Multi-Agent Optimization (6)

III. Stochastic Models

Stochastic: Numerical procedure(s)

Roger J-B Wets
University of California, Davis

Collaborators

- Michael Ferris, University of Wisconsin
- Alejandro Jofré, Universidad de Chile

Pure Exchange: Walras

agent's problem: Agents: $\mathrm{i} \in$ ク | १| finite "large"
$\bar{x}_{i} \in \arg \max u_{i}\left(x_{i}\right)$ so that $\left\langle p, x_{i}\right\rangle \leq\left\langle p, e_{i}\right\rangle, x_{i} \in X_{i}$ e_{i} : endowment of agent $i, e_{i} \in \operatorname{int} X_{i}$ u_{i} : utility of agent i, concave, usc

$$
u_{i}: X_{i} \rightarrow \mathbb{R}, \quad X_{i} \subset \mathbb{R}^{n}(\text { survival set }) \text { convex }
$$

market clearing: $s(p)=\sum_{\mathrm{i} \in\urcorner}\left(e_{i}-\bar{x}_{i}\right)$ excess supply
equilibrium price: $\quad \bar{p} \in \Delta$ such that $s(\bar{p}) \geq 0$
Δ unit simplex

The Walrasian

$$
W(p, q)=\langle q, s(p)\rangle, W: \Delta \times \Delta \rightarrow \mathbb{R}
$$

\bar{p} equilibirum price (Ky Fan Inequality)

$$
\Leftrightarrow \bar{p} \in \arg \max _{p}\left(\inf _{q} W(p, q)\right) \& s(\bar{p}) \geq 0
$$

Properties of W :
continuous in p ($e_{i} \in \operatorname{int} C_{i}$, ' i-inf-compact') usc linear in $q, \quad \Delta$ compact, convex $W(p, p) \geq 0, \forall p \in \Delta$
i.e., W is a Ky Fan function

Numerical Approaches

Augmented Walrasian:
$\bar{p} \in \operatorname{argmax}-i n f \mathrm{~W}$
\cong saddle point (\bar{p}, \bar{q}) of \tilde{W}_{r}
$\tilde{W}_{r}(p, q)=\inf _{z}\{W(p, z) \mid\|z-q\| \leq r\}$,
$\|\cdot\|$ an appropriate norm $\left(|\cdot|_{\infty}\right.$ e.g.)

Variational Inequality

 $\max u_{i}\left(x_{i}\right)$ so that $\left\langle p, x_{i}\right\rangle \leq\left\langle p, e_{i}\right\rangle, x_{i} \in C_{i}$$$
\begin{aligned}
& \sum_{i}\left(e_{i}-c_{i}\right)=s(p) \geq 0 . \\
& \widehat{\sqrt{[}} \quad N_{D}(\bar{z})=\{v \mid\langle v, z-\bar{z}\rangle \leq 0, \forall z \in D\}
\end{aligned}
$$

$$
\int_{\bar{z}}^{N_{0}(\bar{z})}
$$

$$
G\left(p,\left(x_{i}\right),\left(\lambda_{i}\right)\right)=\left[\sum_{i}\left(e_{i}-x_{i}\right) ;\left(\lambda_{i} p-\nabla u_{i}\left(x_{i}\right)\right) ;\left\langle p, e_{i}-x_{i}\right\rangle\right]
$$

$$
D=\Delta \times\left(\prod_{i} C_{i}\right) \times\left(\prod_{i} \mathbb{R}_{+}\right)
$$

$$
-G\left(\bar{p},\left(\bar{x}_{i}\right),\left(\bar{\lambda}_{i}\right)\right) \in N_{D}\left(\bar{p},\left(\bar{x}_{i}\right),\left(\bar{\lambda}_{i}\right)\right)
$$

