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1 Introduction7

The focus of this workshop was the mathematics associated with an array of cut-8

ting edge problems in polymer physics and molecular biology showing promise9

for immediate progress at the interfaces between mathematics and the physical10

and life sciences.11

The first targeted area concerns the presence of knotting of DNA in living12

cells at a steady-state level lower than the thermodynamic equilibrium expected13

for a system in which inter-segmental passages within long DNA molecules oc-14

curs at random. Can one develop a systematic approach to understanding the15

wide range of potential topoisomerase mechanisms and their application in di-16

verse settings? Is there a selective topoisomerase mechanism by which knotting17

is kept below a topological equilibrium or are there specific constraining mecha-18

nisms promoting this relaxation of knots? The study of the characteristics of the19

equilibrium now include geometric, spatial, and topological aspects that may be20

implicated in these mechanisms as well as the characteristics of polymers, for21

example under theta conditions. Computational, experimental and theoretical22

aspects of this area were featured in many of the presentations and discussions.23

The second targeted area concerns the mathematical, statistical, and com-24

putational tools under development for the study of knotting and linking of25

open and closed macromolecules. One example is the collection of strategies26

developed to quantify and characterize the entanglement, e.g. knotting and27

linking, of open macromolecules which show promise for practical application of28
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polymers. Another is the development of different methods for the selection of29

random equilateral polygons, with respect to the natural measure on the space30

of equilateral polygons. With efforts to quantify a wide range of new spatial fea-31

tures of these random equilateral polygons, greater care is necessary in order to32

demonstrate that the selection process is sufficient to provide statistically accu-33

rate estimations of critical quantities. Still another concerns the methods used34

to identify the topological type of the knotted polygons. Many of these methods35

are based on calculations of the Alexander polynomial or the more recent Jones36

and HOMFLY polynomials. While these have worked well to date, research37

questions are now moving into the range of 1500 edges (or Kuhn statistical38

segments) and, therefore, many thousands of crossings in a generic projection.39

Still another, distinct, computational thrust concerns efforts to achieve optimal40

spatial configurations when measured by the ropelength. With effort by several41

teams, this work faces challenging theoretical and computational obstacles.42

The third focus is the application of the theory and methods above to the43

study of macromolecules in confined geometries, for example polymers between44

two parallel planes as in models of steric stabilization of dispersions or in DNA45

molecules contained in a capsid. Macromolecules so confined exhibit signif-46

icantly different average and individual structures in comparison with those47

in free environments. Effective confining arises in the case of macromolecules48

that have specific hydrophobic and hydophilic regions or when regions have re-49

stricted flexibility or torsion. While, in general, one might expect that much is50

now known concerning the knotting of macromolecules in such environments,51

in fact little is known rigorously and many fundamental questions appear to be52

beyond immediate reach, both theoretically or via numerical studies.53

2 Knotting in DNA and polymers54

One of the key themes of this workshop was the focus upon the implications of55

experimental results in the context of theoretical models to understand them56

and their physiological implications. Setting the theme, Lynn Zechiedrich’s57

opening session described the role of knotting on gene function by leading to a58

significant increase in mutation. DNA must be long enough to encode for the59

complexity of an organism, yet thin and flexible enough to fit within the cell.60

The combination of these properties greatly favors DNA collisions, which can61

tangle the DNA. Despite the well-accepted propensity of cellular DNA to collide62

and react with itself, it is not clear what the physiological consequences are.63

When cells are broken open, the classified knots have all been found to be the64

mathematically interesting twist knots. These remarkable knots can have very65

high knotting node numbers (complexity), but can be untied in only one strand66

passage event. Zechiedrich’s group used the Hin site-specific recombination67

system to tie twist knots in plasmids in E. coli cells to assess the effect of knots68

on the function of a gene. Knots block DNA replication and transcription. In69

addition, knots promote DNA rearrangements at a rate four orders of magnitude70

higher than an unknotted plasmid. These results show that knots are potentially71
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toxic, and may help drive genetic evolution. The enzymes that untie knots are72

