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Connectedness

Theorem
A finite graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Theorem
An arbitrary graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Proof
Let A = {z ∈ V : ∃x-z-path}.

There is no edge between A and V \ A.

A = V .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 3 / 74



Connectedness

Theorem
A finite graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Theorem
An arbitrary graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Proof
Let A = {z ∈ V : ∃x-z-path}.

There is no edge between A and V \ A.

A = V .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 3 / 74



Connectedness

Theorem
A finite graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Theorem
An arbitrary graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Proof
Let A = {z ∈ V : ∃x-z-path}.

There is no edge between A and V \ A.

A = V .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 3 / 74



Connectedness

Theorem
A finite graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Theorem
An arbitrary graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Proof
Let A = {z ∈ V : ∃x-z-path}.

There is no edge between A and V \ A.

A = V .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 3 / 74



Connectedness

Theorem
A finite graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Theorem
An arbitrary graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Proof
Let A = {z ∈ V : ∃x-z-path}.

There is no edge between A and V \ A.

A = V .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 3 / 74



Connectedness

Theorem
A finite graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Theorem
An arbitrary graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Proof
Let A = {z ∈ V : ∃x-z-path}.

There is no edge between A and V \ A.

A = V .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 3 / 74



Connectedness

Theorem
A finite graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Theorem
An arbitrary graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Proof
Let A = {z ∈ V : ∃x-z-path}.

There is no edge between A and V \ A.

A = V .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 3 / 74



Connectedness

Theorem
A finite graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Theorem
An arbitrary graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Proof
Let A = {z ∈ V : ∃x-z-path}.

There is no edge between A and V \ A.

A = V .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 3 / 74



Connectedness

Theorem
A finite graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Theorem
An arbitrary graph G = (V ,E) is
connected iff given any partition
(V0,V1) of the vertices into two
non-empty sets there is an edge
between V0 and V1.

Proof
Let A = {z ∈ V : ∃x-z-path}.

There is no edge between A and V \ A.

A = V .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 3 / 74



Spanning trees

Finite case

Theorem
Every finite connected graph
G = (V ,E) has a spanning tree.

General case

Theorem
Every connected graph
G = (V ,E) has a spanning tree.

First Proof
Let T = 〈V ,F 〉 be a minimal connected subgraph of G.

Then T can not contain a circle, so it is a spanning tree.

no infinite version

how to get a minimal connected subgraph of an infinite graph?

an infinite graph G may contain a decreasing chain G0,G1, . . . of
connected subgraphs of G such that V (Gi) = V (G) but
∩i∈NE(Gi) = ∅.
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Spanning trees

Finite case

Theorem
Every finite connected graph
G = (V ,E) has a spanning tree.

General case

Theorem
Every connected graph
G = (V ,E) has a spanning tree.

Second Proof
T = { connected subtrees of G}

〈T ,⊂〉 has a maximal element T by Zorn’s lemma

Let T be a maximal connected subtree of G.

There is no edge between V (T ) and V \ V (T ).

V (T ) = V .

Zorn’s Lemma, Axiom of Choice. Really need?
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Spanning trees and AC

Theorem
If every connected graph has a spanning tree then the Axiom of
Choice holds.
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Proof

A = {Ai : i ∈ I} a family of non-empty sets. Ai ∩ Aj = ∅
V= {x} ∪ {yi , zi : i ∈ I} ∪ ∪{Ai : i ∈ I},
E= {xyi : i ∈ I} ∪ ∪i∈I{yi a,azi : a ∈ Ai}.
G is connected, T = (V ,F ) spanning tree.

(i) {xyi : i ∈ I} ⊂ F ,
(ii) ∀i ∈ I ∃!ai ∈ Ai s.t. yiai ,aizi ∈ F ,
(iii) ∀a ∈ Ai \ {ai} (yia ∈ F iff azi /∈ F ).

f (i) = ai is a choice function for A
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Unfriendly Partitions
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Unfriendly Partitions

Definition
Let G = (V ,E) be a graph. A partition (A,B) of V is called unfriendly
iff every vertex has at least as many neighbor in the other class as in
its own.
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Unfriendly Partitions

Definition
Let G = (V ,E) be a graph. A partition (A,B) of V is called unfriendly
iff every vertex has at least as many neighbor in the other class as in
its own.

Observation
Every finite graph has an unfriendly partition.
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Unfriendly Partitions

Definition
Let G = (V ,E) be a graph. A partition (A,B) of V is called unfriendly
iff every vertex has at least as many neighbor in the other class as in
its own.

Observation
Every finite graph has an unfriendly partition.

Unfriendly Partition Conjecture
Every graph has an unfriendly partition.

Theorem (Shelah)
There is an uncountable graph without an unfriendly partition.
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Unfriendly Partitions
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Unfriendly Partitions

Theorem (Shelah)
Every graph has a partition into three pieces such that every vertex
has at least as many neighbor in the two other classes as in its own.
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Unfriendly Partitions

Theorem (Shelah)
Every graph has a partition into three pieces such that every vertex
has at least as many neighbor in the two other classes as in its own.

Theorem
Every locally finite graph has an unfriendly partition.
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Proof: locally finite graphs have unfriendly partitions
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Proof: locally finite graphs have unfriendly partitions

Natural aproach:König’s Lemma instead of Gödel’s Theorem
G = 〈V ,E〉 locally finite,
enumerate V = {x0, x1, . . . }
Tn= {(A,B) : an unfriendly partition of G[x0, . . . xn]}
T = {∪Tn,⊂}
can not apply König’s Lemma Tn 6= the nth-level of T
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Proof: locally finite graphs have unfriendly partitions
Gödel’s Compactness Theorem

Theorem (Gödel)
A theory T has a model provided every finite subset of T has a model.
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Theory: T = {ψ,ϕv ,A, ϕv ,B : v ∈ V}

Claim

Every T ′ ∈
[
T

]<ω has a model.

Let W = {v : cv occurs in T ′}.
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Proof: locally finite graphs have unfriendly partitions
Gödel’s Compactness Theorem

G = (V ,E) locally finite graph
Language: {cv : v ∈ V} constant symbols, RA and RB are unary
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Theory: T = {ψ,ϕv ,A, ϕv ,B : v ∈ V}

Claim

Every T ′ ∈
[
T

]<ω has a model.

