MULTIPLICITIES OF GALOIS REPRESENTATIONS OF WEIGHT 1

GABOR WIESE

1. GALOIS REPRESENTATIONS OF NEWFORMS AND MULTIPLICITIES

Let N be a positive integer. Let $p>2$ be a prime with $p \nmid N$. Let $f \in S_{k}\left(\Gamma_{1}(N)\right)$ be a newform of level N, with associated character $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$. Let $\overline{\mathbb{Z}}$ be the integral closure of \mathbb{Z} in an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q}. Choose a reduction map $\overline{\mathbb{Z}} \rightarrow \overline{\mathbb{F}}_{p}$. Suppose $3 \leq k \leq p$. Let $\mathbb{T}_{\mathbb{Z}}$ be the subring of End $S_{2}\left(\Gamma_{1}(N p)\right)$ generated by T_{n} for all n. Let $\mathbb{T}_{\mathbb{Z}}^{\prime}$ be the subring of End $S_{2}\left(\Gamma_{1}(N p)\right)$ generated by T_{n} for all n not divisible by p. Let \mathfrak{m} be the kernel of the ring homomorphism $\mathbb{T}_{\mathbb{Z}} \rightarrow \overline{\mathbb{F}}_{p}$ sending T_{n} to \bar{a}_{n}. Let \mathfrak{m}^{\prime} be the kernel of the ring homomorphism $\mathbb{T}_{\mathbb{Z}}^{\prime} \rightarrow \overline{\mathbb{F}}_{p}$ sending T_{n} to \bar{a}_{n} for all n not divisible by p. Let $\mathbb{F}:=\mathbb{T}_{\mathbb{Z}} / \mathfrak{m}$. We get a representation

$$
\rho_{f}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{F})
$$

that is semisimple, odd, unramified outside $N p$. For $\ell \nmid N p$, the characteristic polynomial of $\rho_{f}\left(\mathrm{Frob}_{\ell}\right)$ is $X^{2}-\bar{a}_{\ell} X+\ell^{k-1} \chi(\ell)$. Assume that ρ_{f} is irreducible.

Fact: There exists $f_{2} \in S_{2}\left(\Gamma_{1}(N p)\right)$ such that $f_{2} \equiv f(\bmod p)$.
Let $J_{1}(N p)_{\mathbb{Q}}$ be the Jacobian of $X_{1}(N p)_{\mathbb{Q}}$. The group $J:=J_{1}(N p)_{\mathbb{Q}}(\overline{\mathbb{Q}})$ has an action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ and T_{n}.
Theorem 1.1 (Boston-Lenstra-Ribet).
(a) $J[\mathfrak{m}] \simeq \rho_{f}^{r}$ for some $r \geq 1$. Call r the multiplicity of ρ_{f} on $J[\mathfrak{m}]$.
(b) $J\left[\mathfrak{m}^{\prime}\right] \simeq \rho_{f}^{r^{\prime}}$ for some $r^{\prime} \geq r \geq 1$.

Theorem 1.2 (Mazur, Ribet, Gross, Wiles, Buzzard, ...).
(a) If ρ_{f} is ramified at p, then $r=1$.
(b) If ρ_{f} is unramified at p and $\rho\left(\mathrm{Frob}_{p}\right)$ is not scalar, then $r=1$.

Remark 1.3. Kilford found an example with $r=2$.
Theorem 1.4.
(a) If ρ_{f} is unramified at p, and $\rho\left(\operatorname{Frob}_{p}\right)$ is scalar, then $r>1$.
(b) (This is a reformulation of (a).) We have that ρ_{f} is ramified at p if and only if $r^{\prime}=1$.