the type II topoisomerases. How they carry out their function to unknot and not73

knot DNA is largely unknown. Although domains of type II topoisomerases have74

been crystallized and the atomic structures solved, no complete, intact, active75

enzyme structure is known and no co-crystals with DNA have been obtained.76

Zechiedrich’s group used electron cryomicroscopy (CryoEM) to generate the77

first three-dimensional structure of any intact, active type II topoisomerase.78

The data suggest a simple one-gate mechanism for enzyme function.79

Jennifer Mann described how human topoisomerase II α resolves DNA80

twist knots in a single step. Cellular DNA knotting is driven by DNA com-81

paction, topoisomerization, replication, supercoiling-promoted strand collision,82

and DNA self-interactions resulting from transposition, site-specific recombina-83

tion, and transcription. Type II topoisomerases are ubiquitous, essential en-84

zymes that inter-convert DNA topoisomers to resolve knots. These enzymes85

pass one DNA helix through another by creating an enzyme-bridged transient86

break. How type II topoisomerases accomplish their unknotting feat is a cen-87

tral question. Will a type II topoisomerase resolve a DNA twist knot in one88

cycle of action? Each crossing reversal performed by a type II topoisomerase89

requires energy. Within the cell, DNA knots might be pulled tight by forces90

such as those which accompany transcription, replication, and segregation, thus91

increasing the likelihood of DNA damage. The results show DNA knots can be92

lethal and promote mutations. Therefore, it would be advantageous for type93

II topoisomerases to resolve DNA knots in the most efficient manner. Mann’s94

data show that purified five- and seven-noded twist knots are converted to the95

unknot by human topoisomerase II α with no appearance of either trefoils or96

five-noded twist knots which are intermediates if the enzyme acted on one of97

the inter-wound nodes.98

Dorothy Buck presented a topological model that predicts which knots99

and links are the products of site-specific recombination. Buck described the100

topology of how DNA knots and links are formed as a result of a single recombi-101

nation event, or multiple rounds of (processive) recombination events, starting102

with substrate(s) consisting of an unknot, an unlink, or a (2, n)-torus knot or103

link. The model relies on only three assumptions and Buck provided biological104

evidence for each of these assumptions. This talk presented the biological back-105

ground, evidence, and applications of the model that was further explored in the106

talk of Erica Flapan. The biological determination is accomplished by describ-107

ing the topology of how DNA knots and links are formed as a result of a single108

recombination event, or multiple rounds of (processive) recombination events,109

starting with substrate(s) consisting of an unknot, an unlink, or a (2, n)-torus110

knot or link.111

Giovanni Dietler reported on the properties of knotted DNA in respect112

to the critical exponents and the localization of the knot crossings. He showed113

that probably two universality classes exist in this case and that localization of114

the knot crossings could explain the activity of the topoisomerases. Gel elec-115

trophoresis of DNA knots was discussed and simulations as well as experiments116

were presented in which the knot complexity and its topology play an essential117
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role. Some hydrodynamics experiments with knots were presented at the end.118

3 Mathematical, statistical, and computational119

methods120

Discussing models employed in modeling DNA molecules, Alexander121

Vologodskii put the attention on the discrete worm-like chain, a carefully122

tested model that leads to a reliable analysis of enzymatic topological trans-123

formations. First, he described what exactly can be computed by the method,124

and how the computational results can be used to test a particular model of the125

enzyme action used in the simulation. He showed how two kinds of experimen-126

tal data can be compared with the simulation results and discussed the major127

assumptions and theoretical bases of the approach. Then the key elements of128

the simulation were briefly considered. This general description of the approach129

was illustrated by specific examples.130

Hue Sun Chan described the statistical mechanics of how recognition of lo-131

cal DNA juxtaposition geometry may underlie the unknotting and decatenating132

actions of type II topoisomerases. Topoisomerases may unknot and decate-133

nate by recognizing specific DNA juxtapositions. The statistical mechanical134

viability of this hypothesis was investigated by considering lattice models of135