Let W = {v : cv occurs in T ′}. Then G[W ] has an unfriendly partition
(A,B).
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Claim

Every T ′ ∈
[
T

]<ω has a model.

Let W = {v : cv occurs in T ′}. Then G[W ] has an unfriendly partition
(A,B). Let M be the following model: the underlying set M is W , cv is
interpreted as v for v ∈ W , and RA is interpreted as A and RB is
interpreted as B.
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Claim

Every T ′ ∈
[
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]<ω has a model.

Let W = {v : cv occurs in T ′}. Then G[W ] has an unfriendly partition
(A,B). Let M be the following model: the underlying set M is W , cv is
interpreted as v for v ∈ W , and RA is interpreted as A and RB is
interpreted as B. M |= T ′.
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Proof: locally finite graphs have unfriendly partitions
Gödel’s Compactness Theorem

G = (V ,E) locally finite graph
Language: {cv : v ∈ V} constant symbols, RA and RB are unary
relation symbols.
Formulas: ψ: ∀x

(
RA(x) ↔ ¬RB(x)

)

for all v ∈ V write Fv= {C ⊂ E(v) : |F | ≥ |E(v)|/2} and put
ϕv ,A: RA(cv ) →

∨
F∈Fv

∧
x∈F RB(cx )

ϕv ,B: RB(cv ) →
∨

F∈Fv

∧
x∈F RA(cx )

Theory: T = {ψ,ϕv ,A, ϕv ,B : v ∈ V}

Claim

Every T ′ ∈
[
T

]<ω has a model.

Let M be a model of T and let A= {v ∈ V : M |= RA(cv )} and
B= {v ∈ V : M |= RB(cv )}.
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Unfriendly Partitions

Theorem
Every locally finite graph has an unfriendly partition.
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Fact
If G = (V ,E) is countable and every v ∈ V has infinite degree then G
has an unfriendly partition.
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Unfriendly Partitions

Theorem
Every locally finite graph has an unfriendly partition.

Fact
If G = (V ,E) is countable and every v ∈ V has infinite degree then G
has an unfriendly partition.

Unfriendly Partition Conjecture, revised
Every countable graph has an unfriendly partition.
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Unfriendly Partitions

Question
Let G = (V ,E) be a locally finite graph and V ′ ⊂ V such that V ′ is
“rare” (e.g the distances are large between the elements of V ′ in G).
Is it true that every partition (A′,B′) of V ′ can be extended to an
unfriendly partition (A,B) of G?
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Unfriendly Partitions

Question
Let G = (V ,E) be a locally finite graph and V ′ ⊂ V such that V ′ is
“rare” (e.g the distances are large between the elements of V ′ in G).
Is it true that every partition (A′,B′) of V ′ can be extended to an
unfriendly partition (A,B) of G?

Answer
No, V. Bonifaci gave a very strong counterexample.
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Unfriendly partitions

Theorem (Bonifaci)
There is a locally finite infinite graph with exactly one unfriendly
partition.
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Unfriendly partitions

Theorem (Bonifaci)
There is a locally finite infinite graph with exactly one unfriendly
partition.

1 22 33 nn n + 1

vertices : in columns
edges : between neighbouring
columns
column of size n
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Unfriendly partitions

Theorem (Bonifaci)
There is a locally finite infinite graph with exactly one unfriendly
partition.

1 22 33 nn n + 1

vertices : in columns
edges : between neighbouring
columns
column of size n
red or blue majority in the
neighbouring columns
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Unfriendly partitions

Theorem (Bonifaci)
There is a locally finite infinite graph with exactly one unfriendly
partition.
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1 22 33 nn n + 1

vertices : in columns
edges : between neighbouring
columns
column of size n
red or blue majority in the
neighbouring columns
blue majority =⇒ the column is
red .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 15 / 74



Unfriendly partitions

Theorem (Bonifaci)
There is a locally finite infinite graph with exactly one unfriendly
partition.
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1 22 33 nn n + 1

vertices : in columns
edges : between neighbouring
columns
column of size n
red or blue majority in the
neighbouring columns
blue majority =⇒ the column is
red .
next column is also
monochromatic: it should be blue .
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Pseudo-winners in tournaments

Definition
Let T = (V ,E) be a tournament and let t ∈ V .
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Definition
Let T = (V ,E) be a tournament and let t ∈ V .
t is a pseudo-winner
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Pseudo-winners in tournaments

Definition
Let T = (V ,E) be a tournament and let t ∈ V .
t is a pseudo-winner iff for each y ∈ V there is a path of length at
most 2 which leads from t to y .
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Pseudo-winners in tournaments

Finite case
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Pseudo-winners in tournaments

Finite case

Theorem
Every finite tournament has a
pseudo-winner .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 17 / 74



Pseudo-winners in tournaments

Finite case

Theorem
Every finite tournament has a
pseudo-winner .

Proof
If t has maximal out-degree then t
is a pseudo-winner.
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Pseudo-winners in tournaments

Finite case

Theorem
Every finite tournament has a
pseudo-winner .

Proof
If t has maximal out-degree then t
is a pseudo-winner.

Infinite case

Observation
No pseudo-winner in 〈Z, <〉.

Theorem
A tournament T contains a
pseudo-winner or ∃x 6= y ∈ V s.t.
T = Out(x) ∪ In(y).
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Pseudo-winners in tournaments

Finite case

Theorem
Every finite tournament has a
pseudo-winner .

Proof
If t has maximal out-degree then t
is a pseudo-winner.

Infinite case

Observation
No pseudo-winner in 〈Z, <〉.

Theorem
A tournament T contains a
pseudo-winner or ∃x 6= y ∈ V s.t.
T = Out(x) ∪ In(y).

Proof
If y is not a pseudo-winner
witnessed by x , then
T = Out(x) ∪ In(y).
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Quasi Kernels and Quasi Sinks

Theorem (Chvatal, Lovász)
Every finite digraph (i.e. directed graph) contains a quasi-kernel

G
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contains an independent set A

G
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Quasi Kernels and Quasi Sinks

Theorem (Chvatal, Lovász)
Every finite digraph (i.e. directed graph) contains a quasi-kernel (i.e it
contains an independent set A such that for each point v

G

A

v
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Quasi Kernels and Quasi Sinks

Theorem (Chvatal, Lovász)
Every finite digraph (i.e. directed graph) contains a quasi-kernel (i.e it
contains an independent set A such that for each point v there is a
path of length at most 2 from some point of A to v.

