesses that (*) fails then there is a trail *T'* in *G* such that
the endpoints of *T* and *T'* are the same, v₁ and v₂, *G* \ *T'* has exactly two componets, G₁ and G₂ *owit*(G₁, v₁) and *owit*(G₂, v₂).

< □ > < □ > < □ > < □ >

write twit(G) iff (1)-(4) above hold for G.

(*) For each finite trail *T* the graph *G* \ *T* has **one infinite component**.

Lemma

Let G be a graph, $v \in V(G)$ and $e \in E(G)$. If twit(G) and (*) hold then there is a circuit T in G such that $v \in V(T)$, $e \in E(T)$ and twit($G \setminus T$).

If *T* witnesses that (*) fails then there is a trail *T'* in *G* such that
the endpoints of *T* and *T'* are the same, v₁ and v₂, *G* \ *T'* has exactly two componets, G₁ and G₂ *owit*(G₁, v₁) and *owit*(G₂, v₂).

< □ > < □ > < □ > < □ >

(*) For each finite trail *T* the graph *G* \ *T* has **one infinite component**.

Lemma

Let G be a graph, $v \in V(G)$ and $e \in E(G)$. If twit(G) and (*) hold then there is a circuit T in G such that $v \in V(T)$, $e \in E(T)$ and $twit(G \setminus T)$.

If *T* witnesses that (*) fails then there is a trail *T'* in *G* such that
the endpoints of *T* and *T'* are the same, v₁ and v₂, *G* \ *T'* has exactly two componets, G₁ and G₂ *owit*(G₁, v₁) and *owit*(G₂, v₂).

(*) For each finite trail *T* the graph *G* \ *T* has **one infinite component**.

Lemma

Let G be a graph, $v \in V(G)$ and $e \in E(G)$. If twit(G) and (*) hold then there is a circuit T in G such that $v \in V(T)$, $e \in E(T)$ and $twit(G \setminus T)$.

If T witnesses that (*) fails then there is a trail T' in G such that

• the endpoints of T and T' are the same, v_1 and v_2 ,

2 $G \setminus T'$ has exactly two componets, G_1 and G_2

3 $owit(G_1, v_1)$ and $owit(G_2, v_2)$.

• • • • • • • • • • • •

(*) For each finite trail *T* the graph *G* \ *T* has **one infinite component**.

Lemma

Let G be a graph, $v \in V(G)$ and $e \in E(G)$. If twit(G) and (*) hold then there is a circuit T in G such that $v \in V(T)$, $e \in E(T)$ and $twit(G \setminus T)$.

If T witnesses that (*) fails then there is a trail T' in G such that

- **()** the endpoints of *T* and *T'* are the same, v_1 and v_2 ,
 - $G \setminus T'$ has exactly two componets, G_1 and G_2

 \bigcirc owit(G_1, v_1) and owit(G_2, v_2).

• • • • • • • • • • • •

(*) For each finite trail *T* the graph *G* \ *T* has **one infinite component**.

Lemma

Let G be a graph, $v \in V(G)$ and $e \in E(G)$. If twit(G) and (*) hold then there is a circuit T in G such that $v \in V(T)$, $e \in E(T)$ and $twit(G \setminus T)$.

- If T witnesses that (*) fails then there is a trail T' in G such that
 - the endpoints of T and T' are the same, v_1 and v_2 ,
 - 2 $G \setminus T'$ has exactly two componets, G_1 and G_2

 \bigcirc owit(G_1, v_1) and owit(G_2, v_2).

• • • • • • • • • • • •

(*) For each finite trail *T* the graph *G* \ *T* has **one infinite component**.

Lemma

Let G be a graph, $v \in V(G)$ and $e \in E(G)$. If twit(G) and (*) hold then there is a circuit T in G such that $v \in V(T)$, $e \in E(T)$ and $twit(G \setminus T)$.

- If T witnesses that (*) fails then there is a trail T' in G such that
 - the endpoints of T and T' are the same, v_1 and v_2 ,
 - **2** $G \setminus T'$ has exactly two componets, G_1 and G_2
 - owit(G_1 , v_1) and owit(G_2 , v_2).