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Part 1. Concepts

Graph G — topological space |G| (= G + ends)

paths in G —  arcs in |G|
cyclesin G —  circles in |G|

spanning trees in G —  TSTs in |G|

+ related concepts

Part 2. Applications & techniques — and open problems

Part 3. The topological viewpoint

— standard homologies for G and |G|
— a new homology to capture C(G)

(Can topology help with cycles, Euler tours, flows, x-¢ duality...?)
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Note
All Hamburg papers on this topic can be found at
http://www.math.uni-hamburg.de/home/diestel/index.html


Arcs and circles, naively

Initial idea:

A ‘Hamilton circle’ through 3 ends

Iterated idea:

= no idea



The Freudenthal compactification |G| of G

The ends of G are its equivalence classes of rays (1-way oo paths),
where R ~ R’ iff no finite set of vertices separates R from R’.

S 0 0 0 0 O

1 end 280 ends

Points of |G|: G as a 1-complex, + ends

Basic open sets:

S finite
= every ray converges to ‘its’ end

Lemma. |G| is compact. (For G locally finite and connected)



Arcs and circles, topologically

Arc: 1-1 cont’s image in |G| of [0, 1]

Circle: 1-1 cont’s image in |G| of S!

= all our naive ‘circles’ are circles.

Any other arcs or circles?

L ”

)

The ‘wild circle’ W

Such ‘cycles’ are necessary!

Jumping Arc Lemma. Let {U,W} be a bipartition of V(G)
into connected sets. Iff the U-W cut F' consists of finitely many
edges, every U-W arc in |G| contains an edge from F.



Combinatorial degree of an end w:

vertex-degree: max # disjoint rays in w

edge-degree: max # edge-disjoint rays in w

Topological degree of an end w:

vertex-degree: max # disjoint arcs in w
edge-degree: max # edge-disjoint arcs in w
Topological degrees make sense in subgraphs H C G:

— consider arcs in H C |G|, but always the ends of G.

Example:

H is acircle < H is topologically connected and
every vx and end in H has (top) degree 2

For H = G (loc.finite), comb/top end degrees coincide.

= only topological degrees are needed



TSTs: topological spanning trees

Definition. A TST is an arc-connected standard subspace of |G|
containing all vertices and ends but no circle.

NB: Standard subspaces containing all ends are closed.
For closed subspaces: connected =- arc-connected.

Not a TST: - ‘ ‘ I ‘ ‘

Two TSTs:

Theorem. For closed standard subspaces T' C |G| containing all
the vertices, the following are equivalent:

o T'isa TST;
e T' is edge-maximal without a circle;
e T' is edge-minimally arc-connected;

e Any two points of T' are joined by a unique arc in T

Fundamental cuts of TSTs are finite.



For spanning trees T: T is a TST < T is ‘end-faithful’.

In particular, normal spanning trees (NSTs) have TST closures.

NSTs always exist, and are the most useful T'STs:
T an NST = |G| has the ‘same’ basic open sets as ||

(their vx sets are ‘up-trees’ [t|, for S := {s | s < t})

But there are other TSTs:

< ®*----- ®*----- @ ----- - - ®- - @ - -9 >
< ®*----- ®*---—- @ ----- @ - - ——- ®- - @ ----9 >
< ®----- o ----- ®----- @----—- ®----- ®----1 >
«----@----- ®*----- ®*----- R ®----- ®----1 >

A ‘disconnected’ TST



The topological cycle space

Can(G) = <E ) | C cycle in G>

finite sums mod 2

Ciop := ( E(C) | C circle in |G| )

thin infinite sums mod 2

circuit : edge-set of circle

E le:

iy
4 E(Z) ¢ C (:= Ctop)

Properties of C (:= Ciop)

e The fundamental circuits of any TST generate C

Proof: C>C =) - 1Ce
o C = {finite cuts }* and Can = {cuts }+
{ finite cuts } = C+ and {cuts} = Ca

? o C={FCEQG)|dyr(x)isevenVz e VUQ}

— even vx degrees not enough:

— end degrees are edge-degrees: E ( W ) ¢C

— even/odd defined even for infinite degrees of ends

— known only for F' = E(G)

e Every D e C is a disjoint union of circuits.