G

Aa

v
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The original problem

joint work of P. L. Erd ős, A. Hajnal and —

What is the right question?
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Graphs with quasi-kernels

Theorem
A directed graph G = (V ,E) has a quasi-kernel , provided (a) or (b)
below holds:

(a) In(x) is finite for each x ∈ V,

(b) the chromatic number of G is finite .
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Quasi Kernels and Quasi Sinks

Definition
Let G = (V ,E) be a digraph.
An independent set A is a quasi-kernel iff for each v ∈ V there is a
path of length at most 2 which leads from some points of A to v .
An independent set B is a quasi-sink iff for each v ∈ V there is a
path of length at most 2 which leads from v to some points of B.
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Graphs with nice partitions

Definition
If G = (V ,E) is a digraph define the undirected complement of the
graph, G̃ = (V , Ẽ) as follows: {x , y} ∈ Ẽ if and only if (x , y) /∈ E and
(y , x) /∈ E .

Theorem
Let G = (V ,E) be a directed graph. Then V has a partition (V0,V1)
such that G[V0] has a quasi-kernel , and G[V1] has a quasi-sink
provided (a) or (b) below holds:

(a) Kn 6⊂ G̃ for some n ≥ 2. (Especially, if the chromatic number of G̃
is finite.)

(b) G̃ is locally finite .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 22 / 74



Graphs with nice partitions

Definition
If G = (V ,E) is a digraph define the undirected complement of the
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A theorem

Theorem
For each directed graph G = (V ,E) there are disjoint, independent
subsets A and B of V such that for each v ∈ V there is a path of
length at most 2 which leads either from some points of A to v , or from
v to some point of B.
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Structure theorems for tournaments

Definition
Let T = (V ,E) be a tournament, t ∈ V and n ∈ N.
t is an n-winner iff for each y ∈ V there is a path of length at most n
which leads from t to y .

pseudo-winner = 2-winner

Theorem
Let T = 〈V ,E〉 be an infinite tournament.
(1) There is an infinite tournament T = 〈V ,E〉 such that T has a
3-winner , but there is no 2-winner in T .
(2) If T has an n-winner for some n ≥ 3 then T has a 3-winner .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 25 / 74



Structure theorems for tournaments

Definition
Let T = (V ,E) be a tournament, t ∈ V and n ∈ N.
t is an n-winner iff for each y ∈ V there is a path of length at most n
which leads from t to y .

pseudo-winner = 2-winner

Theorem
Let T = 〈V ,E〉 be an infinite tournament.
(1) There is an infinite tournament T = 〈V ,E〉 such that T has a
3-winner , but there is no 2-winner in T .
(2) If T has an n-winner for some n ≥ 3 then T has a 3-winner .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 25 / 74



Structure theorems for tournaments

Definition
Let T = (V ,E) be a tournament, t ∈ V and n ∈ N.
t is an n-winner iff for each y ∈ V there is a path of length at most n
which leads from t to y .

pseudo-winner = 2-winner

Theorem
Let T = 〈V ,E〉 be an infinite tournament.
(1) There is an infinite tournament T = 〈V ,E〉 such that T has a
3-winner , but there is no 2-winner in T .
(2) If T has an n-winner for some n ≥ 3 then T has a 3-winner .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 25 / 74



Structure theorems for tournaments

Definition
Let T = (V ,E) be a tournament, t ∈ V and n ∈ N.
t is an n-winner iff for each y ∈ V there is a path of length at most n
which leads from t to y .

pseudo-winner = 2-winner

Theorem
Let T = 〈V ,E〉 be an infinite tournament.
(1) There is an infinite tournament T = 〈V ,E〉 such that T has a
3-winner , but there is no 2-winner in T .
(2) If T has an n-winner for some n ≥ 3 then T has a 3-winner .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 25 / 74



Structure theorems for tournaments

Definition
Let T = (V ,E) be a tournament, t ∈ V and n ∈ N.
t is an n-winner iff for each y ∈ V there is a path of length at most n
which leads from t to y .

pseudo-winner = 2-winner

Theorem
Let T = 〈V ,E〉 be an infinite tournament.
(1) There is an infinite tournament T = 〈V ,E〉 such that T has a
3-winner , but there is no 2-winner in T .
(2) If T has an n-winner for some n ≥ 3 then T has a 3-winner .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 25 / 74



Structure theorems for tournaments

Definition
Let T = (V ,E) be a tournament, t ∈ V and n ∈ N.
t is an n-winner iff for each y ∈ V there is a path of length at most n
which leads from t to y .

pseudo-winner = 2-winner

Theorem
Let T = 〈V ,E〉 be an infinite tournament.
(1) There is an infinite tournament T = 〈V ,E〉 such that T has a
3-winner , but there is no 2-winner in T .
(2) If T has an n-winner for some n ≥ 3 then T has a 3-winner .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 25 / 74



Structure theorems for tournaments

Definition
Let T = (V ,E) be a tournament, t ∈ V and n ∈ N.
t is an n-winner iff for each y ∈ V there is a path of length at most n
which leads from t to y .

pseudo-winner = 2-winner

Theorem
Let T = 〈V ,E〉 be an infinite tournament.
(1) There is an infinite tournament T = 〈V ,E〉 such that T has a
3-winner , but there is no 2-winner in T .
(2) If T has an n-winner for some n ≥ 3 then T has a 3-winner .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 25 / 74



Structure theorems for tournaments

Definition
Let T = (V ,E) be a tournament, t ∈ V and n ∈ N.
t is an n-winner iff for each y ∈ V there is a path of length at most n
which leads from t to y .

pseudo-winner = 2-winner

Theorem
Let T = 〈V ,E〉 be an infinite tournament.
(1) There is an infinite tournament T = 〈V ,E〉 such that T has a
3-winner , but there is no 2-winner in T .
(2) If T has an n-winner for some n ≥ 3 then T has a 3-winner .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 25 / 74



Digraphs generated by finite structures

Definition
A digraph with terminal vertices is a triple G = (V ,E ,T ), where
(V ,E) is a digraph and ∅ 6= T ⊂ V . The elements of T are the
terminal vertices of G, the elements of N = V \ T are the
nonterminal vertices of G.