single-loop conformations and two-loop configurations of ring polymers. Using136

exact enumerations and Monte Carlo sampling, the statistical relationship be-137

tween the local geometry of a juxtaposition of two chain segments on one hand,138

and whether a single loop was knotted or whether two loops were linked glob-139

ally on the other was determined; and it was ascertained how the knot/unknot140

topology and global linking were altered by a topoisomerase-like segment pas-141

sage at the juxtaposition. Presented results showed that segment passages at142

a “free” juxtaposition tend to increase knot probability but segment passages143

at a “hooked” juxtaposition cause more transitions from knot to unknot than144

vice versa, resulting in a steady-state knot probability far lower than that at145

topological equilibrium. Similarly, the selective segment passage at hooked jux-146

tapositions can lower catenane populations significantly. A general exhaustive147

analysis of 6,000 different juxtaposition geometries showed that the ability of a148

segment passage to unknot and decatenate correlates strongly with a juxtaposi-149

tion’s “hookedness.” Most remarkably, and consistent with earlier experiments150

on type II topoisomerases from different organisms, the unknotting potential of a151

juxtaposition geometry in the presented model correlates almost perfectly with152

its corresponding decatenation potential. These quantitative findings suggest153

that it is possible for type II topoisomerases to disentangle by acting selectively154

on juxtapositions with hook-like geometries.155

Andrzej Stasiak presented another perspective on a model of selective156

simplification of DNA topology by DNA topoisomerases. The presented model157

tested the hypothesis that type II DNA topoisomerases maintain the steady158

state level of DNA knotting below the thermodynamic equilibrium by acting159
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as topological filters that recognize preferentially certain geometrical arrange-160

ments of juxtaposed segments, “hooked relationships”. It was shown that such161

specificity can result in two interrelated topological consequences: maintaining162

the steady-state knot probability level below the topological equilibrium and163

selecting a specific way of relaxation of more complex knots. It was observed,164

in addition, that local structures in random configurations of a given knot sta-165

tistically behave as analogous local structures in ideal geometric configurations166

of the corresponding knot types.167

Mariel Vazquez contributed to the theme of modeling DNA topology sim-168

plification. Random cyclization of linear DNA can result in knotted DNA circles.169

Experiments on DNA confined inside P4 viral capsids have found knotting prob-170

abilities as high as 0.95. A full description of the complicated knots remains171

unavailable. Type II topoisomerases unknot DNA very efficiently by perform-172

ing strand-passage on DNA strands. Motivated by these biological observations,173

Vazquez and colleagues studied random state transitions in knot space for all174

prime knots with 8 or fewer crossings and fixed length. The main goal was175

to quantify unknotting under different geometrical constraints. The long term176

goal is to understand the mechanism of action of type II topoisomerases, and177

to characterize the knots extracted from the P4 capsids. They used the Monte178

Carlo based BFACF algorithm to generate ensembles of self-avoiding polygons179

(SAP) in Z3 with identical knot type and fixed length. The BFACF algorithm180

produces a reducible Markov chain whose ergodicity classes are the knot types.181

They performed random strand-passage on these knots, computed state transi-182

tions between knot types, and steady-state distributions after repeated strand-183

passages. Introducing different topological biases resulted in various probability184

distributions. The large amount of knots used in their model made it possible to185

gather additional information regarding knots and their projections. They com-186

puted minimal lattice knots, and in some cases improve existing lower bounds.187

They also provided other physical measures such as the writhe and average188

crossing number. Finally, using an algorithm that removes Reidemeister I and189

II moves simultaneously, they computed the average number of crossings before190

and after Reidemeister removal.191

Christine Soteros discussed the asymptotics of knotting after a local192

strand passage. On the macroscopic scale, circular DNA can be viewed simply193

as a ring polymer. Experimental evidence indicates that topoisomerases act194

locally in DNA allowing two strands of the DNA which are close together to195

pass through one another (i.e. enabling a “local” strand passage) in order to196

disentangle the DNA. This has inspired investigation of the following question197