Compactification vs. metric completion

For G locally finite, |G| is metrizable. Generally:

Theorem. |G| metrizable < G has an NST.

‘=’ NST — for e € E(T) let {(e) := 2~ height(e)
— for z,y € V(G)UQ(G) let do(z,y) := ) .cop, L(€)

— metric on |G| inducing the correct topology

|G| compact = complete as a metric space

= |G| is the (unique) completion of the metric space (G, dy)

Trivially, the above d, also satisfies Vu,v € V(G):

d¢(u,v) = inf Z /(e) over all u—v paths P in G. (%)

Conversely, given any function of edge lengths ¢: E(G) — (0, 1],
(*) defines a metric d; on G, and we can study its completion.

Theorem. Whenever {: E(G) — (0,1] satisfies Y, _¥(e) < oo,
the completion of (G, dy) coincides with |G|.

How about other metrics on G7

— go to Angelos’ workshop. ..



Graphs with Ends II: applications and techniques

1. Cycle space applications

A topological Euler tour through F' C E(G) is a closed topological
path in |G| that is injective inside edges, traverses every edge in
F' exactly once, and traverses no other edge.

‘Euler’s theorem’.
|G| contains a topological Euler tour through F iff F' € C(G).

Call G* a dual of G if E(G*) = E(G) and the bonds (min’l cuts)
of G* are precisely the circuits of G. These may be infinite. We
have to allow certain non-locally finite graphs, and adjust |G]|.

‘Whitney’s theorem’.
GG has a dual iff G is planar. When G is 3-connected, this dual G*

is unique (and 3-connected), and G** = G.



A family F of edges sets is sparse if no edge lies in > 2 elt’s of F.
Example: facial circuits in (finite) plane graphs.

A

‘MacLane’s theorem’.
G is planar iff C(G) has a sparse generating subset.

A cycle/circle C is peripheral if C' has no chord and V(C) does
not separate G.

‘Kelmans—Tutte theorem’.
G (3-conn’d) is planar iff every edge lies on < 2 peripheral circles.

‘Tutte structure theorem’.
G 3-connected = the peripheral circuits generate C(G).

‘Gallai’s partition theorem’.
E(G) either lies in C(G) or partitions into a cut and two elements
of C(G) each induced by one side of the cut.



2. Applications in ‘extremal’ infinite graph theory

Two reasons why there is no infinite extremal graph theory:

e need ‘more paths and cycles’ (as in ML etc)

e ‘many edges’, large § %  anything (eg, dense minors)

= need high-degree ends as ‘wrapper’

Theorem.

(i) If 6(G) > 2k* + 6k and every end of G has vertex-degree at
least 2k* + 2k +1, then G has a (k + 1)-connected subgraph.

(ii) If9(G) > 2k and every end of G has edge-degree > 2k, then
GG has a (k4 1)-edge-connected subgraph.
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Consider a maximal sequence C, 2 Cp 2 ... with |0C,| < 2k Vn.

If it terminates, with C,, say, then C,, is (k + 1)-edge-connected:

(& [¢2L =y ele
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The boundedness of the 0C,, implies that () C,, = 0:
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= 3 an end whose edge-degree is < 2%.



Example: Tree-Packing

Theorem 1. (Nash-Williams 1961; Tutte 1961)
The following are equivalent for a finite multigraph G and k € N:

e (G has k edge-disjoint spanning trees.

e For every vertex partition, into ¢ sets say, G has at least
k(¢ —1) edges between different partition sets.

Theorem 2. (Tutte 1961 )
The following are equivalent for all locally finite G and k € N:

e (G has k edge-disjoint spanning semiconnected™® subgraphs.

e For every vertex partition, into ¢ sets say, G has at least
k(£ —1) edges between different partition sets.

*) H (sp’g) semiconnected :<> H has an edge in every finite cut of G

& the closure H of H in |G| is (topologically) connected!

& H contains a TST.

Theorem 2’.
The following are equivalent for all locally finite G and k € N:

e (G has k edge-disjoint TSTs.

e For every vertex partition, into ¢ sets say, G has at least
k(¢ —1) edges between different partition sets.