Construct G
⊙

G = (W ,F ,S) from G as follows:
keep the terminal vertices and blow up each nonterminal vertex v to a
(disjoint) copy Gv of G.
TG

J

G= TG ∪
⋃

v∈V TGv , NG
J

G=
⋃

v∈V NGv

The edges are “inherited” from G in the natural way.
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Digraphs generated by a finite structure

G G
⊙

G

G[TG] is an induced subgraph of (G
⊙

G)[TG
J

G].
Now we can repeat the procedure above using G

⊙
G instead of G to

get (G
⊙

G)
⊙

(G
⊙

G).
Hence we obtain a sequence 〈Gn : n ∈ N〉 of digraphs with terminal
vertices, Gn = 〈Vn,En,Tn〉 s. t. G0[T0] ⊂ G1[T1] ⊂ G2[T2] ⊂ . . .
Take

G∞=
⋃
{Gn[Tn] : n ∈ N}.

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 27 / 74



Digraphs generated by a finite structure

G G
⊙

G

G[TG] is an induced subgraph of (G
⊙

G)[TG
J

G].
Now we can repeat the procedure above using G

⊙
G instead of G to

get (G
⊙

G)
⊙

(G
⊙

G).
Hence we obtain a sequence 〈Gn : n ∈ N〉 of digraphs with terminal
vertices, Gn = 〈Vn,En,Tn〉 s. t. G0[T0] ⊂ G1[T1] ⊂ G2[T2] ⊂ . . .
Take

G∞=
⋃
{Gn[Tn] : n ∈ N}.

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 27 / 74



Digraphs generated by a finite structure

G G
⊙

G

G[TG] is an induced subgraph of (G
⊙

G)[TG
J

G].
Now we can repeat the procedure above using G

⊙
G instead of G to

get (G
⊙

G)
⊙

(G
⊙

G).
Hence we obtain a sequence 〈Gn : n ∈ N〉 of digraphs with terminal
vertices, Gn = 〈Vn,En,Tn〉 s. t. G0[T0] ⊂ G1[T1] ⊂ G2[T2] ⊂ . . .
Take

G∞=
⋃
{Gn[Tn] : n ∈ N}.

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 27 / 74



Digraphs generated by a finite structure

G G
⊙

G

G[TG] is an induced subgraph of (G
⊙

G)[TG
J

G].
Now we can repeat the procedure above using G

⊙
G instead of G to

get (G
⊙

G)
⊙

(G
⊙

G).
Hence we obtain a sequence 〈Gn : n ∈ N〉 of digraphs with terminal
vertices, Gn = 〈Vn,En,Tn〉 s. t. G0[T0] ⊂ G1[T1] ⊂ G2[T2] ⊂ . . .
Take

G∞=
⋃
{Gn[Tn] : n ∈ N}.

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 27 / 74



Digraphs generated by a finite structure

G G
⊙

G

G[TG] is an induced subgraph of (G
⊙

G)[TG
J

G].
Now we can repeat the procedure above using G

⊙
G instead of G to

get (G
⊙

G)
⊙

(G
⊙

G).
Hence we obtain a sequence 〈Gn : n ∈ N〉 of digraphs with terminal
vertices, Gn = 〈Vn,En,Tn〉 s. t. G0[T0] ⊂ G1[T1] ⊂ G2[T2] ⊂ . . .
Take

G∞=
⋃
{Gn[Tn] : n ∈ N}.

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 27 / 74



Digraphs generated by a finite structure

Theorem
Let G = (V ,E ,T ) be a finite tournament with terminal vertices .
T. F. A. E:

(i) G∞ has a 3-winner,
(ii) In(v) 6= ∅ for each v ∈ V \ T .

T. F. A. E.:
(a) G∞ has a 2-winner
(b) there is 2-winner v ∈ T in G.

Theorem
There is an finite tournament G such that G∞ has a 3-winner, but no
2-winner.

G :

0 1 2 3
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Digraphs generated by a finite structure

Theorem
Let G = (V ,E ,T ) be a finite tournament with terminal vertices .
T. F. A. E:

(i) G∞ has a 3-winner,
(ii) In(v) 6= ∅ for each v ∈ V \ T .

T. F. A. E.:
(a) G∞ has a 2-winner
(b) there is 2-winner v ∈ T in G.

Theorem
There is an finite tournament G such that G∞ has a 3-winner, but no
2-winner.

G :

0 1 2 3
Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 28 / 74



Digraphs generated by a finite structure

Theorem
Let G = (V ,E ,T ) be a finite tournament with terminal vertices .
T. F. A. E:

(i) G∞ has a 3-winner,
(ii) In(v) 6= ∅ for each v ∈ V \ T .

T. F. A. E.:
(a) G∞ has a 2-winner
(b) there is 2-winner v ∈ T in G.

Theorem
There is an finite tournament G such that G∞ has a 3-winner, but no
2-winner.

G :

0 1 2 3
Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 28 / 74



Digraphs generated by a finite structure

Theorem
Let G = (V ,E ,T ) be a finite tournament with terminal vertices .
T. F. A. E:

(i) G∞ has a 3-winner,
(ii) In(v) 6= ∅ for each v ∈ V \ T .

T. F. A. E.:
(a) G∞ has a 2-winner
(b) there is 2-winner v ∈ T in G.

Theorem
There is an finite tournament G such that G∞ has a 3-winner, but no
2-winner.

G :

0 1 2 3
Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 28 / 74



Digraphs generated by a finite structure

Theorem
Let G = (V ,E ,T ) be a finite tournament with terminal vertices .
T. F. A. E:

(i) G∞ has a 3-winner,
(ii) In(v) 6= ∅ for each v ∈ V \ T .

T. F. A. E.:
(a) G∞ has a 2-winner
(b) there is 2-winner v ∈ T in G.

Theorem
There is an finite tournament G such that G∞ has a 3-winner, but no
2-winner.

