MODULAR FORMS AND HECKE OPERATORS OVER NUMBER FIELDS

JOHN CREMONA

1. Background

Around 1980, John Cremona in his thesis worked out cusp forms of weight 2 for $\Gamma_{0}(\mathfrak{n})$ over $\mathbb{Q}(\sqrt{-d})$ for $d=1,2,3,7,11$.

Around 1990, his student Whitley in her thesis worked out $d=19,43,67,163$.
At this point, one could no longer avoid the case of class number greater than 1. In 1999, Bygott handled $d=5$ (with class number $h=2$): the tricks worked out here worked for ideal classes whose square was trivial.

In 2005, Mark Lingham worked out $d=23,31$ (with $h=3$). In fact, odd class number turned out to be easier than even class number.

2. Notation

Let K be a number field. Embed $K \hookrightarrow K_{\infty}=\mathbb{R}$ or \mathbb{C}. Let $R=\mathcal{O}_{K}$ be the ring of integers of K. Let $0 \neq \mathfrak{n} \leq R$ be an ideal. Let $\mathrm{Cl}=\mathrm{Cl}(K)$. Let $h=\# \mathrm{Cl}=h_{2} h_{2}^{\prime}$, where $h_{2}=\# \mathrm{Cl}[2]$. Let $\Gamma=\mathrm{GL}(2, R)$, acting on $R \oplus R$ on the right. Let $\Gamma_{0}(\mathfrak{n})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma: c \in \mathfrak{n}\right\}$, which is the set of $\gamma \in \Gamma_{0}(\mathfrak{n})$ such that $\left(\begin{array}{ll}R & R \\ \mathfrak{n} & R\end{array}\right) \gamma=\left(\begin{array}{ll}R & R \\ \mathfrak{n} & R\end{array}\right)$. Define

$$
\begin{aligned}
& \varphi(\mathfrak{n})=\#(R / \mathfrak{n})=N(\mathfrak{n}) \prod_{\mathfrak{p} \mid \mathfrak{n}}(1-N(\mathfrak{p}))^{-1} \\
& \psi(n)=\left[\Gamma: \Gamma_{0}(N)\right]=N(\mathfrak{n}) \prod_{\mathfrak{p} \mid \mathfrak{n}}(1+N(\mathfrak{p}))^{-1}
\end{aligned}
$$

3. Lattices

A lattice is a rank-2 R-submodule L of $K_{\infty} \oplus K_{\infty}$ (i.e., contained in $\mathbb{R} \oplus \mathbb{R} \leftrightarrow \mathbb{C}$ or in $\mathbb{C} \oplus \mathbb{C} \leftrightarrow \mathbb{H}$. As an R-module, we have $R \simeq \mathfrak{a} \oplus R$ for some ideal $\mathfrak{a} \leq R$. Define the Steinitz class $[L]:=[\mathfrak{a}] \in \mathrm{Cl}$.

Lemma 3.1. If $\mathfrak{a b}=\langle g\rangle$, then $R \oplus R \simeq \mathfrak{a} \times \mathfrak{b}$.
Proof. Write $\mathfrak{a}=\left\langle a_{1}, a_{2}\right\rangle$. Write $g=a_{1} b_{2}-a_{2} b_{1}$ with $b_{i} \in \mathfrak{b}$. Right multiplication by the matrix $M:=\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)$ gives an isomorphism $R \oplus R \simeq \mathfrak{a} \oplus \mathfrak{b}$. Such matrices are called (a, b)-matrices.

Date: June 4, 2007.

Remark 3.2. In choosing M, the entry a_{2} (as second generator of \mathfrak{a}) may be chosen to be any nonzero element of R.

If M_{1}, M_{2} are both (a, b)-matrices then

- $M_{1}=\gamma M_{2}$ for some $\gamma \in \Gamma$
- $M_{1}=M_{2} \gamma^{\prime}$ where $\gamma^{\prime} \in\left\{\left(\begin{array}{cc}R & \mathfrak{a}^{-1} \mathfrak{b} \\ \mathfrak{a} \mathfrak{b}^{-1} & R\end{array}\right): \operatorname{det} \in R^{\times}\right\}=: \Gamma^{\mathfrak{a}, \mathfrak{b}}$.

Applications: cusp equivalence under Γ and $\Gamma_{0}(\mathfrak{n})$. A cusp is represented by $\alpha=a_{1} / a_{2} \in$ $\mathbb{P}^{1}(K)$ with $a_{i} \in R$. The class $\left[\left\langle a_{1}, a_{2}\right\rangle\right]=:[\alpha]$ is well-defined. Two elements of $\mathbb{P}^{1}(K)$ are in the same Γ-orbit if and only if they have the same class.

Proposition 3.3. The number of $\Gamma_{0}(\mathfrak{n})$-orbits of cusps equals $h \sum_{\delta \mid \mathfrak{n}} \varphi_{n}\left(\delta+\mathfrak{n} \delta^{-1}\right)$ where $\varphi_{u}(\mathfrak{n})=\#\left((R / \mathfrak{n})^{\times} / R^{\times}\right)$(where the quotient means cokernel in case $R^{\times} \rightarrow(R / \mathfrak{n})^{\times}$is not injective).

Standard lattices: Let \mathfrak{p}_{i} for $1 \leq i \leq h_{2}$ represent $\mathrm{Cl} / \mathrm{Cl}^{2}$ with $\mathfrak{p}_{1}=\langle 1\rangle$. Let \mathfrak{q}_{j} for $1 \leq j \leq h_{2}^{\prime}$ be such that the \mathfrak{q}_{j}^{2} represent Cl^{2}. Thus $\mathrm{Cl}=\left\{c_{i j}=\left[\mathfrak{p}_{i} \mathfrak{q}_{j}^{2}\right]\right\}$. Let $L_{i j}=$ $\mathfrak{q}_{j}\left(\mathfrak{p}_{i} \oplus R\right)=\mathfrak{q}_{j} \mathfrak{p}_{i} \oplus \mathfrak{q}_{j}$. Then $\left[L_{i j}\right]=c_{i j}$.