about self-avoiding polygon (SAP) models: Given a SAP with a fixed knot type,198

how does the distribution of knots after a local strand passage depend on the199

initial knot type of the SAP, the length of the SAP, and on the specific details200

of the strand passage such as where the strand passage occurs and the number201

of edges altered in the strand passage? In 2000, graduate student M. Szafron202

introduced a model of unknotted ring polymers in dilute solution for which it is203

assumed that two segments of the polymer have already been brought close to-204

gether for the purposes of performing a local strand passage. The conformations205
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of the ring polymer are represented by n-edge unknotted polygons containing206

a specific pattern (designed to facilitate a strand passage in which exactly two207

segments of the polygon pass through each other) on the simple cubic lattice.208

Based on the assumption that each such SAP conformation is equally likely,209

Soteros and Szafron investigated, both theoretically and numerically, the distri-210

bution of knots after a strand passage has been performed at the location of the211

special pattern. The talk reviewed the theoretical and numerical (via Markov212

Chain Monte Carlo) results for this model with emphasis on the asymptotic213

properties as n increases. In addition, results for the extension of the model to214

other knot types such as the figure-eight knot were presented.215

Enzo Orlandini discussed the topological effects of knotting on the dynam-216

ics of polymers. Knots are frequent in long polymer rings at equilibrium and217

it is now well established that their presence can affect the static properties of218

the polymer. On the other hand, topological constraints (knots) influence also219

the dynamical properties of a polymer. This has been shown in recent exper-220

iments where the motion of a single knotted DNA has been followed within a221

viscous solution and in the presence of a stretching force. These experiments222

raise interesting challenges to the theoretical understanding of the problem, an223

issue that is still in its infancy. As a first step towards the understanding of224

the mechanism underlying the mobility of a knot, the relaxation and diffusion225

dynamics of flexible knotted rings in equilibrium under good solvent conditions226

was investigated by Monte Carlo simulations. By focusing on prime knots and227

using a knot detection algorithm it was possible to monitor the diffusion in228

space of the knotted part of the ring, and observe in time the fluctuations of its229

length along the backbone. This identified a novel, slow topological time-scale,230

and to show that it is related to a self-reptation of the knotted region. For open231

chains, knotted configurations do not represent an equilibrium state any more.232

However, under suitable conditions (for example very tight knots or quite rigid233

chains), knotted metastable states persist for a very long time and a statistical234

description of their dynamical properties is then possible. By performing off235

lattice molecular dynamic simulations of a semiflexible polymer, an estimate236

was obtained of the average living time and the stability of these states as a237

function of the initial conditions (size of the initial knot) and of the rigidity of238

the chain.239

Carla Tesi discussed the probability of knotting of polygons under a stretch-240

ing force. Knots are practically unavoidable in long polymer rings and influence241

their properties. This has been witnessed by an increasing number of experi-242

ments that can nowadays probe the detailed properties of knotted molecules.243

In particular micro-manipulation techniques enable direct measurements of me-244

chanical properties of a single molecule, and it is also possible to probe the245

behavior of artificially knotted DNA. It is becoming important to study theo-246

retically how, for example, the presence of topological constraints (knots) can247

affect the mechanical or elastic responses of knotted molecules under external248

forces. As a first step in this direction Tesi and colleagues considered first the249

problem of looking at how the entanglement complexity in ring polymers can250

be affected by the presence of a tensile or contractile force. A possible experi-251
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mental realization of this problem could be bacterial (or mitochondrial) DNA in252

solution with topoisomerases that are subjected to an external force (AFM or253

optical tweezers) or to flow files (shear flow for example). In this work stretched254

ring polymers are modeled by polygons in the cubic lattice weighted by a fugac-255

ity coupled to its span along a given direction. By performing extensive Monte256

Carlo simulations on this system they have been able to estimate how the knot-257

ting probability and the knot spectra depends on the force strength, both in258

the extensile and in the contractile regime. These findings were compared with259

recent rigorous results on similar models of stretched polygons.260

Isabel Darcy described the modeling of protein-DNA complexes in three261

dimensions using TopoICE (Topological Interactive Construction Engine). Protein-262

