GLOBAL DIVISIBILITY OF HEEGNER POINTS AND TAMAGAWA NUMBERS

DIMITAR JETCHEV

Let E/\mathbb{Q} be non-CM of conductor N. Let $K = \mathbb{Q}(\sqrt{-D})$ with $D \neq 3, 4$ such that all prime divisors of N is split in K. Then $N\mathcal{O}_K = N\overline{N}$ with $\mathcal{O}_K/\mathcal{N} \simeq \mathbb{Z}/N\mathbb{Z}$. Let $x_1 := [\mathbb{C}/\mathcal{O}_K \to \mathbb{C}/\mathcal{N}^{-1}] \in X_0(N)(H)$, where H is the Hilbert class field of K. Let $\phi: X_0(N) \to E$ be an optimal modular parameterization (sending ∞ to 0). Let $y_K := \operatorname{Tr}_{H/K} \phi(x_1) \in E(K)$; this is a Heegner point.

Gross-Zagier: y_K has infinite order if and only if $L'(E/K, 1) \neq 0$. Kolyvagin: If y_K has infinite order, then E(K) has rank 1 and $\operatorname{III}(E/K)$ is finite. The BSD conjectural formula is equivalent to

$$\#\mathrm{III}(E/K) = \left(\frac{[E(K):\mathbb{Z}y_K]}{c\prod_{q|N} c_q}\right)^2$$

where c is the Manin constant.

Choose a prime p such that $p \nmid ND$ and the mod p Galois representation $\rho_{E,p}$ is surjective. Kolyvagin proves that $\# III(E/K)[p^{\infty}] = p^{2(m_0 - m_{\infty})}$ where $m_0 = \operatorname{ord}_p([E(K) : \mathbb{Z}y_K])$ and m_{∞} is defined in terms of global divisibility of various Heegner points.

Abbes-Ullmo: If $p \nmid N$, then $p \nmid c$.

p-part BSD: $m_{\infty} = \operatorname{ord}_p \left(\prod_{q|N} \right).$

Theorem 0.1 (Jetchev). Let $m_{\max} = \max_{q|N} \operatorname{ord}_p(c_q)$. Then $m_{\infty} \ge m_{\max}$.

Example 0.2. If *E* has prime conductor, then $\# \operatorname{III}(E/K)[p^{\infty}] \leq p^{2(m_0-m_{\infty})}$.

If E has one Tamagawa number divisible by p, we get the correct upper bound.

If you try to check the BSD formula for all elliptic curves of conductor ≤ 1000 , there were 200 problematic cases, and William Stein has been able to handle 185 of them using these new results.

C. Cornut: If $r_{an} = 2$, then $\operatorname{corank}_{\mathbb{Z}_p} \operatorname{Sel}_{p^{\infty}} \geq 2$.

Suppose $c \nmid N$, and $\mathcal{O}_c = \mathbb{Z} + c\mathcal{O}_K$. Let $\mathcal{N}_c = \mathcal{N} \cap \mathcal{O}_c$, which is an invertible ideal of \mathcal{O}_c . Let $x_c = [\mathbb{C}/\mathcal{O}_c \to \mathbb{C}/\mathcal{N}_c^{-1}] \in X_0(N)(K[c])$, where K[c] is the ring class field of conductor c. We have $\operatorname{Pic}(\mathcal{O}_c) \simeq \operatorname{Gal}(K[c]/K)$. Let $y_c = \phi(x_c) \in E(K[c])$. "Kolyvagin derivative operators" map y_c to some $P_c \in E(K[c])$, which gives a class $\kappa_{c,m} \in H^1(K, E[p^m])$.

Kolyvagin: Say that ℓ is a *Kolyvagin prime* if

- $\ell \nmid pND$
- ℓ is inert in K
- $p \mid a_{\ell}, \ell+1$

Date: June 4, 2007.

