# THE STEINBERG SYMBOL AND MODULAR SYMBOLS 

CECILIA BUSUIOC (WITH GLENN STEVENS)

Inspiration/motivation: conjecture of R. Sharifi (and McCallum).

## 1. Sharifi's conjecture

The Milnor $K_{n}$-group associated to a commutative ring $R$ is

$$
K_{n}^{M}(R):=\left(R^{\times} \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} R^{\times}\right) / I
$$

where $I$ is generated by $a_{1} \otimes \cdots \otimes a_{n}$ such that $a_{i}+a_{j}=1$ for some $i \neq j$.
The Steinberg symbol is the map

$$
\begin{aligned}
R^{\times} \times \cdots \times R^{\times} & \rightarrow K_{n}^{M}(R) \\
\left(a_{1}, \ldots, a_{n}\right) & \mapsto a_{1} \otimes \cdots \otimes a_{n} \bmod I=:\left\{a_{1}, \ldots, a_{n}\right\} .
\end{aligned}
$$

Suppose that $(p, k)$ is an irregular pair; i.e., $p$ divides $B_{k} / k$, where $B_{k}$ is the $k$-th Bernoulli number. Let $R_{n}=\mathbb{Z}\left[\mu_{p}, 1 / p\right]$. Let $E=R^{\times} / R^{\times p}$. Decompose $E=\bigoplus_{i=0}^{p-2} E^{(1-i)}$ where $E_{(1-i)}$ is the subgroup of $E$ on which $G:=\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{p}\right) / \mathbb{Q}\right)$ acts via $\omega^{1-i}$, where $\omega: G \rightarrow \mathbb{F}_{p}^{\times}$. We have $E^{(1)} \simeq \mu_{p}$, and $E^{(1-i)}=0$ if $i$ is even. Assume that $i$ is odd from now on. Let $\zeta_{i}$ be a primitive $p$-th root of 1 . We have $R^{\times} \rightarrow E^{(1-i)}$ sending $1-\zeta_{p}$ to $\eta_{i}$. Let $\epsilon_{i}=\left\{\eta_{k-i}, \eta_{i}\right\} \in\left(K_{2}^{M}(R) / p\right)^{(2-k)}$.

Let $f$ be a normalized cuspidal eigenform of level $\ell$ and weight $k$. Let $\mathfrak{p}$ be a prime above $p$. Suppose $f \equiv G_{k}(\bmod \mathfrak{p})$. Then $f$ gives rise to a modular symbol $\phi_{f} \in \operatorname{Symb}_{\mathrm{SL}_{2}(\mathbb{Z})}\left(\mathbb{C}[X, Y]_{k-2}\right)$, namely

$$
\phi_{f}((r)-(s))=\int_{s}^{r} f(x)(z X+Y)^{k-2} d z
$$

for $r, s \in \mathbb{P}^{1}(\mathbb{Q})$.
The universal $L$-value of $\phi_{f}$ is

$$
\Lambda\left(\phi_{f}\right):=\phi_{f}((\infty)-(0)) .
$$

Define $L\left(\phi_{f}, i\right)$ by

$$
\Lambda\left(\phi_{f}\right)=\sum_{i=0}^{k-2}\binom{k-2}{i} X^{i} Y^{k-2-i} L\left(\phi_{f}, i+1\right)
$$

We have

$$
\begin{aligned}
\operatorname{Symb}_{\Gamma}(M) & \rightarrow H^{1}(\Gamma, M) \\
\phi & \mapsto(\gamma \mapsto \phi(\gamma(r)-(r)))
\end{aligned}
$$

for any $r \in \mathbb{P}^{1}(\mathbb{Q})$. Let $\psi_{f}$ be the image of $\phi_{f}$. We get an exact sequence defining the boundary symbols

$$
0 \rightarrow \operatorname{Bound}_{\Gamma}(M) \rightarrow \operatorname{Symb}_{\Gamma}(M) \rightarrow H_{\mathrm{par}}^{1}(\Gamma, M) \rightarrow 0
$$

Date: June 7, 2007.