DNA complexes have been modeled using tangles. A tangle consists of arcs263

properly embedded in a 3-dimensional ball. The protein is modeled by the 3D264

ball while the segments of DNA bound by the protein can be thought of as265

arcs embedded within the protein ball. This is a very simple model of protein-266

DNA binding, but from this simple model, much information can be gained.267

The main idea is that when modeling protein-DNA reactions, one would like268

to know how to draw the DNA. For example, are there any crossings trapped269

by the protein complex? How do the DNA strands exit the complex? Is there270

significant bending? Tangle analysis cannot determine the exact geometry of271

the protein-bound DNA, but it can determine the overall entanglement of this272

DNA, after which other techniques may be used to more precisely determine273

the geometry. KnotPlot, developed by Rob Scharein, is an interactive 3D pro-274

gram for visualizing and manipulating knots. TopoICE-X is a subroutine within275

KnotPlot for solving tangle equations modeling topoisomerase reactions.276

Eric Flapan described the topological faces of the model for DNA knotting277

and linking developed jointly with Dorothy Buck. Flapan presented a topologi-278

cal model that predicts which knots and links can be the products of site-specific279

recombination. This is done by describing the topology of how DNA knots and280

links are formed as a result of a single recombination event, or multiple rounds281

of (processive) recombination events, starting with substrate(s) consisting of an282

unknot, an unlink, or a (2, n)-torus knot or link. The model relies on only three283

assumptions and we give biological evidence for each of these assumptions.284

Alexander Grosberg described metastable tight knots as a worm-like poly-285

mer. Based on an estimate of the knot entropy of a worm-like chain. Grosberg286

and colleagues predict that the interplay of bending energy and confinement287

entropy will result in a compact metastable configuration of the knot that will288

diffuse, without spreading, along the contour of the semi-flexible polymer un-289

til it reaches one of the chain ends. The estimate of the size of the knot as a290

function of its topological invariant (ideal aspect ratio) agrees with recent ex-291

perimental results of knotted dsDNA. Further experimental tests of these ideas292

were proposed.293

Bertrand Duplantier discussed random linking of curves and manifolds.294

Duplantier proposed a formalism for evaluating random linking integrals of295

closed curves in R
3 or, more generally, manifolds in R

n, all in relative motions.296

It is based on the existence of universal geometric characteristic functions for297
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each closed curve or manifold separately. It allows further averaging over the298

possible random shapes of those curves and manifolds.299

Tetsuo Deguchi discussed the dynamics and statistical mechanics of knot-300

ted ring polymers in solution using a simulations approach toward an experimen-301

tal confirmation of topological effects. Deguchi described how topological effects302

may give nontrivial results on the macroscopic behavior of ring polymers in so-303

lution and how one can confirm them experimentally. Numerical evaluations304

of some characteristic physical quantities of the solution that can be measured305

in polymer experiments were presented. This study was strongly motivated306

by recent experimental developments for synthesizing ring polymers with large307

molecular weights. Numerical results on dynamical and statistical properties of308

a dilute solution of ring polymers where topological constraints play a central309

role were presented. Dynamical quantities such as the diffusion constants of310

ring polymers in solution and the viscosity of the ring-polymer solution were311

discussed. These show their difference from those of the corresponding linear312

polymers with the same molecular weights. Secondly, the osmotic pressure of313

the ring-polymer solution reflects the topological interaction among ring poly-314

mers. It was numerically evaluated in terms of the random linking probability.315

Thirdly, the mean square radius of gyration of ring polymers under a topolog-316

ical constraint, which is one of the most fundamental quantities in the physics317

of knotted ring polymers, can be measured in the scattering experiment. The318

single-chain static structure factor, i.e. the scattering function, can be obtained319

experimentally for ring polymers with fixed topology, from which one derives320

the mean square radius of gyration. It is therefore important to evaluate nu-321

merically the scattering function of a knotted ring polymer in solution. Some322

theoretical and simulational results on the scattering functions were discussed.323

