COMPUTATIONS OF SHA USING IWASAWA THEORY

CHRISTIAN WUTHRICH

Let E / \mathbb{Q} be an elliptic curve. We wish to compute the p-primary part $\amalg(E / \mathbb{Q})(p)$ of the Shafarevich-Tate group of E. Assume that p is an odd prime and that E has semistable reduction at p. For simplicity, in this talk, assume that the $\bmod p$ reduction is ordinary (or multiplicative).

1. p-ADIC L-FUNCTIONS

Choose a generator $\gamma=1+p \in 1+p \mathbb{Z}_{p}$. Then there is a canonical p-adic L-function $\mathcal{L}_{p}(E, T)$, where $T=\gamma^{s-1}-1$, satisfying interpolation properties such as $\mathcal{L}_{p}(E, 0)=$ something $\cdot L(E, 1) / \Omega_{E}^{+}$. It is computed by integrating against Mazur-Swinnerton-Dyer measure on \mathbb{Z}_{p}^{\times}.

Proposition 1.1. $\mathcal{L}_{p}(E, T) \in \mathbb{Z}_{p}[[T]]$ (well known if $E[p]$ is irreducible, follows from Kato ...).

2. p-ADIC BSD

Conjecture 2.1 (Mazur-Tate-Teitelbaum).

- The order of vanishing of $\mathcal{L}_{p}(E, T)$ at $T=0$ is $r=\operatorname{rank} E(\mathbb{Q})$, except in the "exceptional case" where E has split multiplicative reduction, in which case it is $r+1$.
- The leading term is

$$
\mathcal{L}_{p}^{*}(0)=b_{p} \frac{\prod c_{v} \# \amalg(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}} \cdot \frac{\operatorname{Reg}_{p}(E / \mathbb{Q})}{\log (\gamma)^{r}}=: \operatorname{bsd}_{p}
$$

where

- The c_{v} are Tamagawa numbers,
- $\operatorname{Reg}_{p}(E / \mathbb{Q}) \in \mathbb{Q}_{p}$ is the canonical p-adic regulator

$$
b_{p}= \begin{cases}\left(1-\frac{1}{\alpha}\right)^{2} & \text { with } \alpha \text { the unit eigenvalue of Frobenius } \\ \frac{h}{\log (\gamma)}=\frac{\log _{p}(q)}{\operatorname{ord}_{p}(q) \log (\gamma)}, & \text { if exceptional. }\end{cases}
$$

3. Result from Iwasawa theory

Let X be the dual of the p^{∞}-Selmer group of E over the \mathbb{Z}_{p}-extension \mathbb{Q}_{∞} of \mathbb{Q}.
Kato: X is Λ-torsion and finitely generated where $\Lambda:=\mathbb{Z}_{p}[[\Lambda]] \simeq \mathbb{Z}_{p}[[T]]$.
There is a characteristic series $f_{X}(T)$: There is a morphism $X \rightarrow \bigoplus_{i=1}^{s} \Lambda / f_{i}$ with finite kernel and cokernel; then $f_{X}(T):=\prod f_{i}(T)$.

The main conjecture: $f_{X}(T)$ (or $T f_{X}(T)$ in the exceptional case) is in $\mathcal{L}_{p}(E, T) \cdot \Lambda^{\times}$.

Kato: If $\rho_{p}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$ is surjective or if $E[p]$ is reducible, then $f_{X}(T)$ (or $T f_{X}(T)$ in the exceptional case) divides $\mathcal{L}_{p}(E, T)$.

Perrin-Riou/Schneider/Jones: The order of vanishing of $f_{X}(T)$ is $\geq r$ (or $r+1$ in the exceptional case), with equality if and only if $\operatorname{Reg}_{p}(E / \mathbb{Q}) \neq 0$ and $\amalg(E / \mathbb{Q})(p)$ is finite. If so, then $f_{X}^{*}(0)=\operatorname{bsd}_{p}$ up to multiplication by an element of \mathbb{Z}_{p}^{\times}.

4. Algorithms

We can compute an upper bound on $\operatorname{ord}_{T=0} \mathcal{L}_{p}(E / \mathbb{Q}) \geq \operatorname{ord}_{T=0} f_{X}(T) \geq r$. Suppose that $\operatorname{ord}_{T=0} \mathcal{L}_{p}(E / \mathbb{Q})=r$, and suppose that we know $E(\mathbb{Q})$; then we can compute $\operatorname{Reg}_{p}(E / \mathbb{Q})$ and $\operatorname{ord}_{p} \mathcal{L}_{p}^{*}(E, 0) \geq \operatorname{ord}_{p} f_{X}^{*}(0)=\operatorname{ord}_{p}\left(\operatorname{bsd}_{p}\right)$, and get $\operatorname{ord}_{p} \amalg(E / \mathbb{Q})(p) \leq p$-adic analytic order of Ш.
Example 4.1. Let E be a semistable curve of $\operatorname{rank} 0$. Then $\# Ш(E / \mathbb{Q})$ divides $2^{\text {something } \frac{L(E, 1)}{\Omega}}$. $\frac{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}}{\Pi c_{v}}$.

