EXOTIC HEEGNER POINTS

HENRI DARMON

Heegner points: Define $\Phi: \operatorname{Div}^{0}\left(X_{0}(N)\right) \rightarrow E$ by $\Phi(\Delta)=\int_{C \text { s.t. } \partial C=\Delta} \omega_{f} \in \mathbb{C} / \Lambda \simeq E(\mathbb{C})$ where $\omega_{f}=f(z) d z$. We have a collection $\mathrm{CM}_{K} \subset X_{0}(N)\left(K^{\text {ab }}\right)$. Then

$$
\{\Phi(\Delta)\}_{\Delta \in \operatorname{Div}^{0}\left(\mathrm{CM}_{K}\right)} \subseteq E\left(K^{\mathrm{ab}}\right)
$$

- Kolyvagin-GZ: If $\operatorname{ord}_{s=1} L(E, s) \leq 1$, then BSD is true and W is finite.
- Efficient algorithms for calculating points in $E(\mathbb{Q})$ and $E\left(K^{\mathrm{ab}}\right)$.

Question: Can we generalize this structure?
Around 2000, I proposed "Stark-Heegner points".
Prototypical Stark-Heegner construction. Data:

- A Shimura variety X
- A differential r-form ω on X
- A null-homologous $(r-1)$-cycle $\Delta \subset X(\mathbb{C})$
$\left\{\int_{\gamma} \omega\right\} \subseteq \Lambda$ in \mathbb{C} and $\mathbb{C} / \Lambda=E(\mathbb{C})$
Stark-Heegner conjecture: $\int_{C \text { s.t. }} \partial C=\Delta \omega \in \mathbb{C} / \Lambda \simeq E(\mathbb{C})$ belong to $E(\overline{\mathbb{Q}})$.
Difficulty: We lack a good algebro-geometric understanding of the integrals that appear.
"Exotic Heegner point": $\Delta \leftrightarrow$ algebraic cycles on X.
What follows is joint work with Bertolini and Kartik Prasanna.

1. GENERAL SETUP

Let K be an imaginary quadratic field of class number 1 . Let $-D=\operatorname{disc}(K)$. Assume that $D \neq 3,4,8$. (There are six remaining possibilities for D.)

There exists A / \mathbb{Q} such that $\operatorname{End}_{K}(A) \simeq \mathcal{O}_{K}$; among these, take A so that $\operatorname{cond}(A)$ is minimal; i.e., $\operatorname{cond}(A)=D^{2}$. This determines A uniquely up to \mathbb{Q}-isogeny.

Define

$$
L(A / \mathbb{Q}, s)=\sum_{\mathfrak{a} \leq \mathcal{O}_{K}} \psi(\mathfrak{a})(N \mathfrak{a})^{-s}
$$

where $\psi((a))=\epsilon_{K}(a) a$, where $\epsilon_{K}:\left(\mathcal{O}_{K} / \sqrt{D}\right)^{\times} \rightarrow \pm 1$. Let $f=\sum_{\mathfrak{a}} \psi(a) q^{N \mathfrak{a}}$, which is a theta series of weight 2 on $\Gamma_{0}\left(D^{2}\right)$.

2. Exotic modular parameterizations

Fix $r \geq 0$. Define

$$
\theta_{\psi^{r+1}}:=\sum \psi(\mathfrak{a})^{r+1} q^{N \mathfrak{a}} \in \begin{cases}S_{r+2}\left(\Gamma_{0}\left(D^{2}\right)\right), & \text { if } r \text { is even } \\ S_{r+2}\left(\Gamma_{0}\left(D^{2}\right), \epsilon_{K}\right), & \text { if } r \text { is odd }\end{cases}
$$

Let t be 1 if r is odd, and 2 if r is even.

Geometric interpretation of θ_{r} : Let W_{r} be the r-fold fiber product of the universal elliptic curve $\mathcal{E} \rightarrow X_{0}\left(D^{t}\right)$. Then $\operatorname{dim} W_{r}=r+1$. Then $W_{r}(\mathbb{C})$ contains $\left(\mathbb{Z}^{2 r} \rtimes \Gamma_{0}\left(D^{t}\right)\right) \backslash\left(\mathbb{C}^{r} \times \mathcal{H}\right)$. Let $w_{1}, \ldots, w_{r}, \tau$ be the coordinates on $\mathbb{C}^{r} \times \mathcal{H}$. Let

$$
\omega_{\theta_{r}}:=\theta(\tau) d \tau d w_{1} \cdots d w_{r} \in \Omega^{r+1,0}\left(W_{r}\right)
$$