Kenneth Millett discussed the problem of estimating the number of dis-324

tinct topological knot types and their proportion in the space of (equilateral)325

polygonal knots with a fixed number of edges. For very small numbers of edges,326

one knows the number of knot types and can estimate their proportion but, for327

larger numbers of edges, only rough estimates are available. Estimates derive328

from Monte Carlo explorations of the (equilateral) polygonal knot space and an329

analysis using the HOMFLY polynomial as a surrogate for the topological knot330

type. As a consequence, one is interested in knowing how large a sample of knots331

is needed to give a good estimate of the number of topological knot types as332

detected by distinct HOMFLY polynomials. Some theoretical and experimental333

efforts concerning this question were discussed.334

Rob Kusner discussed the geometric problems for embedded bands in335

space. Just as one can minimize the ropelength for knotted or linked space336

curves, one can also minimize the analogous “bandlength” for smoothly framed337

curves, either within a framed isotopy class, or with a pointwise constraint on338

the framing (which we view as a normal vector field along the corresponding339

bands). As a limiting case where the framing for the bands is constant, one gets340

knotted or linked “raceways” in the plane, a flattened analogue of knotted or341

linked “ropes” in space. Kusner showed that the bandlength of raceways grows342

at least as fast as the square root of crossing number (recall that for ropes one343
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had instead the three-fourths power) and that this power is sharp. Kusner also344

commented on the shapes of length minimizing raceways, and speculated on345

bands or raceways as models for folded or packed proteins.346

Atillio Stella discussed how the probability of realization of configurations347

with specific knots in closed random chains play a major role in topological poly-348

mer statistics and in its applications to macromolecular and biological physics.349

A problem of considerable current interest is that of comparing the knot spectra350

obtained for random models with those analyzed by electrophoresis for the DNA351

extracted from viral capsids. This comparison should help in identifying specific352

mechanisms of knot formation in the biological context. In the case of collapsed353

polymer rings, interest in the knot spectrum is also enhanced by the recent354

discovery that knots are fully delocalized along the backbone. Understanding355

if, and up to what extent, topological invariants can affect the globular state356

in such conditions is an intriguing fundamental issue. An analysis of extensive357

Monte Carlo simulations of interacting self-avoiding polygons on cubic lattice358

was presented. The results showed that the frequencies of different knots real-359

ized in a random, collapsed polymer ring decrease as a power (about -0.6) of360

the ranking order. This Zipf type of law also suggests that the total number361

of different knots realized grows exponentially with the chain length. Relative362

frequencies of specific knots converge to definite ratios for long chains, because363

of the free energy per monomer and its leading finite size corrections do not364

depend on the ring topology, while a subleading correction only depends on the365

minimal crossing number of the knots. This topological invariant appears to366

play a fundamental role in the statistics of collapsed polymers.367

Jon Simon discussed the problem of measuring tangling in a large filament368

system. Imagine a protein or other polymer filament (or several) entangled in369

some complicated way, perhaps with tens or hundreds of crossings. Now imag-370

ine a second example with similarly large entanglement. Can one say something371

useful to distinguish the tangling in the two examples? For relatively small sys-372

tems, topological knotting and linking is a powerful tool, witness the success373

of “topological enzymology”. But for large systems, calculating exact knotting374

and linking may be computationally impractical; there are uncertainties in how375

to deal with open filaments; and knowing that one is knot 10.156 and the other376

10.157 might not tell us much about the physical properties of the given sys-377

tem. Simon proposed that describing and quantifying tangling in large filament378

systems should be one of the important next-stage problems for the field of379

physical knots. To describe shapes of proteins (in static conformations), several380

researchers have developed numerical descriptors based on variations of Gausss381

linking-number integrals; these are related to average crossing number. Simon382

has begun studying another modification of average crossing number called the383

average bridging number. This is a simple idea, but when taken together with384

average crossing number, it seems to distinguish nicely between different kinds385

of packings for long filaments. And there appears to be reasonable stability of386

the relationship under random perturbations, so this approach may be useful387

for statistical ensembles as well as for individual conformations.388
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Jason Cantarella gave a talk intended as an (mostly expository) invitation389

to the community interested in modeling large molecules to consider an alter-390

nate mathematical framework for their work: modeling large macromolecules391

as divergence-free vector fields instead of as curves, polygons, chains, or tubes.392