Suppose that c is a squarefree product of Kolyvagin primes. Let $M(c) = \min_{\ell|c} M(\ell)$, where $M(\ell)$ is the exponent of the largest power of p dividing a_{ℓ} and $\ell + 1$. Then $\kappa_{c,m}$ works only if $m \leq M(c)$.

Let Λ^r be the set of all c that are the product of r distinct Kolyvagin primes. Let $\Lambda = \bigcup_r \Lambda_r$. Let m(c) be ∞ if P_c is torsion, the largest m such that $P_c \in p^m E(K[c])$ if $m \leq M(c)$, and ∞ otherwise. Define $m_{\infty} := \lim_{r \to \infty} \inf_{c \in \Lambda^r} m(c)$.

Property of $\kappa_{c,m}$: If $c \in \Lambda$ and $m(c) + m \leq M(c)$, then $\kappa_{c,m}$ is contained in a free $\mathbb{Z}/p^m\mathbb{Z}$ -module of rank 1; let $\tilde{\kappa}_{c,m}$ be a generator of this module.

1. LOCAL SELMER CONDITIONS

Fix $i_v : \overline{K} \hookrightarrow \overline{K}_v$ for every place v of K. Define the unramified condition by $H^1_{\mathrm{ur}}(K_v, E[p^m]) := \ker \left(H^1(K_v, E[p^m]) \to H^1(K^{\mathrm{ur}}_v, E[p^m]) \right)$

$$H^1_{\rm tr}(K_{\lambda}, E[p^m]) := \ker \left(H^1(K_{\lambda}, E[p^m]) \to H^1(K[\ell]_{\lambda}, E[p^m]) \right)$$

if $\lambda | \ell$. Define the *Kummer* condition by

$$H^{1}_{\text{Kum}} := \text{image}\left(E(K_{v}) \to E(K_{v})/p^{m} \stackrel{\delta}{\hookrightarrow} H^{1}(K_{v}, E[p^{m}])\right).$$

Define the *stringent Kummer* condition by

$$H^1_{\operatorname{Kum}^0} := \operatorname{image} \left(E^0(K_v) \to E(K_v) \to H^1(K_v, E[p^m]) \right)$$

this is strictly smaller than H^1_{Kum} for v|N such that $p|c_v$.

Proposition 1.1. For $v \mid N$, we have $loc_v(\kappa_{c,m}) \in H^1_{Kum^0}(K_v, E[p^m])$.

Proof. Use explicit $\kappa_{c,m}$, and the Deligne-Rapoport integral model of $X_0(N)$. Up to a rational torsion point, $y_c \in E^0(K_v)$.

2. Selmer modules

Fix a Selmer structure, i.e., a set $\{H^1_{\mathcal{F}}(K_v)\}$ such that $H^1_{\mathcal{F}}(K_v) = H^1_{\mathrm{ur}}(K_v)$ for all but finitely many v. We take $H^1_{\mathcal{F}(c)}(K_v) = H^1_{\mathrm{tr}}$. Let \mathcal{F}^* be the dual Selmer structure, in which each subgroup is replaced by its dual under local Tate duality. Define

$$H^1_{\mathcal{F}}(K; E[p]) := \ker \left(H^1(K, E[p^m]) \to \bigoplus H^1(K_v) / H^1_{\mathcal{F}}(K_v) \right).$$

Proof of Theorem. We want to show $m_{\infty} \geq m_{\max}$; i.e., that $p^{m_{\max}} \mid \kappa_{c,m}$.

- (1) Reduce to an easy case for c with $m(c) = m_{\infty}, m(c) + m \leq M(c), H^1_{\mathcal{F}_{\mathrm{Kum}}(c)} \simeq \mathbb{Z}/p^m \mathbb{Z}.$
- (2) Use Chebotarev density to choose a suitable ℓ such that the length of the module $H^1_{\mathcal{F}_{Kum}(c\ell)}$ is small, $\leq m m_{max}$.