D unbounded $\rightarrow \hat{D}$ bounded

Stochastic Equilibrium Model

Pure Exchange model with Input/Output activities

Agent-i problem-stochastic

$$
\begin{aligned}
& \max _{x_{i}^{0}, y_{i} \in \mathbb{R}^{n}, x_{i}^{1}, \in \mathcal{M}} u_{i}^{0}\left(x_{i}^{0}\right)+E_{i}\left\{u_{i}^{1}\left(\xi, x_{i, \xi}^{1}\right)\right\} \\
& \text { so that }\left\langle p^{0}, x_{i}^{0}+T_{i}^{0} y_{i}\right\rangle \leq\left\langle p^{0}, e_{i}^{0}\right\rangle \\
& \left\langle p_{\xi}^{1}, x_{i, \xi}^{1}\right\rangle \leq\left\langle p_{\xi}^{1}, e_{i, \xi}^{1}+T_{i, \xi}^{1} y_{i}\right\rangle, \forall \xi \in \Xi \\
& x_{i}^{0} \in X_{i}^{0}, x_{i, \xi}^{1} \in X_{i, \xi}^{1}, \forall \xi \in \Xi
\end{aligned}
$$

造 E_{i} \{.\} rational expectation w.r.t. i-beliefs
Stochastic program with recourse: 2-stage Well-developed solution procedures
Well-developed "approximation theory"

Simplest-classical assumptions

Ξ finite (support)
$u_{i}^{0}: X_{i}^{0} \rightarrow \mathbb{R}, \forall \xi \in \Xi, u_{i}^{1}(\xi, \bullet): X_{i, \xi}^{1} \rightarrow \mathbb{R}$ concave continuous. (numerics: differentiable)
$T_{\mathrm{i}}^{0}, T_{i, \xi}^{1}$: input-ouput matrices (production, investment, etc.)
$X_{\mathrm{i}}^{0}, X_{i, \xi}^{1}$: closed, convex, non-empty interior
$e_{\mathrm{i}}^{0} \in \operatorname{int} X_{\mathrm{i}}^{0}, e_{i, \xi}^{1} \in \operatorname{int} X_{i, \xi}^{1}$ for all ξ

Market Clearing

Agents: $i \in$ ク, \mid ク| finite "large"

$$
\left(\bar{x}_{i}^{0}, \bar{y}_{i},\left\{\bar{x}_{i, \xi}^{1}\right\}_{\xi \in \Xi}\right) \in \arg \max \{\text { agent } i \text { problem }\}
$$

excess supply:

$$
\begin{aligned}
& \sum_{i \in\urcorner}\left(e_{i}^{0}-\left(\bar{x}_{i}^{0}+T_{i}^{0} \bar{y}_{i}\right)\right)=s^{0}\left(p^{0},\left\{p_{\xi}^{1}\right\}_{\{\xi \in \xi\}}\right) \geq 0 \\
& \forall \xi \in \Xi:
\end{aligned}
$$

$$
\sum_{i \in\urcorner}\left(e_{i, \xi}^{1}+T_{i, \xi}^{1} \bar{y}_{i}-\bar{x}_{i, \xi}^{1}\right)=s_{\xi}^{1}\left(p^{0},\left\{p_{\xi}^{1}\right\}_{\{\xi \in \xi\}}\right) \geq 0
$$

Here-\&-Now vs. Wait-\&-See

- Basic Process: decision --> observation --> decision

$$
\left(x_{i}^{0}, y_{i}\right) \rightarrow \xi \rightarrow x_{i, \xi}^{1}
$$

* Here-\&-now problem! not all contingencies available at time 0
$\left(x_{i}^{0}, y_{i}\right)$ can't depend on $\xi!$
- Wait-\&-see problem implicitly all contingencies available at time 0 choose $\left(x_{i, \xi}^{0}, y_{i, \xi}^{0}, x_{i, \xi}^{1}\right)$ after observing x
Δ incomplete \subset complete market ?