G :

0 1 2 3
Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 28 / 74



Digraphs generated by a finite structure

Theorem
If G = 〈V ,E ,T 〉 is a finite digraph with terminal vertices
G∞ = 〈V∞,E∞〉, then there is a partition (V0,V1) of V∞ such that
G∞[V0] has a quasi-kernel , and G∞[V1] has a quasi-sink .
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Multi-way cuts

Multiway Cut Problem
Fix a graph G = (V ,E) and a subset S of vertices called terminals . A
multiway cut is a set of edges whose removal disconnects each
terminal from the others. The multiway cut problem is to find the
minimal size of a multiway cut denoted by πG,S.
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Fix a graph G = (V ,E) and a subset S of vertices called terminals .

s1 s2

s3

t S = {s1, s2, s3}
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Multi-way cuts

Multiway Cut Problem
Fix a graph G = (V ,E) and a subset S of vertices called terminals . A
multiway cut is a set of edges whose removal disconnects each
terminal from the others. The multiway cut problem is to find the
minimal size of a multiway cut denoted by πG,S.
s1 s2

s3

t S = {s1, s2, s3}

πG,S = 2
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Multiway cuts

Definition

If ~G = (V ,E) is a directed graph and A,B ⊂ V let λ(~G,A,B) be the
maximal number of edge-disjoint directed paths from some element
of A into some element of B.
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λ(~G,S − s3, s3) = 1, λ(~G,S − s2, s2) = 1,
λ(~G,S − s1, s1) = 0, ν~G,S = 2

s1 s2

s3

t
S = {s1, s2, s3}

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 31 / 74



Multiway cuts

Theorem (P. L. Erdős, A. Frank, L. Székely)

If G = (V ,E) is a finite graph, S ⊂ V, and ~G is obtained from G by an
orientation of the edges,
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Multiway cuts

Theorem (P. L. Erdős, A. Frank, L. Székely)

If G = (V ,E) is a finite graph, S ⊂ V, and ~G is obtained from G by an
orientation of the edges, then ν~G,S ≤ πG,S.

Theorem (E. Dahjhaus, D. S. Johson, C. H. Papadimitriou, P.D.
Seymout, M. Yannakakis)
The multiway cut problem is NP-complete .
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Multiway cuts

Special case:
G − S is a tree .
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Multiway cuts

Theorem (P. L. Erdős, L. Székely)
If G = (V ,E) is a finite graph, S ⊂ V such that G − S is tree, then

max
~G

ν~G,S = πG,S.

where the maximum is taken over all orientations ~G of G.
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Multiway cuts

Theorem (P. L. Erdős, A. Frank, L. Székely, reformulated)
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Multiway cuts

Theorem (P. L. Erdős, A. Frank, L. Székely, reformulated)
If G = (V ,E) is a finite graph , S ⊂ V such that G − S is tree, then
there is an orientation ~G of G,
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there is an orientation ~G of G, and for each s ∈ S there is an
edge-disjoint family Ps of (S − s, s)-paths in ~G and for each P ∈ Ps

we can pick an edge eP ∈ P
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If G = (V ,E) is a finite graph , S ⊂ V such that G − S is tree, then
there is an orientation ~G of G, and for each s ∈ S there is an
edge-disjoint family Ps of (S − s, s)-paths in ~G and for each P ∈ Ps

we can pick an edge eP ∈ P such that

{eP : P ∈ Ps for some s ∈ S}

is a multiway cut (in G for S).
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Multiway cuts

Theorem (–)
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Multiway cuts

Theorem (–)
If G = (V ,E) is a graph, S ⊂ V is finite such that G − S is tree without
infinite trails ,
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Multiway cuts

Proposition
Let G = (V ,E) be a finite directed graph, and A,B ⊂ V s.t

A B

V \ (A ∪ B)
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Multiway cuts
Infinite case

Theorem
Let G = (V ,E) be a directed graph which does not contain infinite
directed trail, and let A,B ⊂ V s.t

(1) in(a) = 0 and out(a) = 1 for each a ∈ A,

(2) in(b) = 1 and out(b) = 0 for each b ∈ B,

(3) in(x) ≤ out(x) for each x ∈ V \ (A ∪ B).

Then there is a family P of edge-disjoint A-B-paths s .t. P covers A.

Proof.
G is countable: easy induction: if P is an A-B-path then G − P satisfies
(1)–(3)
If G is uncountable then we may got stuck at some point
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Multi-way cuts
Uncountable case

G = (V ,E), A,B ⊂ V , |V | = |A| = ω1
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G = (V ,E), A,B ⊂ V , |V | = |A| = ω1

Inductive construction, but using the right enumeration
Partition V into countable sets {Cα : α < ω1}
Enumerate A = {aξ : ξ < ω1} such that C0 ∩ A = {a0,a1, . . . },
C1 ∩ A = {aω,aω+1, . . . },
By transfinite induction find edge-disjoint families Pα of A-B paths in
G[∪{Cξ : ξ ≤ α}] such that Pα covers Cα ∩ A.
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Multi-way cuts
Uncountable case

Partition V into countable sets {Cα : α < ω1} s.t
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Multi-way cuts
Elementary submodels

Let θ be a large regular cardinals.
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Let θ be a large regular cardinals. θ = (2|G|)+

transitive closure of a set x is x ∪ (∪x) ∪ (∪ ∪ x) ∪ . . .
Let H(θ) be the family of sets whose transitive closure has cardinality
less than θ.
H(θ)= 〈H(θ),∈,≺〉, where ≺ is a well-ordering
Let 〈Mα : α < ω1〉 be an increasing continuous chain of countable
elementary submodels of H(θ) with G,A ∈ M0. i.e.

(1) Mα is a countable elementary submodel of H(θ) for α < ω1

(2) 〈Mβ : β ≤ α〉 ∈ Mα+1,

(3) Mα =
⋃
{Mβ : β < α} provided α is limit

(4) G,A ∈ M0.

Let C0= M0 ∩ V and Cn =(Mn+1 \ Mn) ∩ V for 0 < n < ω and
Cα= (Mα+1 \ Mα) ∩ V for ω ≤ α < ω1.
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(*) if x ∈ Cα with |In(x)| ≤ ω then In(x) ⊂ ∪{Cξ : ξ ≤ α}.
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(*) if x ∈ Cα with |In(x)| ≤ ω then In(x) ⊂ ∪{Cξ : ξ ≤ α}.