4. Modular points for $\Gamma_{0}(\mathfrak{n})$

A modular point is a pair $\left(L, L^{\prime}\right)$ where $L^{\prime} \supseteq L$ with $L^{\prime} / L \simeq R / \mathfrak{n}$. Standard modular points are $P_{i j}:=\left(L_{i j}, L_{i j}^{\prime}\right)$ where $L_{i j}^{\prime}=\mathfrak{q}_{j}\left(\mathfrak{p}_{i} \oplus \mathfrak{n}^{-1}\right)$. Then $G=\mathrm{GL}\left(2, K_{\infty}\right)$ acts on modular points: an element $U \in G$ maps $\left(L, L^{\prime}\right)$ to $\left(L U, L^{\prime} U\right)$. Every modular point P is $P_{i j} U$ for some $U \in G$, and we may consider $\Gamma_{0}^{\mathfrak{p}_{i}}(\mathfrak{n}) \backslash G$ where $\Gamma_{0}^{\mathfrak{p}_{i}}(\mathfrak{n}):=\left\{\left(\begin{array}{cc}R & \mathfrak{p}_{i}^{-1} \\ \mathfrak{p}_{i} \mathfrak{n} & R\end{array}\right): \operatorname{det} \in R^{\times}\right\}$. Formal modular forms are functions of modular points. These correspond to collections of h functions $\phi_{i j}$ on G where $\phi_{i j}$ is left-invariant by $\Gamma_{0}^{\mathfrak{p}_{i}}(\mathfrak{n})$.

5. Hecke operators

Let $\mathcal{M}_{0}(\mathfrak{n})$ be the set of modular points for $\Gamma_{0}(\mathfrak{n})$. Let \mathbb{T} be the commutative algebra of operators on $\mathbb{Q} \mathcal{M}_{0}(\mathfrak{n})$.

For $\mathfrak{a} \leq \mathfrak{n}$, we have

$$
T_{\mathfrak{a}}:\left(L, L^{\prime}\right) \mapsto N(\mathfrak{a})^{-1} \sum_{\substack{M \supset L \\[M: L \bar{L}] \mathfrak{a} \\\left(M, M^{\prime}\right) \in \mathcal{M}_{0}(\mathfrak{n})}}\left(M, M^{\prime}\right)
$$

where $M^{\prime}=M+L^{\prime}$. For \mathfrak{a} coprime to \mathfrak{n}, we have

$$
T_{\mathfrak{a}, \mathfrak{a}}:\left(L, L^{\prime}\right) \mapsto N(\mathfrak{a})^{-2}\left(\mathfrak{a}^{-1} L, \mathfrak{a}^{-1} L^{\prime}\right) .
$$

We have a formal identity

$$
\sum_{0 \neq \mathfrak{a} \leq R} T_{\mathfrak{a}} N(\mathfrak{a})^{-s}=\prod_{\mathfrak{p} \mid \mathfrak{n}}\left(1-T_{\mathfrak{p}} N(\mathfrak{p})^{-s}\right)^{-1} \prod_{\mathfrak{p} \mathfrak{\mathfrak { n }}}\left(1-T_{\mathfrak{p}} N(\mathfrak{p})^{-s}+T_{\mathfrak{p}, \mathfrak{p}} N(\mathfrak{p})^{1-2 s}\right)^{-1}
$$

Define $\left[T_{\mathfrak{a}}\right]=[\mathfrak{a}]$ and $\left[T_{\mathfrak{a}, \mathfrak{a}}\right]=[\mathfrak{a}]^{2}$ so $\left[T_{\mathfrak{a}} T_{\mathfrak{b}, \mathfrak{b}}\right]=\left[\mathfrak{a} \mathfrak{b}^{2}\right]$. Let \mathbb{T}_{c} be the submodule of \mathbb{T} consisting of operators of class $c \in \mathrm{Cl}$. Then $\mathbb{T}=\oplus_{c \in \mathrm{Cl}} \mathbb{T}_{c}$ is a grading: $\mathbb{T}_{c_{1}} \mathbb{T}_{c_{2}} \subset \mathbb{T}_{c_{1} c_{2}}$. If $\left(L, L^{\prime}\right)$ has class $c=[L]$, and $T \in \mathbb{T}_{c^{\prime}}$, then $T\left(L, L^{\prime}\right)$ has class $c c^{\prime}$.

Practical question: To what extent do the principal Hecke operators determine the whole Hecke action? Answer: Enough to be useful.

6. Formal modular forms

Functions $\mathcal{M}_{0}(\mathfrak{n}) \rightarrow \mathbb{C}^{r}$ are in bijection with collections of h functions $\phi_{i j}: G \rightarrow \mathbb{C}^{r}$ such that $\phi_{i j}(\gamma u)=\phi_{i j}(u)$ with $\gamma \in \Gamma_{0}^{\gamma_{i}}(\mathfrak{n})$. Introduce a further action on the right by $Z K \subset G$, where Z is the center \mathbb{R}^{\times}or \mathbb{C}^{\times}and K is $O(2)$ or $U(2)$, via a representation $\rho: Z K \rightarrow \operatorname{GL}(r, \mathbb{C})$. Write $G=Z B K$ where $B:=\left\{\left(\begin{array}{cc}y & x \\ 0 & 1\end{array}\right): x \in K_{\infty}, y \in \mathbb{R}_{>0}\right\}$, which corresponds to \mathcal{H}_{2} or \mathcal{H}_{3}.

