VISIBILITY OF THE SHAFAREVICH-TATE GROUP FOR ANALYTIC RANK 1

AMOD AGASHE

Let E be an elliptic curve over \mathbb{Q} with conductor N (often squarefree). Then we have $\pi: J_{0}(N) \rightarrow E$. Assume that $\operatorname{ker} \pi$ is connected. Then there exists a newform $f \in$ $S_{2}\left(\Gamma_{0}(N), \mathbb{C}\right)$ such that $E=A_{f}:=J_{0}(N) / I_{f} J_{0}(N)$ where $I_{f}:=\mathrm{Ann}_{\mathbb{T}} f$. We have $E^{\vee} \hookrightarrow$ $J_{0}(N)$. An element of $\amalg_{E^{\vee}}$ is said to be visible in $J_{0}(N)$ if it is in the kernel of the map $\amalg_{E^{\vee}} \rightarrow Ш_{J_{0}(N)}$.

Goal: Use visibility to account for BSD conjectural \amalg_{E}.
Conjecture 0.1 (Stein-Jetchev). Given $\sigma \in \amalg_{E^{\vee}}$, there exist M and a quotient C of $J_{0}(N M)$ and an injection $E^{\vee} \hookrightarrow C$ such that $\sigma \in \operatorname{ker}\left(\amalg_{E^{\vee}} \rightarrow Ш_{C}\right)$.

Suppose that there exists an elliptic curve $F \subseteq J_{0}(N)$ such that $E[p]=F[p]$ in $J_{0}(N)$ for some prime p. Then

$$
0 \rightarrow E(\mathbb{Q}) / p E(\mathbb{Q}) \rightarrow H^{1}(\mathbb{Q}, E[p]) \rightarrow H^{1}(\mathbb{Q}, E)[p] \rightarrow 0
$$

and

$$
0 \rightarrow F(\mathbb{Q}) / p F(\mathbb{Q}) \rightarrow H^{1}(\mathbb{Q}, F[p]) \rightarrow H^{1}(\mathbb{Q}, F)[p] \rightarrow 0
$$

with the middle terms being equal. Suppose that $E(\mathbb{Q})[p]=0$ and $\operatorname{rank} F(\mathbb{Q})>\operatorname{rank} E(\mathbb{Q})$.
Theorem 0.2 (Dummigan-Stein-Watkins). Suppose that N is prime. Let p be a prime such that $p \nmid N(N-1)$. Suppose that there exists an eigenform $g \in S_{2}\left(\Gamma_{0}(N), \mathbb{C}\right)$ with $f \equiv g$ modulo a maximal ideal of \mathbb{T} over p and $\operatorname{rank} A_{g}(\mathbb{Q})>0=\operatorname{rank} A_{f}(\mathbb{Q})\left(\right.$ with $\left.A_{f}=E\right)$. Then p divides $\# Ш_{A_{f}^{\vee}}$.

1. Analytic rank zero case

Suppose that $L(E, 1) \neq 0$. Let $H=H_{1}\left(X_{0}(N), \mathbb{Z}\right)$. We have $H_{1}\left(X_{0}(N), \mathbb{Z}\right) \otimes \mathbb{R} \xrightarrow{\sim}$ $\operatorname{Hom}_{\mathbb{C}}\left(H^{0}\left(X_{0}(N), \Omega / \mathbb{C}\right), \mathbb{C}\right)$ mapping the class of a cycle γ to $\left(\omega \mapsto \int_{\gamma} \omega\right)$. The winding element e is the element mapping to $\left(\omega \mapsto-\int_{0}^{i \infty} \omega\right)$. Let $\mathcal{I}=\operatorname{Ann}_{\mathbb{T}}((0)-(\infty))$. Then $\mathcal{I} e \in H$. Let $K=\operatorname{ker}\left(H \rightarrow H_{1}(E, \mathbb{Z})\right)$. Fact:

$$
\frac{L(E, 1)}{\Omega_{E}}=\frac{\left|H_{1}(E, \mathbb{Z})^{+} / \pi(\mathcal{I} e)\right|}{c_{\infty}(E) c_{E}|\pi(\mathbb{T} e / \mathcal{I} e)|}
$$

where c_{E} is the Manin constant. Let $I_{e}=\mathrm{Ann}_{\mathbb{T}} e$. Then, up to powers of 2,

$$
\frac{L(E, 1)}{\Omega_{E}}=\frac{\left|\frac{H^{+}}{K^{+}+H\left[I_{e}\right]^{+}}\right|\left|\frac{H\left[I_{e}^{+}\right]}{K^{+} \mathcal{I}_{e}}\right|}{|\pi(\mathbb{T} e / \mathcal{I} e)|} \stackrel{?}{=} \frac{\left|\Psi_{E}\right| \prod_{\ell \mid N} c_{\ell}(E)}{\left|E(\mathbb{Q})_{\mathrm{tors}}\right|^{2}}
$$

Date: June 5, 2007.

2. Analytic rank one case

Let K be an imaginary quadratic field satisfying the Heegner hypothesis. Let $x \in$ $X_{0}(N)(H)$ be a Heegner point, where H is the Hilbert class field of K. Then we get

$$
P=\left[\sum_{\sigma \in \operatorname{Gal}(H / K)}((x)-(\infty))^{\sigma}\right] \in J_{0}(N)(H) .
$$

BSD II becomes Gross-Zagier:

$$
[E(K) / \mathbb{Z} \pi(P)] \stackrel{?}{=} c_{E} \prod_{\ell \mid N} c_{\ell}(E) \sqrt{\amalg(E / K)}
$$

Kolyvagin proved \geq.
Given $0 \rightarrow B \rightarrow J \rightarrow E \rightarrow 0$, where $B:=I_{f} J$. Then we have exact sequences

$$
0 \rightarrow B(K) \rightarrow J(K) \rightarrow E(K) \rightarrow H^{1}(K, B) \rightarrow H^{1}(K, J)
$$

and

$$
0 \rightarrow \frac{J(K)}{B(K)+\mathbb{Z} P} \rightarrow \frac{E(K)}{\mathbb{Z} \pi(P)} \rightarrow \operatorname{ker}\left(H^{1}(B) \rightarrow H^{1}(J)\right) \rightarrow 0
$$

Let p be a prime that divides $|E(K) / \mathbb{Z} \pi(P)|$. Suppose that $p \nmid\left|J_{0}(N)(\mathbb{Q})_{\text {tors }}\right|$. Let A be the sum of A_{g}^{\vee} in $J_{0}(N)$ such that g has analytic rank 1 . We have

$$
\left|\frac{J(K)}{B(K)+\mathbb{Z} P}\right|=\left|\frac{J(K)}{B(K)+A(K)}\right|\left|\frac{B(K)+A(K)}{B(K)+\mathbb{Z} P}\right| .
$$

Theorem 2.1. Suppose that N is prime and $p \nmid N(N-1)$. Assume BSD I. Recall $p \nmid$ $\left|J_{0}(N)(\mathbb{Q})_{\text {tors }}\right|$. If p divides either $\left|\frac{J(K)}{B(K)+A(K)}\right|$ or $\left|\operatorname{ker}\left(H^{1}(B) \rightarrow H^{1}(J)\right)\right|$, then p divides $\left|Ш_{E}\right|$.

Let's sketch the proof in the case that p divides $\left|\frac{J(K)}{B(K)+A(K)}\right|$. The long exact sequence associated to

$$
0 \rightarrow A \cap B \rightarrow A \oplus B \rightarrow J \rightarrow 0
$$

gives

$$
0 \rightarrow \frac{J(K)}{A(K)+B(K)} \rightarrow \operatorname{ker}\left(H^{1}(A \cap B) \rightarrow H^{1}(A) \oplus H^{1}(B)\right) \rightarrow 0
$$

Let $C=(A \cap B)^{0}$ and $Q=(A \cap B) / C$. Let $m=|Q|$.

