COMPUTATIONS OF SHA USING IWASAWA THEORY

CHRISTIAN WUTHRICH

Let E/\mathbb{Q} be an elliptic curve. We wish to compute the *p*-primary part $\operatorname{III}(E/\mathbb{Q})(p)$ of the Shafarevich-Tate group of E. Assume that p is an odd prime and that E has semistable reduction at p. For simplicity, in this talk, assume that the mod p reduction is ordinary (or multiplicative).

1. p-ADIC L-FUNCTIONS

Choose a generator $\gamma = 1 + p \in 1 + p\mathbb{Z}_p$. Then there is a canonical *p*-adic *L*-function $\mathcal{L}_p(E,T)$, where $T = \gamma^{s-1} - 1$, satisfying interpolation properties such as $\mathcal{L}_p(E,0) =$ something $\cdot L(E,1)/\Omega_E^+$. It is computed by integrating against Mazur-Swinnerton-Dyer measure on \mathbb{Z}_p^{\times} .

Proposition 1.1. $\mathcal{L}_p(E,T) \in \mathbb{Z}_p[[T]]$ (well known if E[p] is irreducible, follows from Kato ...).

2. *p*-Adic BSD

Conjecture 2.1 (Mazur-Tate-Teitelbaum).

- The order of vanishing of $\mathcal{L}_p(E, T)$ at T = 0 is $r = \operatorname{rank} E(\mathbb{Q})$, except in the "exceptional case" where E has split multiplicative reduction, in which case it is r + 1.
- The leading term is

$$\mathcal{L}_p^*(0) = b_p \frac{\prod c_v \# \mathrm{III}(E/\mathbb{Q})}{(\# E(\mathbb{Q})_{\mathrm{tors}})^2} \cdot \frac{\mathrm{Reg}_p(E/\mathbb{Q})}{\log(\gamma)^r} =: \mathrm{bsd}_p$$

where

- The c_v are Tamagawa numbers,

 $-\operatorname{Reg}_p(E/\mathbb{Q}) \in \mathbb{Q}_p$ is the canonical *p*-adic regulator

$$b_p = \begin{cases} \left(1 - \frac{1}{\alpha}\right)^2 & \text{with } \alpha \text{ the unit eigenvalue of Frobenius} \\ \frac{h}{\log(\gamma)} = \frac{\log_p(q)}{\operatorname{ord}_p(q)\log(\gamma)}, & \text{if exceptional.} \end{cases}$$

3. Result from Iwasawa theory

Let X be the dual of the p^{∞} -Selmer group of E over the \mathbb{Z}_p -extension \mathbb{Q}_{∞} of \mathbb{Q} . Kato: X is Λ -torsion and finitely generated where $\Lambda := \mathbb{Z}_p[[\Lambda]] \simeq \mathbb{Z}_p[[T]]$. There is a characteristic series $f_X(T)$: There is a morphism $X \to \bigoplus_{i=1}^s \Lambda/f_i$ with finite kernel and cokernel; then $f_X(T) := \prod f_i(T)$.

The main conjecture: $f_X(T)$ (or $Tf_X(T)$ in the exceptional case) is in $\mathcal{L}_p(E,T) \cdot \Lambda^{\times}$.

Date: June 5, 2007.

Kato: If ρ_p : Gal $(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}_p)$ is surjective or if E[p] is reducible, then $f_X(T)$ (or $Tf_X(T)$ in the exceptional case) divides $\mathcal{L}_p(E,T)$.

Perrin-Riou/Schneider/Jones: The order of vanishing of $f_X(T)$ is $\geq r$ (or r+1 in the exceptional case), with equality if and only if $\operatorname{Reg}_p(E/\mathbb{Q}) \neq 0$ and $\operatorname{III}(E/\mathbb{Q})(p)$ is finite. If so, then $f_X^*(0) = \text{bsd}_p$ up to multiplication by an element of \mathbb{Z}_p^{\times} .

4. Algorithms

We can compute an upper bound on $\operatorname{ord}_{T=0} \mathcal{L}_p(E/\mathbb{Q}) \geq \operatorname{ord}_{T=0} f_X(T) \geq r$. Suppose that $\operatorname{ord}_{T=0} \mathcal{L}_p(E/\mathbb{Q}) = r$, and suppose that we know $E(\mathbb{Q})$; then we can compute $\operatorname{Reg}_p(E/\mathbb{Q})$ and $\operatorname{ord}_p \mathcal{L}_p^*(E,0) \geq \operatorname{ord}_p f_X^*(0) = \operatorname{ord}_p(\operatorname{bsd}_p)$, and get $\operatorname{ord}_p \operatorname{III}(E/\mathbb{Q})(p) \leq p$ -adic analytic order of III.

Example 4.1. Let *E* be a semistable curve of rank 0. Then $\# \operatorname{III}(E/\mathbb{Q})$ divides $2^{\operatorname{something}} \frac{L(E,1)}{\Omega}$. $\frac{(\#E(\mathbb{Q})_{\mathrm{tors}}))^2}{\prod c_v}.$