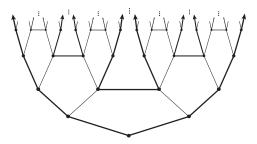
Fleischner's Theorem for Infinite Graphs

Angelos Georgakopoulos

Methematisches Seminar der Universität Hamburg

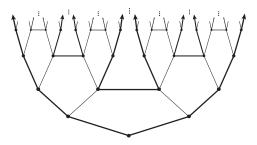
Angelos Georgakopoulos Fleischner's Theorem for Infinite Graphs

イロト イポト イヨト イヨト 一座



The wild circle

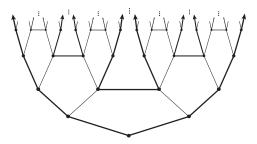
◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで



The wild circle is a Hamilton circle:

A homeomorphic image of S^1 in |G| containing all vertices

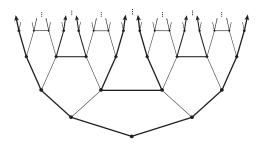
通 とう ほうとう ほうとう



The wild circle is a Hamilton circle:

A homeomorphic image of S^1 in |G| containing all vertices and all ends?

伺 とくき とくきとう



Hamilton circle:

A homeomorphic image of S^1 in |G| containing all vertices.

個人 くほん くほん 一足

Fleischner's Theorem

Theorem (Fleischner '74)

The square of a finite 2-connected graph has a Hamilton cycle.

イロト イポト イヨト イヨト 一座

Fleischner's Theorem

Theorem (Fleischner '74)

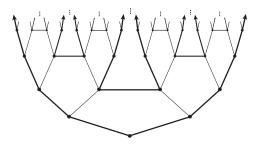
The square of a finite 2-connected graph has a Hamilton cycle.

Theorem (Thomassen '78)

The square of a locally finite 2-connected 1-ended graph has a spanning double ray.

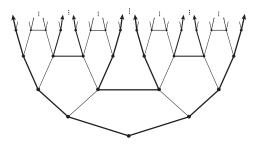
・ 同 ト ・ ヨ ト ・ ヨ ト …

The Theorem



◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

The Theorem



Theorem (G '06)

The square of a locally finite 2-connected graph has a Hamilton circle.

(個) (目) (日) (日)

Structure of the Proof

• make *G* eulerian by deleting some edges and doubling some of the remaining ones

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Structure of the Proof

- make G eulerian by deleting some edges and doubling some of the remaining ones
- pick an Euler tour

Structure of the Proof

- make *G* eulerian by deleting some edges and doubling some of the remaining ones
- pick an Euler tour
- perform "lifts" to turn the Euler tour into a Hamilton cycle

個人 くほん くほん 一足

End-faithful Euler Tours

Theorem (G '06)

If a locally finite graph has an Euler tour then it also has one visiting each end exactly once.

(Euler tour: A continuous image from S^1 to |G| traversing each edge exactly once.)

通 とくほ とくほ とう

Structure of the Proof

- make *G* eulerian by deleting some edges and doubling some of the remaining ones
- pick an Euler tour
- perform "lifts" to turn the Euler tour into a Hamilton cycle

個人 くほん くほん 一足

Structure of the Proof

- make *G* eulerian by deleting some edges and doubling some of the remaining ones
- pick an Euler tour
- perform "lifts" to turn the Euler tour into a Hamilton cycle

The hardest part is

how to avoid conficts

(i.e. make sure you don't lift any edge at both endvertices)

伺 とくき とくき とうき

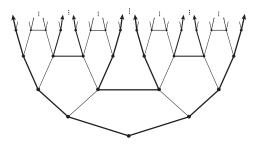
Structure of the Proof

- make *G* eulerian by deleting some edges and doubling some of the remaining ones
- pick an Euler tour
- perform "lifts" to turn the Euler tour into a Hamilton cycle

The hardest part is

how to avoid conficts (i.e. make sure you don't lift any edge at both endvertices) and how to maintain the end-topology

The Theorem



Theorem (G '06)

The square of a locally finite 2-connected graph has a Hamilton circle.

(個) (目) (日) (日)

Further reading

• AG: "Infinite hamilton cycles in squares of locally finite graphs", Preprint 2007

http://www.math.uni-hamburg.de/home/ georgakopoulos/infinitefleischner.pdf

(雪) (ヨ) (ヨ)

Further reading

• AG: "Infinite hamilton cycles in squares of locally finite graphs", Preprint 2007

http://www.math.uni-hamburg.de/home/ georgakopoulos/infinitefleischner.pdf

Theorem (G '06)

If G is a locally finite connected graph then $|G^3|$ has a Hamilton circle.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Further reading

• AG: "Infinite hamilton cycles in squares of locally finite graphs", Preprint 2007

http://www.math.uni-hamburg.de/home/ georgakopoulos/infinitefleischner.pdf

Theorem (G '06)

If G is a locally finite connected graph then $|G^3|$ has a Hamilton circle.

AG: "A short proof of Fleischner's theorem", Preprint 2007

http://www.math.uni-hamburg.de/home/ georgakopoulos/shortFleischner.pdf

(4回) (4回) (4回)

Conjecture

If G is a 4-edge-connected locally finite graph then |L(G)| contains a Hamilton circle.

イロト イポト イヨト イヨト 一座

Conjecture

If G is a 4-edge-connected locally finite graph then |L(G)| contains a Hamilton circle.

Theorem (Jaeger)

If $F \subseteq E(G)$ contains no odd cut of G then F can be extended to an element of C(G).

イロト イポト イヨト イヨト 一座

Conjecture

If G is a 2-connected countable graph then $|G^2|$ contains a Hamilton circle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Conjecture

If G is a 2-connected countable graph then $|G^2|$ contains a Hamilton circle.

Conjecture

If G is a connected countable graph then $|G^3|$ contains a Hamilton circle.

・ロト ・ 同ト ・ ヨト ・ ヨト

