MULTIPLICITIES OF GALOIS REPRESENTATIONS OF WEIGHT 1

GABOR WIESE

1. Galois representations of newforms and multiplicities

Let N be a positive integer. Let p > 2 be a prime with $p \nmid N$. Let $f \in S_k(\Gamma_1(N))$ be a newform of level N, with associated character $\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$. Let $\overline{\mathbb{Z}}$ be the integral closure of \mathbb{Z} in an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} . Choose a reduction map $\overline{\mathbb{Z}} \to \overline{\mathbb{F}}_p$. Suppose $3 \leq k \leq p$. Let $\mathbb{T}_{\mathbb{Z}}$ be the subring of End $S_2(\Gamma_1(Np))$ generated by T_n for all n. Let $\mathbb{T}'_{\mathbb{Z}}$ be the subring of End $S_2(\Gamma_1(Np))$ generated by T_n for all n not divisible by p. Let \mathfrak{m} be the kernel of the ring homomorphism $\mathbb{T}_{\mathbb{Z}} \to \overline{\mathbb{F}}_p$ sending T_n to \bar{a}_n . Let \mathfrak{m}' be the kernel of the ring homomorphism $\mathbb{T}'_{\mathbb{Z}} \to \overline{\mathbb{F}}_p$ sending T_n to \bar{a}_n for all n not divisible by p. Let $\mathbb{F} := \mathbb{T}_{\mathbb{Z}}/\mathfrak{m}$. We get a representation

$$\rho_f \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F})$$

that is semisimple, odd, unramified outside Np. For $\ell \nmid Np$, the characteristic polynomial of $\rho_f(\operatorname{Frob}_\ell)$ is $X^2 - \bar{a}_\ell X + \ell^{k-1}\chi(\ell)$. Assume that ρ_f is irreducible.

Fact: There exists $f_2 \in S_2(\Gamma_1(Np))$ such that $f_2 \equiv f \pmod{p}$.

Let $J_1(Np)_{\mathbb{Q}}$ be the Jacobian of $X_1(Np)_{\mathbb{Q}}$. The group $J := J_1(Np)_{\mathbb{Q}}(\overline{\mathbb{Q}})$ has an action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ and T_n .

Theorem 1.1 (Boston-Lenstra-Ribet).

(a) $J[\mathfrak{m}] \simeq \rho_f^r$ for some $r \ge 1$. Call r the multiplicity of ρ_f on $J[\mathfrak{m}]$.

(b) $J[\mathfrak{m}'] \simeq \rho_f^{r'}$ for some $r' \ge r \ge 1$.

Theorem 1.2 (Mazur, Ribet, Gross, Wiles, Buzzard, ...).

(a) If ρ_f is ramified at p, then r = 1.

(b) If ρ_f is unramified at p and $\rho(\text{Frob}_p)$ is not scalar, then r = 1.

Remark 1.3. Kilford found an example with r = 2.

Theorem 1.4.

(a) If ρ_f is unramified at p, and $\rho(\text{Frob}_p)$ is scalar, then r > 1.

(b) (This is a reformulation of (a).) We have that ρ_f is ramified at p if and only if r' = 1.

2. Relation between multiplicity and Gorenstein defect

Let $\overline{\mathbb{T}} := \mathbb{T}_{\mathbb{Z}} \otimes \mathbb{F}_p$. Let $\overline{\mathfrak{m}}$ be the kernel of $\overline{\mathbb{T}} \to \overline{\mathbb{F}}_p$. The first key theorem, 95% due to Buzzard is

Theorem 2.1. Suppose that $T_p \notin \overline{\mathfrak{m}}$ (ordinary). Then

$$0 \to \overline{\mathbb{T}}_{\overline{\mathfrak{m}}} \to J[p]_{\overline{\mathfrak{m}}} \to \overline{\mathbb{T}}_{\overline{\mathfrak{m}}}^{\wedge} \to 0$$

is an exact sequence of $\overline{\mathbb{T}}_{\overline{\mathfrak{m}}}$ -modules.

Date: June 6, 2007.

We get

$$0 \to \overline{\mathbb{T}}_{\overline{\mathfrak{m}}}[\overline{\mathfrak{m}}] \to J[p]_{\overline{\mathfrak{m}}}[\overline{\mathfrak{m}}] \to \overline{\mathbb{T}}_{\overline{\mathfrak{m}}}^{\vee}[\overline{\mathfrak{m}}] \to 0.$$

The last term is $(\mathbb{T}_{\overline{\mathfrak{m}}}/\overline{\mathfrak{m}})^{\vee}$, which is a 1-dimensional \mathbb{F} -vector space. The first two terms are of dimensions 2r - 1 and 2r, respectively. The middle term is isomorphic to ρ_f^{\vee} .

Proposition 2.2.

- (a) $r = \frac{1}{2} (\dim \mathbb{T}_{\overline{\mathfrak{m}}}[\overline{\mathfrak{m}}] 1) + 1$. The term in parentheses is the Gorenstein defect and called d.
- (b) The following are equivalent:

(i) r = 1. (ii) d = 0.

ii)
$$d = 0$$

(iii) $\overline{\mathbb{T}}_{\overline{\mathfrak{m}}}$ is a Gorenstein ring.

