THE STEINBERG SYMBOL AND MODULAR SYMBOLS

CECILIA BUSUIOC (WITH GLENN STEVENS)

Inspiration/motivation: conjecture of R. Sharifi (and McCallum).

1. Sharifi's conjecture

The Milnor K_n -group associated to a commutative ring R is

$$K_n^M(R) := (R^{\times} \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} R^{\times})/I$$

where I is generated by $a_1 \otimes \cdots \otimes a_n$ such that $a_i + a_j = 1$ for some $i \neq j$.

The *Steinberg symbol* is the map

$$R^{\times} \times \cdots \times R^{\times} \to K_n^M(R)$$
$$(a_1, \dots, a_n) \mapsto a_1 \otimes \cdots \otimes a_n \bmod I =: \{a_1, \dots, a_n\}.$$

Suppose that (p, k) is an irregular pair; i.e., p divides B_k/k , where B_k is the k-th Bernoulli number. Let $R_n = \mathbb{Z}[\mu_p, 1/p]$. Let $E = R^{\times}/R^{\times p}$. Decompose $E = \bigoplus_{i=0}^{p-2} E^{(1-i)}$ where $E_{(1-i)}$ is the subgroup of E on which $G := \operatorname{Gal}(\mathbb{Q}(\mu_p)/\mathbb{Q})$ acts via ω^{1-i} , where $\omega : G \to \mathbb{F}_p^{\times}$. We have $E^{(1)} \simeq \mu_p$, and $E^{(1-i)} = 0$ if i is even. Assume that i is odd from now on. Let ζ_i be a primitive p-th root of 1. We have $R^{\times} \to E^{(1-i)}$ sending $1 - \zeta_p$ to η_i . Let $\epsilon_i = \{\eta_{k-i}, \eta_i\} \in (K_2^M(R)/p)^{(2-k)}$.

Let f be a normalized cuspidal eigenform of level ℓ and weight k. Let \mathfrak{p} be a prime above p. Suppose $f \equiv G_k \pmod{\mathfrak{p}}$. Then f gives rise to a modular symbol $\phi_f \in \text{Symb}_{\text{SL}_2(\mathbb{Z})}(\mathbb{C}[X,Y]_{k-2})$, namely

$$\phi_f((r) - (s)) = \int_s^r f(x)(zX + Y)^{k-2} dz$$

for $r, s \in \mathbb{P}^1(\mathbb{Q})$.

The universal *L*-value of ϕ_f is

$$\Lambda(\phi_f) := \phi_f((\infty) - (0)).$$

Define $L(\phi_f, i)$ by

$$\Lambda(\phi_f) = \sum_{i=0}^{k-2} \binom{k-2}{i} X^i Y^{k-2-i} L(\phi_f, i+1).$$

We have

$$Symb_{\Gamma}(M) \to H^{1}(\Gamma, M)$$
$$\phi \mapsto (\gamma \mapsto \phi(\gamma(r) - (r)))$$

for any $r \in \mathbb{P}^1(\mathbb{Q})$. Let ψ_f be the image of ϕ_f . We get an exact sequence defining the boundary symbols

$$0 \to \operatorname{Bound}_{\Gamma}(M) \to \operatorname{Symb}_{\Gamma}(M) \to H^1_{\operatorname{par}}(\Gamma, M) \to 0$$

Date: June 7, 2007.

Then

$$L(\psi_f, i+1) = L(\phi_f, i+1)$$

for $2 \le i < k - 2$.

Conjecture 1.1. Assume Vandiver's conjecture. Then there exist $\rho: (K_2^M(R)/p)^{(2-k)} \to \mathbb{F}_p(\omega^{2-k})$ and Ω^+ such that $\frac{L(\psi_f^+,i)}{\Omega^+} \equiv \rho(\epsilon_i)$ for all odd *i*.

We have

 $\rho \colon K_2^M(R)/p \to K_2(R)/p \simeq \operatorname{Cl}(\mathbb{Q}(\mu_p))/p \otimes \mu_p \to \mathbb{F}_p(\omega^{2-k}).$

McCallum-Sharifi conjecture that if Vandiver's conjecture holds, then $K_2^M(R)/p \to K_2(R)/p$ is surjective.

Vandiver's conjecture comes in since

$$\dim_{\mathbb{F}_p} H^1_{\mathrm{Eis}, \ell \neq p} = \dim_{\mathbb{F}_p} \left(\mathrm{Cl}(\mathbb{Q}(\mu_p))/p \right).$$

Theorem 1.2. Assume k < p. There exists $\psi \in \left(H^1_{par}(SL_2(\mathbb{Z}), \mathbb{F}_p[X, Y]_{k-2})\right)^+$ such that given any ρ ,

(1) $L(\psi, i) = \rho(\{\epsilon_i\})$ for $i \text{ odd}, 3 \le i \le k-3$, and (2) $\psi|_{T_q} = (1+q^{k-1})\psi$ for q = 2, 3.

We sketch the proof. Let $X_n = (\mathbb{Z}/p^n\mathbb{Z})^2 = \{(x, y) \in (\mathbb{Z}/p^n\mathbb{Z})^2 : (x, y, p) = 1\}$. A Manin symbol is a symbol on X_n with values in some module M.

Theorem 1.3. There exists $e_n \in \operatorname{Manin}_{\Gamma_0(p^n)}(K_2(R_n)/2)$, and $e_n|_{T_q} - (q + \omega(q)) \in \operatorname{Bound}_{\Gamma_0(p^n)}(M)$.

Let

$$(x,y) = \begin{cases} \{1 - \zeta^x, 1 - \zeta^y\}, & \text{if } xy \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

If $xy \neq 0$ and $x + y \neq 0$, then

$$\frac{\zeta^y (1-\zeta^x)}{1-\zeta^{x+y}} + \frac{1-\zeta^y}{1-\zeta^{x+y}} = 1.$$

Therefore e(x, y) - e(x, x + y) - e(x + y, y) = 0. (This is the 2-nd Manin relation.) The action of T_2 is given as follows:

 $e_n|_{T_2}(x,y) = e_n(x,2y) + e_n(2x,y) + e_n(x+y,2y) + e_n(2x,x+y).$

If $xy \neq 0$ and $x + y \neq 0$, then

$$\frac{(1-\zeta^{x+y})(1-\zeta^x)}{1-\zeta^{2x}} + \zeta^x \frac{(1-\zeta^{2y})(1-\zeta^x)}{(1-\zeta^{2x})(1-\zeta^{2y})} = 1.$$

Stevens generalized this by defining

 $\phi \in \operatorname{Symb}_{\operatorname{GL}_2(\mathbb{Q})}(\operatorname{Dist}(\mathbb{Q}^2, \mathcal{K}_n(R))).$