@\: é ?JL\@@%(- Cc:(,«ulo(( = } (e e@(g:o@;gl“ Tg’(\s



'The Aharoni-Thomassen Construction 64.933)

A locally finite k-connected graph G without non-separating cycles:

1. Start with a copy Gg of a k-connected graph H of girth > k2.
Let X be a set of k vertices in H at pairwise distance > k.

2. From each cycle in Gy pick k edges, subdivide them. Identify
the k new vertices with X in each of > k new copies of H.

3. Repeat w times, grafting new copies of H only on to edges
added at the previous step (for each cycle in current graph).

.

P 1)
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G cannot have > 2 edge-disjoint spanning trees, because the edges
of any fundamental cycle separate G but come from only 2 trees.

= Need TSTs (‘more paths’) to make Thm 2’ true.

= Need circles (‘more cycles’) to assume the role played by
non-separating cycles in finite graphs. ((; e “;2‘;'3 gy !>
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Hamilton circles
Conjecture. G planar, 4-connected = |G| O Hamilton circle.
Progress: Yu’s talk
Conjecture. G 2-connected = |G?| has a Hamilton circle.
Proof: Georgakopoulos’ talk
Problems. Let G be countable but not necessarily locally finite.

e G is connected = |G?| has a Hamilton circle.

e G is 2-connected = |G?| has a Hamilton circle.

e If |G| has a Hamilton circle then so does |G*T1|.
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3. Techniques

Constructing arcs and TSTs greedily

... usually fails.

Example 1: constructing TST's from below

(Prove: Every acirclic standard subspace of |G| extends to a TST.)

Example 2: constructing an arc by extension

(Prove: FEvery D € C contains a circle through any given e € D.)

The use of compactness

Challenge: additional requirements on the limit

= constructions by compactness, not proofs

Limits of edge sets

Example 3: TSTs from above

(Thm: Given standard subspaces X CY C |G| with X acirclic
and Y spanning (v’s and ends) and connected, there is a
TST, T say, such that X CT CY.)



General technique:

Approximate G by G,, (n = 1,2,...): contract components
of G — Glvy,...,v,], keeping parallel edges but deleting loops:

Example 4 (simple compactness): trying to contruct a circuit,
but finding just a set D € C.

Given Vn: a circuit C,, € C(G,)

Note: for m < n, cut criterion = C, NE(G,,) € C(Gn)

Compactness yields nested D,, € C(G,,) with D :=J, D, € C(G).

Example 5: really constructing a circle, or u—v arc in X C |G|,

Given Vn: some u—v path P, C X NG, (= cycle through uv)

Note: for m < n, P, induces an u—v walk on G,,

— what can we say about a limit of such walks?

1% answer: its closure X is top. connected (edge-Menger),

= arc-connected = 4 wu—wv arc.
lemma

2nd answer: below



Limits of paths

Idea: in our sequence of walks W,, , not only E(W,,) C E(W,11)
but W,, — W, 11 by expanding a dummy vertex of G,,.

— parametrize W,, as top.path, obtain limit path (continuous?)

— extract u—v arc (lemma).

Example 6 (simpler, but same principle): tour around 75

Proof for Example 6: The task is to define a closed top’l path that traverses
every edge exactly twice. To define this in a limit process, walk around a finite
subtree in this manner, pausing at every leaf for a non-trivial time interval.
At the next step, expand that interval to a walk around the up-tree of height 1
at that vx, again pausing at every leaf. For some x € [0, 1], the image gets
redefined infinitely often. But then these images map out an upward ray
in 75, and we let the limit map map x to the end w of that ray. Then prove
that the limit map is cont’s at such x. (It clearly is elswhere.) The proof is
nearly the same: given a nbhd C of w, take an interval around x in [0, 1] small
enough that some o, maps it to a vx in C'. Then every o,, with m > n maps
x to some point in the up-tree of that vertex (possibly an end), and hence
also to C.

20
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diestel
Note
Well, nearly: it's precisely the Jumping Arc Lemma.
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diestel
Note
This will enable us to define an invariant of 1-chains that can distinguish $\alpha$ from boundaries. See p.16.
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