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1. BACKGROUND

Around 1980, John Cremona in his thesis worked out cusp forms of weight 2 for T'y(n)
over Q(v/—d) for d =1,2,3,7,11.

Around 1990, his student Whitley in her thesis worked out d = 19, 43,67, 163.

At this point, one could no longer avoid the case of class number greater than 1. In 1999,
Bygott handled d = 5 (with class number h = 2): the tricks worked out here worked for
ideal classes whose square was trivial.

In 2005, Mark Lingham worked out d = 23,31 (with h = 3). In fact, odd class number
turned out to be easier than even class number.

2. NOTATION

Let K be a number field. Embed K — K, =R or C. Let R = Ok be the ring of integers
of K. Let 0 # n < R be an ideal. Let Cl = CI(K). Let h = # Cl = hohl,, where hy = # Cl[2].

Let I' = GL(2, R), acting on R & R on the right. Let ['o(n) = { (CCZ Z) el:ce n}, which

is the set of v € I'y(n) such that (f R) v = <R R). Define

R n R
p(n) =#(R/m)=N@) [J (1 - N(p)™
pin
Y(n) =T :To(N)] =Nm) [[(1+Np)™
pln

3. LATTICES

A lattice is a rank-2 R-submodule L of K, & K (i.e., contained in R@ R < C or in
Cae C < H. As an R-module, we have R ~ a ® R for some ideal a < R. Define the Steinitz
class [L] := [a] € CL
Lemma 3.1. Ifab = (g), then R& R~ a X b.

Proof. Write a = (ay,as). Write g = aijby — agby with b; € b. Right multiplication by the
matrix M = <Zl 21 gives an isomorphism R @& R ~ a & b. Such matrices are called
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(@, b)-matrices. O
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Remark 3.2. In choosing M, the entry as (as second generator of a) may be chosen to be
any nonzero element of R.

If My, My are both (a, b)-matrices then
o My = M, for some v € T’
e M, = Myy" where +' € R a7b cdet € R* p =: b
LRy e ab! R ) =
Applications: cusp equivalence under I" and T'g(n). A cusp is represented by a = a1 /as €
P!(K) with a; € R. The class [{a;,as)] =: [a] is well-defined. Two elements of P!(K') are in
the same I'-orbit if and only if they have the same class.

Proposition 3.3. The number of I'o(n)-orbits of cusps equals h3y 5, pn(0 + nd~1) where
wu(n) = # ((R/n)*/R*) (where the quotient means cokernel in case R* — (R/n)* is not
injective).

Standard lattices: Let p; for 1 < i < hy represent Cl/CI* with p; = (1). Let g; for
1 < j < hb be such that the g% represent CI>. Thus Cl = {c¢;; = [p;q?]}. Let Ly =
q;(pi ® R) = a;p; @ q;. Then [Ly] = c;.

4. MODULAR POINTS FOR I'g(n)

A modular point is a pair (L, L’) where L' O L with L'/L ~ R/n. Standard modular
points are Pjj := (Lqj, Lj;) where Lj; = q;(p; ®n~"). Then G = GL(2, K) acts on modular
points: an element U € G maps (L,L’) to (LU, L'U). Every modular point P is P,;U for

-1
some U € G, and we may consider T’} (n)\G where T} (n) := {(p]-%n p]i:g ) :det € RX}.
Formal modular forms are functions of modular points. These correspond to collections of
h functions ¢;; on G where ¢;; is left-invariant by T'f(n).

5. HECKE OPERATORS

Let My(n) be the set of modular points for I'y(n). Let T be the commutative algebra of
operators on QMy(n).
For a < n, we have

T.: (L,L')—N@™ > (MM
MDL
[M:L]=a
(M, M")eMo(n)
where M’ = M + L'. For a coprime to n, we have
Toa: (L, L))~ N(a)™?(a”'L,a”'L").
We have a formal identity
—s —s\ 1 —s A |
Y TuN@) =[O -TNw) ™) (1= ToNp) ™ + TopN(p) ).
0#a<R pln pin

Define [T,] = [a] and [T, 4] = [a]? so [T,Tse) = [ab?]. Let T, be the submodule of T consisting
of operators of class ¢ € Cl. Then T = ®.caT. is a grading: T.,T., C Te,e,. If (L, L") has

class ¢ = [L], and T € T, then T'(L, L') has class cc'.
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Practical question: To what extent do the principal Hecke operators determine the whole
Hecke action? Answer: Enough to be useful.

6. FORMAL MODULAR FORMS

Functions My(n) — C" are in bijection with collections of h functions ¢;;: G — C”
such that ¢;;(yu) = ¢;;(u) with 4 € T'J'(n). Introduce a further action on the right by
ZK C G, where Z is the center R* or C* and K is O(2) or U(2), via a representation
p: ZK — GL(r,C). Write G = ZBK where B := {(‘g T) cx € Ko,y € R>0}, which
corresponds to Hy or Hs.