H(θ) |= “ In(x) has an enumeration ~x = 〈xn : n < ω〉”
Mα+1 |= “ In(x) has an enumeration ~x = 〈xn : n < ω〉”
there is ~x ∈ Mα+1 s.t. Mα+1 |= “~x is an enumeration of In(x)”
H(θ) |= ~x is an enumeration of In(x)
~x is an enumeration of In(x)
Since ω ⊂ Mα+1 we have ~x(n) ∈ Mα+1 for each n ∈ ω
So In(x) ⊂ Mα+1.
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Chromatic number of product of graphs

Hedetniemi’s Conjecture
If min{χ(G), χ(H)} ≥ n ∈ N then χ(G × H) ≥ n.
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Theorem (El-Sahar, Sauer)

If min{χ(G), χ(H)} ≥ 4 then χ(G × H) ≥ 4.

Theorem (Hajnal)

If χ(G), χ(H) ≥ ω then χ(G × H) ≥ ω.
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If χ(G) ≥ ω and χ(H) ≥ n + 1 then χ(G × H) ≥ n + 1.
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Chromatic number of product of graphs

Theorem (Hajnal)
There are two ω1-chromatic graphs G and H on ω1 such that
χ(G × H) = ω.
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Chromatic number of product of graphs

Theorem (Hajnal)
There are two ω1-chromatic graphs G and H on ω1 such that
χ(G × H) = ω.

Theorem (–)
It is consistent with GCH that there are two ω2-chromatic graphs G and
H on ω2 s. t. χ(G × H) = ω.
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Chromatic number of product of graphs

Theorem (Hajnal)
There are two ω1-chromatic graphs G and H on ω1 such that
χ(G × H) = ω.

Theorem (–)
It is consistent with GCH that there are two ω2-chromatic graphs G and
H on ω2 s. t. χ(G × H) = ω.

Problem
Is it consistent with GCH that there are two ω3-chromatic graphs G and
H on ω3 s. t. χ(G × H) = ω?
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Combinatorial principles
Consistency proofs without tears
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the results themselves are usually of interest to “ordinary”
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independence proofs are rather sophisticated
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Combinatorial principles
Consistency proofs without tears

Consistency proofs are unavoidable

independence proofs are rather sophisticated

the results themselves are usually of interest to “ordinary”
mathematicians

Solution: isolate a relatively small number of principles , i.e.
independent statements

that are simple to formulate

that are useful in the sense that they have many interesting
consequences.

combinatorial principles
Continuum Hypothesis, Martin’s Axiom
Other models?
principles which describe the Cohen Model
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Covers of R
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Covers of R
n

Theorem (Aharoni, R.; Hajnal, A.; Milner, E. C.)
Any κ-fold cover of R by intervals can be partitioned into κ subcovers.

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 49 / 74



Covers of R
n

Theorem (Aharoni, R.; Hajnal, A.; Milner, E. C.)
Any κ-fold cover of R by intervals can be partitioned into κ subcovers.

Theorem (M. Elekes, T. Matrai, –)

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 49 / 74



Covers of R
n

Theorem (Aharoni, R.; Hajnal, A.; Milner, E. C.)
Any κ-fold cover of R by intervals can be partitioned into κ subcovers.

Theorem (M. Elekes, T. Matrai, –)
any ω1-fold cover of R

n by polytopes can be partitioned into ω1

subcovers.

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 49 / 74



Covers of R
n

Theorem (Aharoni, R.; Hajnal, A.; Milner, E. C.)
Any κ-fold cover of R by intervals can be partitioned into κ subcovers.

Theorem (M. Elekes, T. Matrai, –)
any ω1-fold cover of R

n by polytopes can be partitioned into ω1

subcovers.

R2 has an ω-fold cover by rectangles which can not be partitioned
into two subcovers .

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 49 / 74



Covers of R
n

Theorem (Aharoni, R.; Hajnal, A.; Milner, E. C.)
Any κ-fold cover of R by intervals can be partitioned into κ subcovers.

Theorem (M. Elekes, T. Matrai, –)
any ω1-fold cover of R

n by polytopes can be partitioned into ω1

subcovers.

R2 has an ω-fold cover by rectangles which can not be partitioned
into two subcovers .

CH =⇒ any ω1-fold cover of R
n by closed sets can be partitioned

into ω1 subcovers.

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 49 / 74



Covers of R
n

Theorem (Aharoni, R.; Hajnal, A.; Milner, E. C.)
Any κ-fold cover of R by intervals can be partitioned into κ subcovers.

Theorem (M. Elekes, T. Matrai, –)
any ω1-fold cover of R

n by polytopes can be partitioned into ω1

subcovers.

R2 has an ω-fold cover by rectangles which can not be partitioned
into two subcovers .

CH =⇒ any ω1-fold cover of R
n by closed sets can be partitioned

into ω1 subcovers.

If MAω1 then there is an ω1-fold cover of R
n by closed sets which

can not be partitioned into ω1 subcovers.
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(1) CH =⇒ (∗). (2) If MAω1 then ¬(∗).

Definition

A poset P has the weak Freese-Nation property iff ∃f : P →
[
P

]≤ω

s.t. ∀{p,q} ∈
[
P

]2, p ≤P q, ∃r ∈ f (p) ∩ f (q) with p ≤P r ≤P q.
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Covers of R
n

(∗): any ω1-fold cover of R
n by closed sets can be partitioned into ω1

subcovers.

(1) CH =⇒ (∗). (2) If MAω1 then ¬(∗).

Definition
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Theorem (M. Elekes, T. Matrai, –)
If 〈P(ω),⊂〉 has the weak Freese-Nation property then (∗) holds .
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When a principle fails

T: statement
Con(T)?
Plan: Pick a principle P and prove that P implies T .
can’t prove that P implies T
Problem: Prove that P does not imply T

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 51 / 74



Smooth graphs

K.A.Kierstead and P.J.Nyikos: Are there infinite graphs which are very
homogeneous
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Smooth graphs

K.A.Kierstead and P.J.Nyikos: Are there infinite graphs which are very
homogeneous in a non-trivial way?
smooth=homogeneous
G = 〈ω1,E〉
How to measure homogeneity of a graph G?
I(G): isomorphism classes of induced uncountable subgraphs of G.

1 | I(G)| is small,
2 G ∼= G[A] for many A ⊂ ω1.
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Smooth graphs

G is smooth iff | I(G)| = 1
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Smooth graphs

G is smooth iff | I(G)| = 1

Fact
A smooth graph is either complete or empty.

Proof.
x ∈ ω1, w.l.o.g |E(x)| = ω1.