2. Relation between multiplicity and Gorenstein defect

Let $\overline{\mathbb{T}}:=\mathbb{T}_{\mathbb{Z}} \otimes \mathbb{F}_{p}$. Let $\overline{\mathfrak{m}}$ be the kernel of $\overline{\mathbb{T}} \rightarrow \overline{\mathbb{F}}_{p}$.
The first key theorem, 95% due to Buzzard is
Theorem 2.1. Suppose that $T_{p} \notin \overline{\mathfrak{m}}$ (ordinary). Then

$$
0 \rightarrow \overline{\mathbb{T}}_{\overline{\mathrm{m}}} \rightarrow J[p]_{\overline{\mathrm{m}}} \rightarrow \overline{\mathbb{T}}_{\overline{\mathrm{m}}}^{\wedge} \rightarrow 0
$$

is an exact sequence of $\overline{\mathbb{T}}_{\bar{m}}$-modules.
Date: June 6, 2007.

We get

$$
0 \rightarrow \overline{\mathbb{T}}_{\overline{\mathfrak{m}}}[\overline{\mathfrak{m}}] \rightarrow J[p]_{\overline{\mathfrak{m}}}[\overline{\mathfrak{m}}] \rightarrow \overline{\mathbb{T}}_{\overline{\mathfrak{m}}}^{\vee}[\overline{\mathfrak{m}}] \rightarrow 0
$$

The last term is $\left(\mathbb{T}_{\bar{m}} / \overline{\mathfrak{m}}\right)^{\vee}$, which is a 1 -dimensional \mathbb{F}-vector space. The first two terms are of dimensions $2 r-1$ and $2 r$, respectively. The middle term is isomorphic to ρ_{f}^{\vee}.
Proposition 2.2.
(a) $r=\frac{1}{2}\left(\operatorname{dim} \mathbb{T}_{\overline{\mathfrak{m}}}[\overline{\mathfrak{m}}]-1\right)+1$. The term in parentheses is the Gorenstein defect and called d.
(b) The following are equivalent:
(i) $r=1$.
(ii) $d=0$.
(iii) $\overline{\mathbb{T}}_{\bar{m}}$ is a Gorenstein ring.

3. Weight 1 and proofs

The second key theorem is
Theorem 3.1 (Edixhoven, Gross, Coleman-Voloch). If ρ_{f} is unramified at p, then there exists a Katz modular form $g \in S_{1}\left(\Gamma(N), \mathbb{F}_{p}\right)_{\text {Katz }}$ such that $\rho_{g} \simeq \rho_{f}$.

There is a $\overline{\mathbb{T}}^{\prime}$-equivariant injection

$$
S_{1}\left(\Gamma(N), \mathbb{F}_{p}\right)_{\mathrm{Katz}}^{2} \hookrightarrow S_{p}\left(\Gamma_{1}(N), \mathbb{F}_{p}\right)
$$

sending $\left(g=\sum b_{n} q^{n}, h=\sum c_{n} q^{n}\right)$ to $A g+F h=\sum b_{n} q^{n}+\sum c_{n} q^{n p}$, where A is the Hasse invariant, and F is the Frobenius. Then $f \in\langle A g, F g\rangle \simeq S_{p}\left(\Gamma_{1}(N), \mathbb{F}_{p}\right)\left[\overline{\mathfrak{m}}^{\prime}\right]$. We should view f as an oldform, since it is in the sum of images of degeneracy maps.

The third key theorem is
Theorem 3.2 (Gross). Let ρ_{f} be of weight 1 . The image of $\overline{\mathbb{T}}_{\overline{\mathfrak{m}}}\left[\overline{\mathfrak{m}}^{\prime}\right] \hookrightarrow J[p]_{\overline{\mathfrak{m}}}\left[\overline{\mathfrak{m}}^{\prime}\right]$ is unramified at p, and on it $\rho_{f}\left(\mathrm{Frob}_{p}\right)=T_{p}^{-1}$.