3. Weight 1 and proofs

The second key theorem is

Theorem 3.1 (Edixhoven, Gross, Coleman-Voloch). If ρ_f is unramified at p, then there exists a Katz modular form $g \in S_1(\Gamma(N), \mathbb{F}_p)_{\text{Katz}}$ such that $\rho_g \simeq \rho_f$.

There is a $\overline{\mathbb{T}}'$ -equivariant injection

$$S_1(\Gamma(N), \mathbb{F}_p)^2_{\text{Katz}} \hookrightarrow S_p(\Gamma_1(N), \mathbb{F}_p)$$

sending $(g = \sum b_n q^n, h = \sum c_n q^n)$ to $Ag + Fh = \sum b_n q^n + \sum c_n q^{np}$, where A is the Hasse invariant, and F is the Frobenius. Then $f \in \langle Ag, Fg \rangle \simeq S_p(\Gamma_1(N), \mathbb{F}_p)[\overline{\mathfrak{m}}']$. We should view f as an oldform, since it is in the sum of images of degeneracy maps.

The third key theorem is

Theorem 3.2 (Gross). Let ρ_f be of weight 1. The image of $\overline{\mathbb{T}}_{\overline{\mathfrak{m}}}[\overline{\mathfrak{m}}'] \hookrightarrow J[p]_{\overline{\mathfrak{m}}}[\overline{\mathfrak{m}}']$ is unramified at p, and on it $\rho_f(\operatorname{Frob}_p) = T_p^{-1}$.

Proof of (a). Given that ρ_f is unramified at p, and $\rho_f(\operatorname{Frob}_p)$ scalar, we want to show that $\overline{\mathbb{T}}_{\overline{\mathfrak{m}}}$ is not Gorenstein. Assume that $\overline{\mathbb{T}}_{\overline{\mathfrak{m}}}$ is Gorenstein. Then $\overline{\mathbb{T}}_{\overline{\mathfrak{m}}}^{\vee} \simeq \overline{\mathbb{T}}_{\overline{\mathfrak{m}}}$ and $\overline{\mathbb{T}}_{\overline{\mathfrak{m}}'} \simeq \overline{\mathbb{T}}_{\overline{\mathfrak{m}}'}^{\vee} \simeq$ $S_p(\Gamma_1(N), \mathbb{F}_p)_{\overline{\mathfrak{m}}}$. So $\overline{\mathbb{T}}_{\overline{\mathfrak{m}}}^{\vee}[\overline{\mathfrak{m}}] \simeq \overline{\mathbb{T}}_{\overline{\mathfrak{m}}}[\overline{\mathfrak{m}}]$ and $\overline{\mathbb{T}}_{\overline{\mathfrak{m}}'}[\overline{\mathfrak{m}}'] \simeq \overline{\mathbb{T}}_{\overline{\mathfrak{m}}'}^{\vee}[\overline{\mathfrak{m}}'] \simeq S_p(\Gamma_1(N), \mathbb{F}_p)_{\overline{\mathfrak{m}}}[\overline{\mathfrak{m}}']$. Because T_p is scalar, the $\overline{\mathfrak{m}}$ -torsion equals the $\overline{\mathfrak{m}}'$ -torsion, so all the vector spaces in the previous sentence are isomorphic. But the first is 1-dimensional, and the last is 2-dimensional. \square

Proof of (b). We want to show that r' = 1 if and only if ρ_f is ramified at p.

Suppose that ρ_f is ramified at p. Then r = 1 by the theorem. Now $\overline{\mathbb{T}}_{\overline{\mathfrak{m}}'}/\overline{\mathbb{T}}'_{\overline{\mathfrak{m}}'}$ is a faithful module for $\mathbb{T}(S_1(\Gamma(N), \mathbb{F}_p)_{\overline{\mathfrak{m}}'})$, so it is zero and $\overline{\mathfrak{m}}' = \overline{\mathfrak{m}}$ so r = r'. Hence r' = 1.

Suppose that r' = 1. Then r = 1 too. We have that $\overline{\mathbb{T}}_{\overline{\mathfrak{m}}}$ is Gorenstein, and $\rho_f(\operatorname{Frob}_p)$ is not scalar. Assume that ρ_f is unramified at p. By the first key theorem, $\rho(\text{Frob}_p)$ has two different eigenvalues. We get f_1 and f_2 , corresponding to $\overline{\mathfrak{m}}_1$ and $\overline{\mathfrak{m}}_2$. We have

$$J[\overline{\mathfrak{m}}_1] \oplus J[\overline{\mathfrak{m}}_2] = J[\overline{\mathfrak{m}}],$$

so r' = 2, a contradiction.

Assume $\rho(\operatorname{Frob}_p) = \begin{pmatrix} a & x \\ 0 & a \end{pmatrix}$ with $x \neq 0$. We have $0 \to \mathbb{T}_{\mathfrak{m}}[\overline{\mathfrak{m}}] \to J[\overline{\mathfrak{m}}] \to S_p[\overline{\mathfrak{m}}] \to 0$

in which the dimensions are 1, 2, 1. Now

$$0 \to \mathbb{T}_{\mathfrak{m}}[\overline{\mathfrak{m}}'] \to J[\overline{\mathfrak{m}}'] \to S_p[\overline{\mathfrak{m}}'] \to 0$$

where the dimensions are 2, 4, 2.