G ∼= G[{x} ∪ E(x)]

∃v ∈ ω1 ω1 = {v} ∪ E(v)

∀W ∈ [V ]ω1 ∃w ∈ W W ⊂ {w} ∪ E(w)

G is complete
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Smooth graphs

G is non-trivial iff there are no uncountable cliques or independent
subsets in G.
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If G is a non-trivial graph on ω1 then | I(G)| ≥ ω.

Theorem (Hajnal, Nagy, –)

(1) | I(G)| ≥ 2ω for each non-trivial graph G on ω1.
(2) Under ♦+ there exists a non-trivial graph G on ω1 with | I(G)| = ω1.
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Smooth graphs

G is non-trivial iff there are no uncountable cliques or independent
subsets in G.

Theorem (K.A.Kierstead and P.J.Nyikos)
If G is a non-trivial graph on ω1 then | I(G)| ≥ ω.

Theorem (Hajnal, Nagy, –)

(1) | I(G)| ≥ 2ω for each non-trivial graph G on ω1.
(2) Under ♦+ there exists a non-trivial graph G on ω1 with | I(G)| = ω1.

Theorem (Shelah, –)
Assume that GCH holds and every Aronszajn-tree is special. Then
| I(G)| = 2ω1 for each non-trivial graph G = 〈ω1,E〉.
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Smooth graphs

G is almost smooth iff G ∼= G[ω1 \ A] for each A ∈
[
ω1

]ω.
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Theorem (Hajnal, Nagy, –)
If CH holds then there is a non-trivial, almost smooth graph on ω1.
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Smooth graphs

G is almost smooth iff G ∼= G[ω1 \ A] for each A ∈
[
ω1

]ω.

Theorem (Hajnal, Nagy, –)
If CH holds then there is a non-trivial, almost smooth graph on ω1.

Problem
Is there a non-trivial, almost smooth graph on ω1?

Does Martin’s Axiom imply that there is no non-trivial, almost smooth
graph on ω1?
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Smooth graphs

Theorem (–)
It is consistent that MAℵ1 holds and there is a non-trivial, almost
smooth graph on ω1.
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A blackbox theorem

Fnm(ω1,K )= {s : s is a function, dom(s) ∈
[
ω1

]m
, ran(s) ⊂ K}
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A blackbox theorem

Fnm(ω1,K )= {s : s is a function, dom(s) ∈
[
ω1

]m
, ran(s) ⊂ K}

〈sα : α < ω1〉 ⊂ Fnm(ω1,K ) is dom-disjoint iff dom(sα)∩ dom(sβ) = ∅
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A blackbox theorem

Definition
Let G be a graph on ω1 × K , m ∈ ω.

K

ω1

G
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A blackbox theorem

Definition
Let G be a graph on ω1 × K , m ∈ ω. We say that G is m-solid if given
any dom-disjoint sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1,K ) there are
α < β < ω1 such that

[sα, sβ ] ⊂ G.

G is called strongly solid iff it is m-solid for each m ∈ ω.

K

ω1

sα
sβ

sγ

dom(sα) dom(sβ) dom(sγ)

G
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A blackbox theorem

Let G be a graph on ω1 × K , m ∈ ω. We say that G is m-solid if given any
dom-disjoint sequence 〈sα : α < ω1〉 ⊂ Fnm(ω1,K ) there are α < β < ω1 such
that

[sα, sβ] ⊂ G.

G is called strongly solid iff it is m-solid for each m ∈ ω.

Theorem (–)
Assume 2ω1 = ω2. If G is a strongly solid graph on ω1 × K , then for
each m ∈ ω in some (c.c.c. generic) extension W of V we have

W |= “G is m-solid + MAω1 holds”
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Smooth graphs

Theorem (–)
It is consistent that MAℵ1 holds and there is a non-trivial, almost
smooth graph on ω1.

Proof
Coding: Given a graph C on ω1 define a suitable K and a graph
G(C) on ω1 × K s. t.
(a) If G(C) is 1-solid then C is non-trivial
(b) If G(C) is 1-solid and MAℵ1 holds then C is almost smooth.
(c) G(C) is strongly solid provided C has some property (P)

Using GCH construct a graph on ω1 with property (P)

Black Box Theorem:
W |= “G(C) is 1-solid and MAω1 holds.”

Theorem:
W |= “C is non-trivial, almost smooth and MAω1 holds.”
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Selected problems
Homomorhpism poset

Let G and H be graphs or di-graphs.

Definition
G ≤ H iff that there is a homomorphism from G to H

≤ is a quasi-order and so it induces an equivalence relation:
G ∼ H if and only if G ≤ H and H ≤ G.

Definition
The homomorphism posets G and D are the partially ordered sets
of all equivalence classes of finite undirected and directed graphs ,
respectively, ordered by the ≤.
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Selected problems
Homomorhpism poset

Definition
A maximal antichain A of a poset P splits if A can be partitioned
into two subsets B and C such that P = B↑ ∪ C↓.

In a homomorphism poset
a maximal antichain A splits : structure theorem on (di)graphs
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Selected problems
Homomorhpism poset G

A ⊂ P splits iff A = B ∪∗ C s.t. P = B↑ ∪ C↓

G is the homomorphism posets of all finite undirected graphs.

Theorem
G has only two finite maximal antichains: {K1} and {K2}.

Let G
′= G \ {K1,K2}.

Theorem (Duffus D., Erdos P.L., Nesetril J., Soukup, L.)

For each finite antichain A ⊆ G
′ there are maximal antichains

A0,A1 ⊃ A such that A0 splits and A1 does not split .
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Selected problems
Homomorhpism poset D

D is the homomorphism posets of all finite directed graphs.

Theorem (Foniok-Nešetřil-Tardif)
a full description of the finite maximal antichains in D .

Corollary (Foniok-Nešetřil-Tardif)
Every finite maximal antichain splits in D.

What about infinite antichains in D?

Theorem (Duffus, D., Erdos P.L., Nesetril J, Soukup, L)
There are both splitting and non-splitting maximal infinite antichains in
D.
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Every finite maximal antichain splits in D.

What about infinite antichains in D?

Theorem (Duffus, D., Erdos P.L., Nesetril J, Soukup, L)
There are both splitting and non-splitting maximal infinite antichains in
D.

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 64 / 74



Selected problems
Homomorhpism poset D

D is the homomorphism posets of all finite directed graphs.

Theorem (Foniok-Nešetřil-Tardif)
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a full description of the finite maximal antichains in D .