The variety: $X_{r}:=A^{r} \times W_{r}$. So $\operatorname{dim} X_{r}=1+2 r$.
The differential form: $\omega_{r}:=\bar{\omega}_{A}^{r} \wedge \omega_{\theta^{r}} \in \Omega^{r+1, r}\left(X_{r}\right)$, where ω_{A} is a Néron differential on A.
The exotic parametrization: Replace $\operatorname{Div}^{0}\left(X_{0}\left(D^{2}\right)\right)$ by $\mathrm{CH}^{r+1}\left(X_{r}\right)_{0}$, which is defined as the set of null-homologous codimension- $(r+1)$ algebraic cycles on X_{r} modulo rational equivalence. Define a complex analytic map

$$
\begin{aligned}
\Phi_{r}: \mathrm{CH}^{r+1}\left(X_{r}\right)_{0} & \rightarrow A \\
\Delta & \mapsto \int_{C \text { s.t. } \partial C=\Delta} \omega_{r} \in \mathbb{C} / \Lambda_{A} \simeq A(\mathbb{C}) .
\end{aligned}
$$

Conjecture 2.1. For any field F, if $\Delta \in \mathrm{CH}^{r+1}\left(X_{r}\right)_{0}(F) \otimes \mathbb{Q}$ (i.e., Δ is defined over F), then $\Phi_{r}(\Delta) \in A(F) \otimes \mathbb{Q}$.

3. Heegner cycles

We have a natural projection $\pi: X_{r} \rightarrow X_{0}\left(D^{t}\right)$. Then $\pi^{-1}(\tau) \simeq A^{r} \times E_{\tau}^{r}$. Let $\phi: A \rightarrow A^{\prime}$ be a cyclic n-isogeny, with $D \nmid n$, defined over the ring class field H_{n} of conductor n. Let

$$
\Delta_{\phi}=\left(\operatorname{Graph}(\phi)-(\operatorname{deg} \phi)\left(0 \times A^{\prime}\right)-(A \times 0)\right)^{r} \subseteq\left(A \times A^{\prime}\right)^{r} \rightarrow X_{r}
$$

Then

$$
\Delta_{\phi} \in \begin{cases}\mathrm{CH}^{r+1}\left(X_{r}\right)_{0}\left(H_{n}\right), & \text { if } r \text { is odd } \\ \mathrm{CH}^{r+1}\left(X_{r}\right)_{0}\left(H_{n D}\right), & \text { if } r \text { is even }\end{cases}
$$

Conjecture 2.1 implies that

$$
\Phi_{r}\left(\Delta_{\phi}\right) \in \begin{cases}A\left(H_{n}\right), & \text { if } r \text { is odd } ; \\ A\left(H_{n D}\right), & \text { if } r \text { is even }\end{cases}
$$

up to torsion.

4. Exotic Heegner points

If r is even, then $\operatorname{tr}_{H_{n}}^{H_{n D}}\left(\Phi_{r}\left(\Delta_{\phi}\right)\right)=0$.
So assume that r is odd.
Conjecture 4.1. Let $y_{r}=\Phi_{r}\left(\Delta_{1}\right)$; i.e., ϕ is the identity $A \rightarrow A$, so Conjecture 2.1 implies that $y_{r} \in A(\mathbb{Q})$ modulo torsion. Then y_{r} is of infinite order if and only if $L\left(\psi^{2 r+1}, r+1\right) \neq 0$ and $L^{\prime}(\psi, 1) \neq 0$. The height of y_{r} corresponds to a derivative of a Rankin convolution L-series: $L\left(\theta_{\psi^{r}} \times \theta_{\psi^{r+1}}, s\right)_{r+1}=L\left(\theta_{\psi^{2 r+1}}, s\right) L\left(\theta_{\psi}, s-r\right)$.

5. Evidence for the conjectures

Numerical evidence: $D=11, n=13, A=121 B, r=1$. Get a point of $A\left(H_{13}\right)$.
Theoretical evidence: p-adic analogues can be formulated and proved in certain cases.
We have cycle class maps

$$
\mathrm{cl}: \mathrm{CH}^{r+1}\left(X_{r}\right)(\mathbb{Q}) \rightarrow H_{\mathrm{et}}^{2 r+2}\left(X_{r} / \overline{\mathbb{Q}}, \mathbb{Q}_{p}\right)(r+1) .
$$

Let $\Phi_{r, p}$ be the composition
$\operatorname{ker}(\mathrm{cl}) \rightarrow H^{1}\left(\mathbb{Q}, H^{2 r+1}\left(X_{r} / \overline{\mathbb{Q}}, \mathbb{Q}_{p}\right)(r+1)\right) \rightarrow H^{1}\left(\mathbb{Q}, V_{p}(A)\right) \rightarrow H_{f}^{1}\left(\mathbb{Q}_{p}, T_{p}(A)\right) \simeq A\left(\mathbb{Q}_{p}\right) \otimes \mathbb{Q}$ where $V_{p}(A)=T_{p}(A) \otimes \mathbb{Q}$.

Theorem 5.1 (Bertolini-Darmon-Prasanna). Suppose that p splits in K. Then $\Phi_{r, p}\left(\Delta_{1}\right) \in$ $A(\mathbb{Q}) \otimes \mathbb{Q}$, and is independent of p. It is of infinite order if and only if $L\left(\psi^{2 r+1}, r+1\right) \neq 0$ and $L^{\prime}(\psi, 1) \neq 0$.

