MODULAR DEGREES AND CONGRUENCES AMONG MODULAR FORMS

KEN RIBET

Suppose that E/\mathbb{Q} is an elliptic curve. Then there is a non-constant map $\pi: X_0(N) \to E$ sending ∞ to 0. It induces maps $E \to J_0(N) \to E$ whose composition is multiplication by deg π . The map $E \to J_0(N)$ need not be injective, and dually $J_0(N) \to E$ need not have connected kernel. Factor $E \to J_0(N)$ as $E \to E' \to J_0(N)$ where $E \to E'$ is an isogeny and $E' \to J_0(N)$ is injective. By replacing E by E', we may assume that $\pi^*: E \to J_0(N)$ is injective and that $\pi_*: J_0(N) \to E$ has connected kernel: this is called the *optimal* situation. Let $B = \ker \pi_*$, so B is an abelian subvariety of $J_0(N)$. Let $A = \pi_*E \subseteq J_0(N)$. We might write $A_f = A$; sometimes instead the quotient E is called A_f . We have a map $X_0(N) \to J_0(N)$ sending ∞ to 0.

Perhaps the initial object should have been $f = \sum a_n q^n$, and from this arose an optimal curve E. Zagier gave an algorithm to compute deg π for prime conductor. Cremona generalized it to arbitrary conductor. Agashe-Stein and Stein-Watkins contain data on deg π . Watkins:

- odd modular degrees are rare, and in particular should imply that $E(\mathbb{Q})$ is finite.
- $2^{\operatorname{rank} E(\mathbb{Q})}$ divides deg π .

Dummigan: "2^r | deg π " is explained by a 2-adic $R \xrightarrow{\sim} \mathbb{T}$ conjecture.

Calegari-Emerton: Investigate optimal curves with odd modular degree. We assume this from now on.

Example 0.1. If deg π is odd, then $f|_{w_N} = -f$, where w_N is the principal Atkin-Lehner involution. In particular, the sign of the functional equation for L(E, s) is +1; in other words the analytic rank of E is even.

If deg π is odd and w is an Atkin-Lehner involution such that $f|_w = -f$, then $X_0(N) \to X_0(N)/w$ is unramified.

Example 0.2. Suppose there exists f with deg π odd, and N = pq with p = 43 and q = 59. Suppose $f|_{w_p} = -f$ and $f|_{w_q} = f$, or $f|_{w_q} = -f$ and $f|_{w_p} = f$. Fact: $f|_{w_{59}} = +f$, $f|_{w_{43}} = -f$. Since $\left(\frac{-59}{43}\right) = -1$, there are no fixed points. We have $p \equiv q \equiv 11 \pmod{16}$.

In $J_0(N)$ we have A and $B = A^{\perp}$. Then $A \cap B = \pi^*(E[\deg \pi])$. By assumption, $A[2] \cap B = \{0\}$.

Let $X = X_0(N)$ and $X_+ = X_0(N)/w$. Suppose that $X \to X_+$ is ramified. Let J_+ be the image of $J(X_+) \to J(X)$. Let J_- be the kernel of $J(X) \to J(X_+)$. Then $J_+ \cap J_- = J[2]$. We have $A \subseteq J_+$ and $J_- \subseteq B$. Then $A[2] \subseteq J_+[2] \subseteq J_-[2] \subseteq B$, a contradiction.

If $X \to X_+$ is unramified and deg π is odd, and $f|_w = +f$, then E[2] is a reducible Galois module.

Date: June 7, 2007.

Calegari-Emerton: If no w_d acts as +1 on f, then N must be divisible by at most two odd primes: i.e., $N = 2^a p^b q^c$ for distinct odd primes p and q and $a, b, c \in \mathbb{Z}_{\geq 0}$.

Calegari-Emerton focus on the case where N is a power of a prime. If N is a power of 2, there are only finitely many elliptic curves, which we inspect individually. So assume $N = p^b$ where p is odd and $b \ge 1$.

Claim: If b > 1, then E has CM by $\mathbb{Q}(\sqrt{-p})$, which again leads to only finitely many elliptic curves.

If deg π is odd, then the congruence modulus of f is odd. It is not true that $f \equiv g \pmod{2}$, with g an integral form in $S_2(\Gamma_0(N), \mathbb{Z})$ with $f \perp g$.

Given f and χ , we may form $f \otimes \chi := \sum_{n \ge 1} \chi(n) a_n q^n$. This has character χ^2 , and level bounded in terms of cond χ and the level of f.

Suppose that χ is the quadratic character of conductor p. Then $f \otimes \chi \in S_2(\Gamma_0(N))$. If $N = p^b$ for $b \ge 2$, then $f \equiv f \otimes \chi \pmod{2}$ forces $f = f \otimes \chi$, i.e., that f has CM.

The thesis of S. Yazdani considers the case where N is not a prime power.

Remark 0.3. Suppose that $N = p^b q^c$ where p, q are distinct primes and $b, c \ge 1$. If b > 1, then E has CM by $\mathbb{Q}(\sqrt{-p})$; then $c \ge 2$, so E has CM by $\mathbb{Q}(\sqrt{-q})$, which is a contradiction. Thus b = c = 1.

Theorem 0.4 (Yazdani). If N = pq and $\deg \pi$ is odd, then either $pq \leq 21$ or $p \equiv q \equiv 3 \pmod{8}$.

Ideas of proof. Let $C \subseteq J_0(N)$ be the cuspidal subgroup. The cusps, in Ogg's notation, are P_1, P_p, P_q, P_{pq} . Ogg computed the order of the class of $P_1 - P_p + P_q - P_{pq}$. Heuristic assertion: C has a large 2-primary component.

The subgroup E[2] of $J := J_0(N)$ is reducible and Eisenstein. We also have $\ker(C \to E) \subseteq B := \ker(\pi_* \colon J \to E)$ in J, and it is Eisenstein and rational, while E has few rational torsion points.

Let $\mathbb{T} = \mathbb{Z}[\dots T_n \dots] \subseteq \text{End } J$. We have $\mathbb{T} \twoheadrightarrow \mathbb{Z} \subseteq \text{End } A$ sending T_n to a_n . Composition with $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ gives a homomorphism $\phi \colon \mathbb{T} \to \mathbb{Z}/2\mathbb{Z}$ whose kernel is a maximal ideal \mathfrak{m} of \mathbb{T} .

Unless p and q satisfy restrictive congruences, $B[\mathfrak{m}] \neq 0$. This amounts to a mod 2 congruence between f and a perpendicular form, which is impossible.