Corollary (Foniok-Nešetřil-Tardif)
Every finite maximal antichain splits in D.

What about infinite antichains in D?

Theorem (Duffus, D., Erdos P.L., Nesetril J, Soukup, L)
There are both splitting and non-splitting maximal infinite antichains in
D.

Soukup, L (Rényi Institute) From Finite to Infinite Banff 2007 64 / 74



Selected problems
Homomorhpism poset D

D is the homomorphism posets of all finite directed graphs.

Theorem (Foniok-Nešetřil-Tardif)
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Selected problems
Homomorhpism poset D

There are both splitting and non-splitting maximal infinite antichains in D.

Question

Assume that A ⊂ D is a maximal antichain, A = B ∪∗ C, A = B↑ ∪ C↓.
Is it true that |B| = |C| = ω?

Theorem (Bodirsky M., Erdos L. P., Schahcht M., Soukup L.)
Assume that A ⊂ D is an infinite maximal antichain, A = B ∪∗ C,
A = B↑ ∪ C↓. Then |B| = ω.
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Selected problems
Homomorhpism poset

the girth of a graph is the length of a shortest cycle contained in the
graph.

Theorem (Paul Erdős, 1959)
∀k , ℓ ∈ N ∃G s. t. χ(G) > k and girth(G) > ℓ.

Definition
The homomorphism poset Gω is the partially ordered set of all
equivalence classes of countable undirected graphs ordered by the
≤.
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Selected problems
Homomorhpism poset

Theorem (Nesetril, Shelah)
If A is a 1-element maximal antichain in Gω then A = {K1}, {K2} or
{Kω}.

Conjecture
Conjecture: If A is a finite maximal antichain in Gω then A ∩ G 6= ∅.

Need: infinite version of Erdős theorem.

∀k , ℓ ∈ N ∃G s. t. χ(G) > k and girth(G) > ℓ.

χ(G) > k iff G 6≤ Kk .

Conjecture
If H ∈ Gω, Kω 6≤ H and ℓ ∈ N then ∃G ∈ Gω s.t. G 6≤ H and
girth(G) > ℓ
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Selected problems
Permutation group

Perm(λ): the group of all permutations of a cardinal λ.
G ≤ Perm(λ) is κ-homogeneous iff for all X ,Y ∈

[
λ
]κ there is a

g ∈ G with g′′X = Y .
G ≤ Perm(λ) is κ-transitive iff for all 1-1 functions x , y : κ→ λ, there
is a g ∈ G s.t. g(x(α)) = y(α) for all α < κ

Theorem
A finite n-homogeneous permutation group is n − 1-homogeneous .

Theorem
An n-homogeneous group is not necesserily n-transitive.

Proof.
Continuous automorphisms of the circle.
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Selected problems
Permutation group

Theorem (Hajnal)
If

ω1
holds then ∃G ≤ Perm(ω2) ω1-homog, but not ω-homog.

Theorem (Shelah, –)

Con( ∀λ ≥ ω1 ∃G ≤ Perm(λ) ω1-homog, but not ω-homog. )

∃G ≤ Perm(ω1) ω-homogeneous , but not ω-transitive .

Theorem (–)
Con( ∀λ ≥ ω1 ∃G ≤ Perm(λ) ω-homog, but not ω-transitive. )
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Euler Theorem

Theorem
(1) A finite connected graph has an Euler-circle iff the graph is
Eulerian , i.e. each vertex has even degree.
(2) A finite connected graph has an Euler-trail with end-vertices
v 6= w iff v and w are the only vertices of odd degree.

A one-way infinite Euler trail T : a one-way infinite sequence
T = (x0, x1 . . . , ) of vertices such that {xixi+1 : i ∈ N} is a 1–1
enumeration of the edges of G. x0 is the end-vertex of the trail.
A two-way infinite Euler trail T : a two-way infinite sequence
T = (. . . , x−2, x−1, x0, x1 . . . , ) of vertices such that {xixi+1 : i ∈ Z} is a
1–1 enumeration of the edges of G.

Problem (König)
When does an infinite graph G contain a one/two-way infinite Euler
trail?
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Euler Theorem

Observation
The plain generalization fails for infinite graphs:

in G each vertex has even degree, but there is no two-way infinite
Euler trail ,
in H there is exactly one vertex with odd degree but there is no
one-way infinite Euler trail .
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Euler Theorem

Theorem (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938)
A graph G = (V ,E) has a one-way infinite Euler trail with
end-vertex v ∈ V iff (o1)-(o4) below hold:

1 G is connected, |E(G)| = ℵ0,
2 dG(v) is odd or infinite,
3 dG(v ′) is even or infinite for each v ′ ∈ V (G) \ {v},
4 G \ E ′ has one infinite component for each finite E ′ ⊂ E.

write owit(G, v) iff (1)-(4) above hold for G and v .

Lemma
Assume that G is a graph, v ∈ V (G), e ∈ E(G) and owit(G, v) holds.
Then there is there is a trail T with endpoints v and v ′ such that
e ∈ E(T ) and owit(G \ T , v ′) holds.
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Euler Theorem

Theorem (Erdős, P; Grünwald, T.; Vázsonyi, E., 1938)
A graph G has a two-way infinite Euler trail iff (t1)–(t4) below hold:

1 G is connected, |E(G)| = ℵ0,
2 dG(v) is even or infinite for each v ′ ∈ V (G)

3 G \ E ′ has at most two infinite component for each finite E ′ ⊂ E.
4 G \ E ′ has one infinite component for a finite E ′ ⊂ E provided that

every degree is even in 〈V ,E ′〉.
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C4

G2

Kℵ0 Kℵ0
G2 satisfies (1)-(3) but it does not
have a two-way infinite Euler trail.
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Euler Theorem

write twit(G) iff (1)-(4) above hold for G.

(∗) For each finite trail T the graph G \ T has one infinite
component .

Lemma
Let G be a graph, v ∈ V (G) and e ∈ E(G). If twit(G) and (∗) hold then
there is a circuit T in G such that v ∈ V (T ), e ∈ E(T ) and twit(G \ T ).

If T witnesses that (∗) fails then there is a trail T ′ in G such that
1 the endpoints of T and T ′ are the same, v1 and v2,
2 G \ T ′ has exactly two componets, G1 and G2

3 owit(G1, v1) and owit(G2, v2).
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