Proof of (a). Given that ρ_{f} is unramified at p, and $\rho_{f}\left(\right.$ Frob $\left._{p}\right)$ scalar, we want to show that $\overline{\mathbb{T}}_{\overline{\mathrm{m}}}$ is not Gorenstein. Assume that $\overline{\mathbb{T}}_{\overline{\mathrm{m}}}$ is Gorenstein. Then $\overline{\mathbb{T}}_{\overline{\mathrm{m}}}^{\vee} \simeq \overline{\mathbb{T}}_{\overline{\mathrm{m}}}$ and $\overline{\mathbb{T}}_{\bar{m}^{\prime}} \simeq \overline{\mathbb{T}}_{\bar{m}^{\prime}}^{\vee} \simeq$ $S_{p}\left(\Gamma_{1}(N), \mathbb{F}_{p}\right)_{\overline{\mathfrak{m}}}$. So $\overline{\mathbb{T}}_{\overline{\mathfrak{m}}}^{\vee}[\overline{\overline{\mathfrak{m}}}] \simeq \overline{\mathbb{T}}_{\overline{\mathfrak{m}}}[\overline{\mathfrak{m}}]$ and $\overline{\mathbb{T}}_{\overline{\mathfrak{m}}^{\prime}}\left[\overline{\mathfrak{m}}^{\prime}\right] \simeq \overline{\mathbb{T}}_{\overline{\mathfrak{m}}^{\prime}}^{\vee}\left[\overline{\mathfrak{m}}^{\prime}\right] \simeq S_{p}\left(\Gamma_{1}(N), \mathbb{F}_{p}\right)_{\overline{\mathfrak{m}}}\left[\overline{\mathfrak{m}}^{\prime}\right]$. Because T_{p} is scalar, the $\overline{\mathfrak{m}}$-torsion equals the $\overline{\mathfrak{m}}^{\prime}$-torsion, so all the vector spaces in the previous sentence are isomorphic. But the first is 1-dimensional, and the last is 2-dimensional.

Proof of (b). We want to show that $r^{\prime}=1$ if and only if ρ_{f} is ramified at p.
Suppose that ρ_{f} is ramified at p. Then $r=1$ by the theorem. Now $\overline{\mathbb{T}}_{\overline{\mathrm{m}}^{\prime}} / \overline{\mathbb{T}}_{\overline{\mathrm{m}}^{\prime}}^{\prime}$ is a faithful module for $\mathbb{T}\left(S_{1}\left(\Gamma(N), \mathbb{F}_{p}\right)_{\overline{\mathfrak{m}}^{\prime}}\right)$, so it is zero and $\overline{\mathfrak{m}}^{\prime}=\overline{\mathfrak{m}}$ so $r=r^{\prime}$. Hence $r^{\prime}=1$.

Suppose that $r^{\prime}=1$. Then $r=1$ too. We have that $\overline{\mathbb{T}}_{\overline{\mathrm{m}}}$ is Gorenstein, and $\rho_{f}\left(\mathrm{Frob}_{p}\right)$ is not scalar. Assume that ρ_{f} is unramified at p. By the first key theorem, $\rho\left(\right.$ Frob $\left._{p}\right)$ has two different eigenvalues. We get f_{1} and f_{2}, corresponding to $\overline{\mathfrak{m}}_{1}$ and $\overline{\mathfrak{m}}_{2}$. We have

$$
J\left[\overline{\mathfrak{m}}_{1}\right] \oplus J\left[\overline{\mathfrak{m}}_{2}\right]=J[\overline{\mathfrak{m}}],
$$

so $r^{\prime}=2$, a contradiction.

Assume $\rho\left(\operatorname{Frob}_{p}\right)=\left(\begin{array}{cc}a & x \\ 0 & a\end{array}\right)$ with $x \neq 0$. We have

$$
0 \rightarrow \mathbb{T}_{\mathfrak{m}}[\overline{\mathfrak{m}}] \rightarrow J[\overline{\mathfrak{m}}] \rightarrow S_{p}[\overline{\mathfrak{m}}] \rightarrow 0
$$

in which the dimensions are $1,2,1$. Now

$$
0 \rightarrow \mathbb{T}_{\mathfrak{m}}\left[\overline{\mathfrak{m}}^{\prime}\right] \rightarrow J\left[\overline{\mathfrak{m}}^{\prime}\right] \rightarrow S_{p}\left[\overline{\mathfrak{m}}^{\prime}\right] \rightarrow 0
$$

where the dimensions are $2,4,2$.

