MODULAR DEGREES AND CONGRUENCES AMONG MODULAR FORMS

KEN RIBET

Suppose that E / \mathbb{Q} is an elliptic curve. Then there is a non-constant map $\pi: X_{0}(N) \rightarrow E$ sending ∞ to 0 . It induces maps $E \rightarrow J_{0}(N) \rightarrow E$ whose composition is multiplication by $\operatorname{deg} \pi$. The map $E \rightarrow J_{0}(N)$ need not be injective, and dually $J_{0}(N) \rightarrow E$ need not have connected kernel. Factor $E \rightarrow J_{0}(N)$ as $E \rightarrow E^{\prime} \rightarrow J_{0}(N)$ where $E \rightarrow E^{\prime}$ is an isogeny and $E^{\prime} \rightarrow J_{0}(N)$ is injective. By replacing E by E^{\prime}, we may assume that $\pi^{*}: E \rightarrow J_{0}(N)$ is injective and that $\pi_{*}: J_{0}(N) \rightarrow E$ has connected kernel: this is called the optimal situation. Let $B=\operatorname{ker} \pi_{*}$, so B is an abelian subvariety of $J_{0}(N)$. Let $A=\pi_{*} E \subseteq J_{0}(N)$. We might write $A_{f}=A$; sometimes instead the quotient E is called A_{f}. We have a map $X_{0}(N) \rightarrow J_{0}(N)$ sending ∞ to 0 .

Perhaps the initial object should have been $f=\sum a_{n} q^{n}$, and from this arose an optimal curve E. Zagier gave an algorithm to compute $\operatorname{deg} \pi$ for prime conductor. Cremona generalized it to arbitrary conductor. Agashe-Stein and Stein-Watkins contain data on deg π.

Watkins:

- odd modular degrees are rare, and in particular should imply that $E(\mathbb{Q})$ is finite.
- $2^{\text {rank } E(\mathbb{Q})}$ divides $\operatorname{deg} \pi$.

Dummigan:" $2^{r} \mid \operatorname{deg} \pi$ " is explained by a 2 -adic $R \xrightarrow{\sim} \mathbb{T}$ conjecture.
Calegari-Emerton: Investigate optimal curves with odd modular degree. We assume this from now on.

Example 0.1. If $\operatorname{deg} \pi$ is odd, then $\left.f\right|_{w_{N}}=-f$, where w_{N} is the principal Atkin-Lehner involution. In particular, the sign of the functional equation for $L(E, s)$ is +1 ; in other words the analytic rank of E is even.

If $\operatorname{deg} \pi$ is odd and w is an Atkin-Lehner involution such that $\left.f\right|_{w}=-f$, then $X_{0}(N) \rightarrow$ $X_{0}(N) / w$ is unramified.

Example 0.2. Suppose there exists f with $\operatorname{deg} \pi$ odd, and $N=p q$ with $p=43$ and $q=59$. Suppose $\left.f\right|_{w_{p}}=-f$ and $\left.f\right|_{w_{q}}=f$, or $\left.f\right|_{w_{q}}=-f$ and $\left.f\right|_{w_{p}}=f$. Fact: $\left.f\right|_{w_{5} 9}=+f$, $\left.f\right|_{w_{43}}=-f$. Since $\left(\frac{-59}{43}\right)=-1$, there are no fixed points. We have $p \equiv q \equiv 11(\bmod 16)$.

In $J_{0}(N)$ we have A and $B=A^{\perp}$. Then $A \cap B=\pi^{*}(E[\operatorname{deg} \pi])$. By assumption, $A[2] \cap B=$ $\{0\}$.

