MODULAR FORMS AND HECKE OPERATORS OVER NUMBER FIELDS

JOHN CREMONA

1. BACKGROUND

Around 1980, John Cremona in his thesis worked out cusp forms of weight 2 for $\Gamma_0(\mathfrak{n})$ over $\mathbb{Q}(\sqrt{-d})$ for d = 1, 2, 3, 7, 11.

Around 1990, his student Whitley in her thesis worked out d = 19, 43, 67, 163.

At this point, one could no longer avoid the case of class number greater than 1. In 1999, Bygott handled d = 5 (with class number h = 2): the tricks worked out here worked for ideal classes whose square was trivial.

In 2005, Mark Lingham worked out d = 23,31 (with h = 3). In fact, odd class number turned out to be easier than even class number.

2. NOTATION

Let K be a number field. Embed $K \hookrightarrow K_{\infty} = \mathbb{R}$ or \mathbb{C} . Let $R = \mathcal{O}_{K}$ be the ring of integers of K. Let $0 \neq \mathfrak{n} \leq R$ be an ideal. Let $\operatorname{Cl} = \operatorname{Cl}(K)$. Let $h = \#\operatorname{Cl} = h_{2}h'_{2}$, where $h_{2} = \#\operatorname{Cl}[2]$. Let $\Gamma = \operatorname{GL}(2, R)$, acting on $R \oplus R$ on the right. Let $\Gamma_{0}(\mathfrak{n}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : c \in \mathfrak{n} \right\}$, which is the set of $\gamma \in \Gamma_{0}(\mathfrak{n})$ such that $\begin{pmatrix} R & R \\ \mathfrak{n} & R \end{pmatrix} \gamma = \begin{pmatrix} R & R \\ \mathfrak{n} & R \end{pmatrix}$. Define $\varphi(\mathfrak{n}) = \#(R/\mathfrak{n}) = N(\mathfrak{n}) \prod_{\mathfrak{p} \mid \mathfrak{n}} (1 - N(\mathfrak{p}))^{-1}$ $\psi(n) = [\Gamma : \Gamma_{0}(N)] = N(\mathfrak{n}) \prod_{\mathfrak{p} \mid \mathfrak{n}} (1 + N(\mathfrak{p}))^{-1}$

3. LATTICES

A *lattice* is a rank-2 *R*-submodule *L* of $K_{\infty} \oplus K_{\infty}$ (i.e., contained in $\mathbb{R} \oplus \mathbb{R} \leftrightarrow \mathbb{C}$ or in $\mathbb{C} \oplus \mathbb{C} \leftrightarrow \mathbb{H}$. As an *R*-module, we have $R \simeq \mathfrak{a} \oplus R$ for some ideal $\mathfrak{a} \leq R$. Define the *Steinitz* class $[L] := [\mathfrak{a}] \in \mathbb{C}$.

Lemma 3.1. If $\mathfrak{ab} = \langle g \rangle$, then $R \oplus R \simeq \mathfrak{a} \times \mathfrak{b}$.

Proof. Write $\mathfrak{a} = \langle a_1, a_2 \rangle$. Write $g = a_1b_2 - a_2b_1$ with $b_i \in \mathfrak{b}$. Right multiplication by the matrix $M := \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$ gives an isomorphism $R \oplus R \simeq \mathfrak{a} \oplus \mathfrak{b}$. Such matrices are called (a, b)-matrices.

Date: June 4, 2007.

Remark 3.2. In choosing M, the entry a_2 (as second generator of \mathfrak{a}) may be chosen to be any nonzero element of R.

If M_1, M_2 are both (a, b)-matrices then

• $M_1 = \gamma M_2$ for some $\gamma \in \Gamma$ • $M_1 = M_2 \gamma'$ where $\gamma' \in \left\{ \begin{pmatrix} R & \mathfrak{a}^{-1}\mathfrak{b} \\ \mathfrak{a}\mathfrak{b}^{-1} & R \end{pmatrix} : \det \in R^{\times} \right\} =: \Gamma^{\mathfrak{a},\mathfrak{b}}.$

Applications: cusp equivalence under Γ and $\Gamma_0(\mathfrak{n})$. A cusp is represented by $\alpha = a_1/a_2 \in \mathbb{P}^1(K)$ with $a_i \in R$. The class $[\langle a_1, a_2 \rangle] =: [\alpha]$ is well-defined. Two elements of $\mathbb{P}^1(K)$ are in the same Γ -orbit if and only if they have the same class.

Proposition 3.3. The number of $\Gamma_0(\mathfrak{n})$ -orbits of cusps equals $h \sum_{\delta | \mathfrak{n}} \varphi_n(\delta + \mathfrak{n}\delta^{-1})$ where $\varphi_u(\mathfrak{n}) = \# ((R/\mathfrak{n})^{\times}/R^{\times})$ (where the quotient means cokernel in case $R^{\times} \to (R/\mathfrak{n})^{\times}$ is not injective).