Fundamental Theorem
 of Stochastic Optimization

A here-and-now problem can be "reduced" to a wait-and-see problem by introducing the
appropriate 'contingency' costs
(price of nonanticipativity)

Contingencies prices (nonanticipativity)

Here-\&-now
$\max E\left\{f\left(\xi, z^{0}, z_{\xi}^{1}\right)\right\}$

$$
\begin{array}{r}
z^{0} \in C^{0} \subset \mathbb{R}^{n_{1}}, \\
z_{\xi}^{1} \in C_{\xi}^{1}\left(z^{0}\right), \forall \xi .
\end{array}
$$

Explicit nonanti. constraints

$$
\begin{aligned}
& \max E\left\{f\left(\xi, z_{\xi}^{0}, z_{\xi}^{1}\right)\right\} \\
& z_{\xi}^{0} \in C^{0} \subset \mathbb{R}^{n_{1}}, \\
& z_{\xi}^{1} \in C_{\xi}^{1}\left(z^{0}\right), \forall \xi \\
& \Rightarrow z_{\xi}^{0}=E\left\{z_{\xi}^{0}\right\} \forall \xi \\
& w_{\xi} \perp \mathrm{c}^{\text {ste }} \mathrm{fcns} \\
& \Rightarrow \\
& \Rightarrow E\left\{w_{\xi}\right\}=0
\end{aligned}
$$

Progressive Hedging

\Rightarrow Step 0. $\quad w^{0}(\cdot)$ so that $E\left\{w^{0}(\xi)\right\}=0, v=0$
\diamond Step 1. for all ξ :

$$
\begin{gathered}
\left(z_{\xi}^{0, v}, z_{\xi}^{1, v}\right) \in \arg \max f\left(\xi ; z^{0}, z^{1}\right)-\left\langle w_{\xi}^{v}, z^{0}\right\rangle \\
z^{0} \in C^{0} \subset \mathbb{R}^{n_{0}}, z^{1} \in C^{1}\left(\xi, x^{0}\right) \subset \mathbb{R}^{n_{1}}
\end{gathered}
$$

\diamond Step 2. $\quad w_{\xi}^{v+1}=w_{\xi}^{v}+\rho\left[z_{\xi}^{0, v}-E\left\{z_{\xi}^{0, v}\right\}\right], \quad \rho>0$

- and return to Step 1, $v=v+1$
\diamond Convergence: add proximal term

$$
-\frac{\rho}{2}\left\|z_{\xi}^{0, v}-E\left\{z_{\xi}^{0, v}\right\}\right\|^{2}, \text { linear rate in }\left(z^{v}, w^{v}\right)
$$

Disintegration: agent's problem

$$
\begin{aligned}
& \text { with } \quad p_{\star}=\left(p^{0},\left\{p_{\xi}^{1}\right\}_{\xi \in \Xi}\right) \\
& \left(\bar{x}_{i, \xi}^{0}, \bar{y}_{i, \xi}^{0}, \bar{x}_{i, \xi}^{1}\right) \in \quad \text { 'i-contingency’ costs } \\
& \underset{x_{i}^{0}, y_{i}, x_{i}^{1}}{\arg \max }\left\{u_{i}^{0}\left(x_{i}^{0}\right)-\left\langle\frac{\bar{w}}{i, \xi},\left(x_{i}^{0}, y_{i}\right)\right\rangle+u_{i}^{1}\left(\xi, x_{i}^{1}\right)\right\} \\
& \left\langle p^{0}, x_{i}^{0}\right\rangle \leq\left\langle p^{0}, e_{i}^{0}-T_{i}^{0} y_{i}\right\rangle \\
& \left\langle p_{\xi}^{1}, x_{i}^{1}\right\rangle \leq\left\langle p_{\xi}^{1}, e_{i, \xi}^{1}+T_{i, \xi}^{1} y_{i}\right\rangle, \\
& x_{i}^{0} \in X_{i}^{0}, x_{i}^{1} \in X_{i, \xi}^{1} .
\end{aligned}
$$