Let $X=X_{0}(N)$ and $X_{+}=X_{0}(N) / w$. Suppose that $X \rightarrow X_{+}$is ramified. Let J_{+}be the image of $J\left(X_{+}\right) \rightarrow J(X)$. Let J_{-}be the kernel of $J(X) \rightarrow J\left(X_{+}\right)$. Then $J_{+} \cap J_{-}=J[2]$. We have $A \subseteq J_{+}$and $J_{-} \subseteq B$. Then $A[2] \subseteq J_{+}[2] \subseteq J_{-}[2] \subseteq B$, a contradiction.

If $X \rightarrow X_{+}$is unramified and $\operatorname{deg} \pi$ is odd, and $\left.f\right|_{w}=+f$, then $E[2]$ is a reducible Galois module.

Date: June 7, 2007.

Calegari-Emerton: If no w_{d} acts as +1 on f, then N must be divisible by at most two odd primes: i.e., $N=2^{a} p^{b} q^{c}$ for distinct odd primes p and q and $a, b, c \in \mathbb{Z}_{\geq 0}$.

Calegari-Emerton focus on the case where N is a power of a prime. If N is a power of 2 , there are only finitely many elliptic curves, which we inspect individually. So assume $N=p^{b}$ where p is odd and $b \geq 1$.

Claim: If $b>1$, then E has CM by $\mathbb{Q}(\sqrt{-p})$, which again leads to only finitely many elliptic curves.

If $\operatorname{deg} \pi$ is odd, then the congruence modulus of f is odd. It is not true that $f \equiv g$ $(\bmod 2)$, with g an integral form in $S_{2}\left(\Gamma_{0}(N), \mathbb{Z}\right)$ with $f \perp g$.

Given f and χ, we may form $f \otimes \chi:=\sum_{n \geq 1} \chi(n) a_{n} q^{n}$. This has character χ^{2}, and level bounded in terms of cond χ and the level of f.

Suppose that χ is the quadratic character of conductor p. Then $f \otimes \chi \in S_{2}\left(\Gamma_{0}(N)\right)$. If $N=p^{b}$ for $b \geq 2$, then $f \equiv f \otimes \chi(\bmod 2)$ forces $f=f \otimes \chi$, i.e., that f has CM.

The thesis of S . Yazdani considers the case where N is not a prime power.
Remark 0.3. Suppose that $N=p^{b} q^{c}$ where p, q are distinct primes and $b, c \geq 1$. If $b>1$, then E has CM by $\mathbb{Q}(\sqrt{-p})$; then $c \geq 2$, so E has CM by $\mathbb{Q}(\sqrt{-q})$, which is a contradiction. Thus $b=c=1$.

Theorem 0.4 (Yazdani). If $N=p q$ and $\operatorname{deg} \pi$ is odd, then either $p q \leq 21$ or $p \equiv q \equiv 3$ $(\bmod 8)$.

Ideas of proof. Let $C \subseteq J_{0}(N)$ be the cuspidal subgroup. The cusps, in Ogg's notation, are $P_{1}, P_{p}, P_{q}, P_{p q}$. Ogg computed the order of the class of $P_{1}-P_{p}+P_{q}-P_{p q}$. Heuristic assertion: C has a large 2-primary component.

The subgroup $E[2]$ of $J:=J_{0}(N)$ is reducible and Eisenstein. We also have $\operatorname{ker}(C \rightarrow$ $E) \subseteq B:=\operatorname{ker}\left(\pi_{*}: J \rightarrow E\right)$ in J, and it is Eisenstein and rational, while E has few rational torsion points.

Let $\mathbb{T}=\mathbb{Z}\left[\ldots T_{n} \ldots\right] \subseteq$ End J. We have $\mathbb{T} \rightarrow \mathbb{Z} \subseteq$ End A sending T_{n} to a_{n}. Composition with $\mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ gives a homomorphism $\phi: \mathbb{T} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ whose kernel is a maximal ideal \mathfrak{m} of \mathbb{T}.

Unless p and q satisfy restrictive congruences, $B[\mathfrak{m}] \neq 0$. This amounts to a mod 2 congruence between f and a perpendicular form, which is impossible.