Standard lattices: Let \mathfrak{p}_i for $1 \leq i \leq h_2$ represent $\operatorname{Cl}/\operatorname{Cl}^2$ with $\mathfrak{p}_1 = \langle 1 \rangle$. Let \mathfrak{q}_j for $1 \leq j \leq h'_2$ be such that the \mathfrak{q}_j^2 represent Cl^2 . Thus $\operatorname{Cl} = \{c_{ij} = [\mathfrak{p}_i \mathfrak{q}_j^2]\}$. Let $L_{ij} = \mathfrak{q}_j(\mathfrak{p}_i \oplus R) = \mathfrak{q}_j \mathfrak{p}_i \oplus \mathfrak{q}_j$. Then $[L_{ij}] = c_{ij}$.

4. Modular points for $\Gamma_0(\mathfrak{n})$

A modular point is a pair (L, L') where $L' \supseteq L$ with $L'/L \simeq R/\mathfrak{n}$. Standard modular points are $P_{ij} := (L_{ij}, L'_{ij})$ where $L'_{ij} = \mathfrak{q}_j(\mathfrak{p}_i \oplus \mathfrak{n}^{-1})$. Then $G = \operatorname{GL}(2, K_\infty)$ acts on modular points: an element $U \in G$ maps (L, L') to (LU, L'U). Every modular point P is $P_{ij}U$ for some $U \in G$, and we may consider $\Gamma_0^{\mathfrak{p}_i}(\mathfrak{n}) \setminus G$ where $\Gamma_0^{\mathfrak{p}_i}(\mathfrak{n}) := \left\{ \begin{pmatrix} R & \mathfrak{p}_i^{-1} \\ \mathfrak{p}_i \mathfrak{n} & R \end{pmatrix} : \det \in R^{\times} \right\}$. Formal modular forms are functions of modular points. These correspond to collections of h functions ϕ_{ij} on G where ϕ_{ij} is left-invariant by $\Gamma_0^{\mathfrak{p}_i}(\mathfrak{n})$.

5. Hecke operators

Let $\mathcal{M}_0(\mathfrak{n})$ be the set of modular points for $\Gamma_0(\mathfrak{n})$. Let \mathbb{T} be the commutative algebra of operators on $\mathbb{Q}\mathcal{M}_0(\mathfrak{n})$.

For $\mathfrak{a} \leq \mathfrak{n}$, we have

$$T_{\mathfrak{a}} \colon (L, L') \mapsto N(\mathfrak{a})^{-1} \sum_{\substack{M \supseteq L \\ [M:L] = \mathfrak{a} \\ (M, M') \in \mathcal{M}_{0}(\mathfrak{n})}} (M, M')$$

where M' = M + L'. For a coprime to \mathbf{n} , we have

$$T_{\mathfrak{a},\mathfrak{a}}: (L,L') \mapsto N(\mathfrak{a})^{-2}(\mathfrak{a}^{-1}L,\mathfrak{a}^{-1}L').$$

We have a formal identity

$$\sum_{0\neq\mathfrak{a}\leq R}T_{\mathfrak{a}}N(\mathfrak{a})^{-s}=\prod_{\mathfrak{p}\mid\mathfrak{n}}\left(1-T_{\mathfrak{p}}N(\mathfrak{p})^{-s}\right)^{-1}\prod_{\mathfrak{p}\nmid\mathfrak{n}}\left(1-T_{\mathfrak{p}}N(\mathfrak{p})^{-s}+T_{\mathfrak{p},\mathfrak{p}}N(\mathfrak{p})^{1-2s}\right)^{-1}.$$

Define $[T_{\mathfrak{a}}] = [\mathfrak{a}]$ and $[T_{\mathfrak{a},\mathfrak{a}}] = [\mathfrak{a}]^2$ so $[T_{\mathfrak{a}}T_{\mathfrak{b},\mathfrak{b}}] = [\mathfrak{a}\mathfrak{b}^2]$. Let \mathbb{T}_c be the submodule of \mathbb{T} consisting of operators of class $c \in \mathbb{C}$ l. Then $\mathbb{T} = \bigoplus_{c \in \mathbb{C}} \mathbb{T}_c$ is a grading: $\mathbb{T}_{c_1}\mathbb{T}_{c_2} \subset \mathbb{T}_{c_1c_2}$. If (L, L') has class c = [L], and $T \in \mathbb{T}_{c'}$, then T(L, L') has class cc'.

Practical question: To what extent do the *principal* Hecke operators determine the whole Hecke action? Answer: Enough to be useful.

6. FORMAL MODULAR FORMS

Functions $\mathcal{M}_0(\mathfrak{n}) \to \mathbb{C}^r$ are in bijection with collections of h functions $\phi_{ij} \colon G \to \mathbb{C}^r$ such that $\phi_{ij}(\gamma u) = \phi_{ij}(u)$ with $\gamma \in \Gamma_0^{\gamma_i}(\mathfrak{n})$. Introduce a further action on the right by $ZK \subset G$, where Z is the center \mathbb{R}^{\times} or \mathbb{C}^{\times} and K is O(2) or U(2), via a representation $\rho \colon ZK \to \operatorname{GL}(r,\mathbb{C})$. Write G = ZBK where $B := \left\{ \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} : x \in K_{\infty}, y \in \mathbb{R}_{>0} \right\}$, which corresponds to \mathcal{H}_2 or \mathcal{H}_3 .