GLOBAL DIVISIBILITY OF HEEGNER POINTS AND TAMAGAWA NUMBERS

DIMITAR JETCHEV

Let E / \mathbb{Q} be non-CM of conductor N. Let $K=\mathbb{Q}(\sqrt{-D})$ with $D \neq 3,4$ such that all prime divisors of N is split in K. Then $N \mathcal{O}_{K}=\mathcal{N} \mathcal{N}$ with $\mathcal{O}_{K} / \mathcal{N} \simeq \mathbb{Z} / N \mathbb{Z}$. Let $x_{1}:=\left[\mathbb{C} / \mathcal{O}_{K} \rightarrow\right.$ $\left.\mathbb{C} / \mathcal{N}^{-1}\right] \in X_{0}(N)(H)$, where H is the Hilbert class field of K. Let $\phi: X_{0}(N) \rightarrow E$ be an optimal modular parameterization (sending ∞ to 0). Let $y_{K}:=\operatorname{Tr}_{H / K} \phi\left(x_{1}\right) \in E(K)$; this is a Heegner point.

Gross-Zagier: y_{K} has infinite order if and only if $L^{\prime}(E / K, 1) \neq 0$.
Kolyvagin: If y_{K} has infinite order, then $E(K)$ has rank 1 and $\amalg(E / K)$ is finite.
The BSD conjectural formula is equivalent to

$$
\# Ш(E / K)=\left(\frac{\left[E(K): \mathbb{Z} y_{K}\right]}{c \prod_{q \mid N} c_{q}}\right)^{2}
$$

where c is the Manin constant.
Choose a prime p such that $p \nmid N D$ and the $\bmod p$ Galois representation $\rho_{E, p}$ is surjective. Kolyvagin proves that $\# \amalg(E / K)\left[p^{\infty}\right]=p^{2\left(m_{0}-m_{\infty}\right)}$ where $m_{0}=\operatorname{ord}_{p}\left(\left[E(K): \mathbb{Z} y_{K}\right]\right)$ and m_{∞} is defined in terms of global divisibility of various Heegner points.

Abbes-Ullmo: If $p \nmid N$, then $p \nmid c$.
p-part BSD: $m_{\infty}=\operatorname{ord}_{p}\left(\prod_{q \mid N}\right)$.
Theorem 0.1 (Jetchev). Let $m_{\max }=\max _{q \mid N} \operatorname{ord}_{p}\left(c_{q}\right)$. Then $m_{\infty} \geq m_{\max }$.
Example 0.2. If E has prime conductor, then $\# Ш(E / K)\left[p^{\infty}\right] \leq p^{2\left(m_{0}-m_{\infty}\right)}$.
If E has one Tamagawa number divisible by p, we get the correct upper bound.
If you try to check the BSD formula for all elliptic curves of conductor ≤ 1000, there were 200 problematic cases, and William Stein has been able to handle 185 of them using these new results.
C. Cornut: If $r_{\mathrm{an}}=2$, then $\operatorname{corank}_{\mathbb{Z}_{p}} \operatorname{Sel}_{p^{\infty}} \geq 2$.

Suppose $c \nmid N$, and $\mathcal{O}_{c}=\mathbb{Z}+c \mathcal{O}_{K}$. Let $\mathcal{N}_{c}=\mathcal{N} \cap \mathcal{O}_{c}$, which is an invertible ideal of \mathcal{O}_{c}. Let $x_{c}=\left[\mathbb{C} / \mathcal{O}_{c} \rightarrow \mathbb{C} / \mathcal{N}_{c}^{-1}\right] \in X_{0}(N)(K[c])$, where $K[c]$ is the ring class field of conductor c. We have $\operatorname{Pic}\left(\mathcal{O}_{c}\right) \simeq \operatorname{Gal}(K[c] / K)$. Let $y_{c}=\phi\left(x_{c}\right) \in E(K[c])$. "Kolyvagin derivative operators" map y_{c} to some $P_{c} \in E(K[c])$, which gives a class $\kappa_{c, m} \in H^{1}\left(K, E\left[p^{m}\right]\right)$.

Kolyvagin: Say that ℓ is a Kolyvagin prime if

- $\ell \nmid p N D$
- ℓ is inert in K
- $p \mid a_{\ell}, \ell+1$

Suppose that c is a squarefree product of Kolyvagin primes. Let $M(c)=\min _{\ell \mid c} M(\ell)$, where $M(\ell)$ is the exponent of the largest power of p dividing a_{ℓ} and $\ell+1$. Then $\kappa_{c, m}$ works only if $m \leq M(c)$.