From this point of view, the actual topological knot type of a very large and393

complicated curve will be seen as less important than its average entanglement394

complexity. The talk introduced this framework, reviewed some older results395

about the helicity of vector fields (which measures a kind of average linking396

number of integral curves), outlined some speculative applications to macro-397

molecules, and introduced some work in progress reformulating the helicity of398

vector fields from a more modern perspective. Cantarella’s reformulation of399

helicity opens the possibility of constructing a family of “generalized helicity”400

integrals analogous to finite-type invariants for knots.401

Claus Ernst gave a summary of what is currently known about the topo-402

logical aspects of lattice knots such as their length and curvature. The length403

as braids is also considered.404

Eric Rawdon presented computer simulations to examine the equilibrium405

length of random equilateral polygons with respect to different spatial quanti-406

ties, in particular with respect to the total curvature and total torsion of the407

polygons. Rawdon and colleagues use Markov Chain Monte Carlo methods to408

determine likely scaling profiles and error bars for the equilibrium length calcu-409

lations410

John Maddocks discussed the optimal packing of tubes in R
3 and S

3,411

contacts sets in R
3, and connections with sedimentation dynamics.412

Henryk Gerlach described the optimal packing of curves on S2, both fam-413

ilies of circles and open curves.414

Stuart Whittington reviewed some results about lattice models of ring415

polymers, focusing on rigorous asymptotic results about the knot probability as416

a function of length, the topological and geometrical entanglement complexity417

and the relative frequency of occurrence of different link types. He discussed a418

number of open questions. For instance, we know that the knot probability goes419

to unity exponentially rapidly as the size of the lattice polygon goes to infinity420

but we know almost nothing (rigorously) about the constant appearing in the421

exponential term. Similarly, although we know that all non-trivial link types422

where both polygons are knotted grow at the same exponential rate, we know423

nothing about the sub-exponential terms.424

4 Macromolecules in confined geometries425

Javier Arsuaga discussed the topological considerations of the interphase nu-426

cleus. During the early phase of the cell cycle (G0/G1) chromosomes are con-427

fined to spherical regions within the nucleus called chromosome territories. The428

position of these territories is important in a number of biological processes429

(e.g. transcription, replication and DNA repair) and has important implica-430

tions in human genetic diseases, in cancer and in the formation of chromosome431
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aberrations after exposure to DNA damaging agents. Recently, a model has432

been proposed for the interface region between territories in which chromo-433

somes overlap and intermingle. This new model naturally raises the question434

of whether chromosomes are linked or not. Motivated by this problem Arsuaga435

and colleagues investigated the linking of curves in confined volumes. Arsuaga436

presented recent results using the uniform random polygon model. First, ana-437

lytically, they showed that the linking probability between a fixed closed curve438

and a random polygon of length n increases as 1 − O(( 1
n
)

1

2 ). Next, numerically439

that the linking probability between two polygons of lengths n and m increase440

as 1 − O(( 1
nm

)
1

2 ). They extended these results to the case when two polygons441

have a predetermined overlapping volume (as is the case in experimental obser-442

vations). Arsuaga concluded with a discussion of potential extensions to other443

polymer models and biological implications.444

Buks Janse van Rensburg discussed the properties of lattice polygons of445

fixed knot types in a slab of width, w, by using scaling arguments and presented446

numerical results from Monte Carlo simulations using the BFACF algorithm. If447

pn(K) is the number of polygons of length n and of knot type K in the cubic448

lattice, then it is known that lim
n→∞

[log(pn(∅))]
n

= log(µ∅) exists, where K = ∅449

is the unknot, and µ∅ is the growth constant of unknotted polygons in the450

cubic lattice. Suppose that pn(K, w) is the number of knotted polygons of451

length n and of knot type K in a slab of width w in the cubic lattice. The452

generating function of this model is given by gK(w; t) = Σpn(K,w) tn, where t is453

a generating variable conjugate to the length of the polygons. The mean length454