solved for each ξ separately

Incomplete to 'Complete' Market

$\forall \xi \in \Xi$ (separately),
agent's problem:
$\left(\bar{x}_{i}^{0}, \bar{y}_{i}^{0}, \bar{x}_{i, \xi}^{1}\right) \in \arg \max \left\{u_{i}^{w_{i, \xi}}\left(x_{i}^{0}, y_{i}^{0}, x_{i}^{1}\right)\right.$ on $\left.\widehat{C}_{i, \xi}\left(p^{0}, p_{\xi}^{1}\right)\right\}$
for $\left\{w_{i, \xi}\right\}_{\xi \in \Xi}$ associated with $\left(p^{0}, p_{\xi}^{1}\right)$
clear market:
$s^{0}\left(p^{0}, p_{\xi}^{1}\right) \geq 0, s_{\xi}^{1}\left(p^{0}, p_{\xi}^{1}\right) \geq 0$
Arrow-Debreu 'stochastic' equilibrium problem

THE WALRASIAN

$$
W\left(p_{*}, q_{*}\right)=\left\langle q_{\star}, s\left(p_{\star}\right)\right\rangle
$$

$$
=\left\langle\left(q^{0},\left\{q_{\xi}^{1}\right\}_{\xi \in \Xi}\right),\left(s^{0}\left(p^{0},\left\{p_{\xi}^{1}\right\}_{\xi \in \Xi}\right),\left\{s_{\xi}^{1}\left(p^{0},\left\{p_{\xi}^{1}\right\}_{\xi \in \Xi}\right)\right\}_{\xi \in \Xi}\right)\right\rangle
$$

$$
W: \prod_{1+|E|} \Delta \times \prod_{1+|E|} \Delta \rightarrow \mathbb{R}
$$

linear w.r.t. q_{\star}, continuous w.r.t. p_{\star}
$W\left(p_{\star}, p_{\star}\right) \geq 0$.
provided $s(\cdot)$ continuous w.r.t. p
$\mathbf{t}_{\text {like in lecture no. }}$

IV. Experimentation

with PATH Solver (experimental)

- Economy: (5 goods)
- Skilled \& unskilled workers
- Businesses: Basic goods \& leisure
- Banker: bonds (riskless), 2 stocks
\diamond 2-stages, 280 scenarios, 2776 scenarios
\diamond utilities: CES-functions (gen. Cobb-Douglas)
- Utility in stage 2 assigned to financial instruments
- only used for transfer in stage 1
- on laptop: ~4 min, ~14 min, but extremely parallelizable algorithm

with PATH Solver (stochastic)

- objectives:

$$
u_{i}^{0}\left(x_{i}^{0}\right)+u_{i}^{1}\left(x_{i}^{1}\right) \Rightarrow
$$

$$
u_{i}^{0}\left(x_{i}^{0}\right)-\left\langle w_{i, \xi}^{v},\left(x_{i}^{0}, y_{i}\right)\right\rangle-\frac{\rho_{i}}{2}\left|\left(x_{i}^{0}, y_{i}\right)-\left(\hat{x}_{i}^{0, v}, \hat{y}_{i}^{v}\right)\right|^{2}+u_{i}^{1}\left(x_{i}^{1}\right)
$$

\diamond updating: $\quad\left(\hat{x}_{i}^{0, v}, \hat{y}_{i}^{v}\right)=E_{i}\left\{\left(x_{i, \xi}^{0, v}, y_{i, \xi}^{v}\right)\right\}$

$$
\begin{aligned}
& w_{i, \xi}^{v+1}=w_{i, \xi}^{v}+\rho_{i}\left(\left(x_{i, \xi}^{0, v}, y_{i, \xi}^{v}\right)-\left(\hat{x}_{i}^{0, v}, \hat{y}_{i}^{v}\right)\right) \\
& \quad \rho_{i}>0 \text { yields convergence }
\end{aligned}
$$

- also requires a proximal term to `support' convergence of equilibrium prices