Then

$$
L\left(\psi_{f}, i+1\right)=L\left(\phi_{f}, i+1\right)
$$

for $2 \leq i<k-2$.
Conjecture 1.1. Assume Vandiver's conjecture. Then there exist $\rho:\left(K_{2}^{M}(R) / p\right)^{(2-k)} \rightarrow$ $\mathbb{F}_{p}\left(\omega^{2-k}\right)$ and $\Omega^{+}$such that $\frac{L\left(\psi_{f}^{+}, i\right)}{\Omega^{+}} \equiv \rho\left(\epsilon_{i}\right)$ for all odd $i$.

We have

$$
\rho: K_{2}^{M}(R) / p \rightarrow K_{2}(R) / p \simeq \mathrm{Cl}\left(\mathbb{Q}\left(\mu_{p}\right)\right) / p \otimes \mu_{p} \rightarrow \mathbb{F}_{p}\left(\omega^{2-k}\right) .
$$

McCallum-Sharifi conjecture that if Vandiver's conjecture holds, then $K_{2}^{M}(R) / p \rightarrow K_{2}(R) / p$ is surjective.

Vandiver's conjecture comes in since

$$
\operatorname{dim}_{\mathbb{F}_{p}} H_{\mathrm{Eis}, \ell \neq p}^{1}=\operatorname{dim}_{\mathbb{F}_{p}}\left(\mathrm{Cl}\left(\mathbb{Q}\left(\mu_{p}\right)\right) / p\right)
$$

Theorem 1.2. Assume $k<p$. There exists $\psi \in\left(H_{\mathrm{par}}^{1}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{F}_{p}[X, Y]_{k-2}\right)\right)^{+}$such that given any $\rho$,
(1) $L(\psi, i)=\rho\left(\left\{\epsilon_{i}\right\}\right)$ for $i$ odd, $3 \leq i \leq k-3$, and
(2) $\left.\psi\right|_{T_{q}}=\left(1+q^{k-1}\right) \psi$ for $q=2,3$.

We sketch the proof. Let $X_{n}=\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{2}=\left\{(x, y) \in\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{2}:(x, y, p)=1\right\}$. A Manin symbol is a symbol on $X_{n}$ with values in some module $M$.
Theorem 1.3. There exists $e_{n} \in \operatorname{Manin}_{\Gamma_{0}\left(p^{n}\right)}\left(K_{2}\left(R_{n}\right) / 2\right)$, and $\left.e_{n}\right|_{T_{q}}-(q+\omega(q)) \in \operatorname{Bound}_{\Gamma_{0}\left(p^{n}\right)}(M)$.
Let

$$
(x, y)= \begin{cases}\left\{1-\zeta^{x}, 1-\zeta^{y}\right\}, & \text { if } x y \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

If $x y \neq 0$ and $x+y \neq 0$, then

$$
\frac{\zeta^{y}\left(1-\zeta^{x}\right)}{1-\zeta^{x+y}}+\frac{1-\zeta^{y}}{1-\zeta^{x+y}}=1
$$

Therefore $e(x, y)-e(x, x+y)-e(x+y, y)=0$. (This is the 2-nd Manin relation.)
The action of $T_{2}$ is given as follows:

$$
\left.e_{n}\right|_{T_{2}}(x, y)=e_{n}(x, 2 y)+e_{n}(2 x, y)+e_{n}(x+y, 2 y)+e_{n}(2 x, x+y)
$$

If $x y \neq 0$ and $x+y \neq 0$, then

$$
\frac{\left(1-\zeta^{x+y}\right)\left(1-\zeta^{x}\right)}{1-\zeta^{2 x}}+\zeta^{x} \frac{\left(1-\zeta^{2 y}\right)\left(1-\zeta^{x}\right)}{\left(1-\zeta^{2 x}\right)\left(1-\zeta^{2 y}\right)}=1 .
$$

Stevens generalized this by defining

$$
\phi \in \operatorname{Symb}_{\mathrm{GL}_{2}(\mathbb{Q})}\left(\operatorname{Dist}\left(\mathbb{Q}^{2}, \mathcal{K}_{n}(R)\right)\right) .
$$