Let Λ^{r} be the set of all c that are the product of r distinct Kolyvagin primes. Let $\Lambda=\bigcup_{r} \Lambda_{r}$. Let $m(c)$ be ∞ if P_{c} is torsion, the largest m such that $P_{c} \in p^{m} E(K[c])$ if $m \leq M(c)$, and ∞ otherwise. Define $m_{\infty}:=\lim _{r \rightarrow \infty} \inf _{c \in \Lambda^{r}} m(c)$.

Property of $\kappa_{c, m}$: If $c \in \Lambda$ and $m(c)+m \leq M(c)$, then $\kappa_{c, m}$ is contained in a free $\mathbb{Z} / p^{m} \mathbb{Z}$ module of rank 1 ; let $\tilde{\kappa}_{c, m}$ be a generator of this module.

1. Local Selmer conditions

Fix $i_{v}: \bar{K} \hookrightarrow \bar{K}_{v}$ for every place v of K. Define the unramified condition by

$$
H_{\mathrm{ur}}^{1}\left(K_{v}, E\left[p^{m}\right]\right):=\operatorname{ker}\left(H^{1}\left(K_{v}, E\left[p^{m}\right]\right) \rightarrow H^{1}\left(K_{v}^{\mathrm{ur}}, E\left[p^{m}\right]\right)\right)
$$

and the transverse condition by

$$
H_{\mathrm{tr}}^{1}\left(K_{\lambda}, E\left[p^{m}\right]\right):=\operatorname{ker}\left(H^{1}\left(K_{\lambda}, E\left[p^{m}\right]\right) \rightarrow H^{1}\left(K[\ell]_{\lambda}, E\left[p^{m}\right]\right)\right)
$$

if $\lambda \mid \ell$. Define the Kummer condition by

$$
H_{\mathrm{Kum}}^{1}:=\operatorname{image}\left(E\left(K_{v}\right) \rightarrow E\left(K_{v}\right) / p^{m} \stackrel{\delta}{\hookrightarrow} H^{1}\left(K_{v}, E\left[p^{m}\right]\right)\right) .
$$

Define the stringent Kummer condition by

$$
H_{\mathrm{Kum}^{0}}^{1}:=\operatorname{image}\left(E^{0}\left(K_{v}\right) \rightarrow E\left(K_{v}\right) \rightarrow H^{1}\left(K_{v}, E\left[p^{m}\right]\right)\right) ;
$$

this is strictly smaller than $H_{\text {Kum }}^{1}$ for $v \mid N$ such that $p \mid c_{v}$.
Proposition 1.1. For $v \mid N$, we have $\operatorname{loc}_{v}\left(\kappa_{c, m}\right) \in H_{\mathrm{Kum}^{0}}^{1}\left(K_{v}, E\left[p^{m}\right]\right)$.
Proof. Use explicit $\kappa_{c, m}$, and the Deligne-Rapoport integral model of $X_{0}(N)$. Up to a rational torsion point, $y_{c} \in E^{0}\left(K_{v}\right)$.

2. Selmer modules

Fix a Selmer structure, i.e., a set $\left\{H_{\mathcal{F}}^{1}\left(K_{v}\right)\right\}$ such that $H_{\mathcal{F}}^{1}\left(K_{v}\right)=H_{\mathrm{ur}}^{1}\left(K_{v}\right)$ for all but finitely many v. We take $H_{\mathcal{F}(c)}^{1}\left(K_{v}\right)=H_{\mathrm{tr}}^{1}$. Let \mathcal{F}^{*} be the dual Selmer structure, in which each subgroup is replaced by its dual under local Tate duality. Define

$$
H_{\mathcal{F}}^{1}(K ; E[p]):=\operatorname{ker}\left(H^{1}\left(K, E\left[p^{m}\right]\right) \rightarrow \bigoplus H^{1}\left(K_{v}\right) / H_{\mathcal{F}}^{1}\left(K_{v}\right)\right)
$$

Proof of Theorem. We want to show $m_{\infty} \geq m_{\max }$; i.e., that $p^{m_{\max }} \mid \kappa_{c, m}$.
(1) Reduce to an easy case for c with $m(c)=m_{\infty}, m(c)+m \leq M(c), H_{\mathcal{F}_{\text {Kum }}(c)}^{1} \simeq \mathbb{Z} / p^{m} \mathbb{Z}$.
(2) Use Chebotarev density to choose a suitable ℓ such that the length of the module $H_{\mathcal{F}_{\text {Kum }}(c)}^{1}$ is small, $\leq m-m_{\text {max }}$.