< n >K,w of polygons of knot type K in a slab of width w may be estimated455

from gK(w;t) using the BFACF algorithm. The dependence of < n >K,w on w456

was estimated for t = µ−1
∅

, and the results were compared to predictions of457

scaling arguments. In addition, numerical results for the metric properties of458

knotted polygons in this ensemble were presented.459

De Witt Sumners discussed why DNA knots reveal chiral packing of DNA460

in phage capsids. Bacteriophages are viruses that infect bacteria. They pack461

their double-stranded DNA genomes to near-crystalline density in viral capsids462

and achieve one of the highest levels of DNA condensation found in nature.463

Despite numerous studies, some essential properties of the packaging geometry464

of the DNA inside the phage capsid are still unknown. Although viral DNA is465

linear doublestranded with sticky ends, the linear viral DNA quickly becomes466

cyclic when removed from the capsid, and for some viral DNA the observed467

knot probability is an astounding 95%. Sumners discussed comparison of the468

observed viral knot spectrum with the simulated knot spectrum, concluding469

that the packing geometry of the DNA inside the capsid is non-random and470

writhe-directed.471

Cristian Micheletti discussed the knotting of ring polymers in confined472

spaces. Stochastic simulations were used to characterize the knotting distri-473

butions of random ring polymers confined in spheres of various radii. The474

approach was based on the use of multiple Markov chains and reweighting tech-475

niques, combined with effective strategies for simplifying the geometrical com-476
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plexity of ring conformations without altering their knot type. By these means,477

Micheletti and colleagues extended previous studies and characterized in detail478

how the probability to form a given prime or composite knot behaves in terms479

of the number of ring segments n and confining radius R. For 50 ≤n≤ 450 they480

showed that the probability of forming a composite knot rises significantly with481

the confinement, while the occurrence probability of prime knots are, in general,482

nonmonotonic functions of 1
R

. The dependence of other geometrical indicators,483

such as writhe and chirality, in terms of R and n was also characterized. It was484

found that the writhe distribution broadens as the confining sphere narrows485

Yuanan Diao discussed the sampling of large random knots in a confined486

space. Diao proposed 2-dimensional uniform random polygons as an alternative487

method of sampling large random knot diagrams. In fact, the 2-dimensional488

uniform random polygons allow one to sample knot diagrams with large crossing489

numbers that are diagrammatically prime since one can rigorously prove that the490

probability that a randomly selected 2D uniform random polygon of n vertices491

is almost diagrammatically prime (in the sense that the diagram becomes a492

reduced prime diagram after a few third Reidemeister moves) goes to one as n493

goes to infinity, and that the average number of crossings in such a diagram is494

on the order of O(n2). This strongly suggests that the 2- dimensional uniform495

random polygons are good candidates if one is interested in sampling large496

(prime) knots. Numerical studies on the 3D uniform random polygons show497

that these polygons for complicated knots even when they have relatively small498

number of vertices.499

Andrew Rechnitzer talked about the mean unknotting times of random500

knots and knot embeddings by crossing reversals, in a problem motivated by501

DNA entanglement. Using self-avoiding polygons (SAPs) and self-avoiding poly-502

gon trails (SAPTs) Rechnitzer and colleagues proved that the mean unknotting503

time grows exponentially in the length of the SAPT and at least exponentially504

with the length of the SAP. The proof uses Kesten’s pattern theorem, together505

with results for mean first-passage times in the two-parameter Ehrenfest urn506

model. They used the pivot algorithm to generate random SAPTs of up to507

3000 steps, calculated the corresponding unknotting times, and found that the508

mean unknotting time grows very slowly even at moderate lengths. These meth-509

ods are quite general—for example the lower bound on the mean unknotting510

time applies also to Gaussian random polygons. This work was accomplished511

in collaboration with Aleks Owcarek and Yao-ban Chan at the University of512

Melbourne, and Gord Slade at the University of British Columbia.513
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