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1 Introduction
BIRS-REPORT, T. BISZTRICZKY

The main objective of this Workshop was to bring together ameminent and emerging researchers from
the three main branches of Convex Geometry: Discrete, Aicalyand Applied. There has not been such a
unifying conference in the past fifteen years. The orgasibetieve that this objective was met during the
week of March 4 - 9. First, of the thirty-nine participantaeahird represented the current group of emerging
researchers in the field; furthermore, five of these thirfesticipants were graduate students. Specifically,
three (Langi, Naszodi and Papez) from the University of @lgone (Jimenez) from the University of
Alberta, and one (Garcia-Colin) from the University Cobegondon.

Next, a common feature of many of the lectures was an expgsibtmnponent. This reflected the acknowl-
edgement and approval of the participants of the unifyingpesof the Workshop. The prevailing intent of
the lectures was to present the major problems and receanhees of their particular branch of Convexity. Of
particular note were the expository lectures on the conbiies of polytopes, the lectures introducing some
of the current topics of interests in linear and convex ojtation, and the lectures concerning the various
measures associated with convex bodies.

Finally, the consensus of the participants was that suchifging convexity workshop was not only
timely but also overdue. Their enthusiasm for the meetinggievidenced by the full program of thirty - six
lectures, and by a very faithful attendance at these lesturbe smallest number of listeners at any lecture
was thirty, and that number was attained only at the lastiteatn Thursday.

2 Abstracts

Iskander Aliev
A sharp lower bound for the Frobenius number

Ferdinand Georg Frobenius (1849-1917) raised the follgwinblem: givenV positive integergy, . .., ay
with ged(ag,...,any) = 1, find the largest natural number, = gn(as,...,an) (called the Frobenius
number) such thajy has no representation as a non-negative integer comhirgftia, . . ., ay.
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In the present talk, after a short historical overview, wecdss a geometric approach to the Frobenius
problem, based on results of Ravi Kannan, Peter Gruber addz&nSchinzel. The introduced technique al-
lows us to give an optimal lower bound for the Frobenius nurghein terms of the absolute inhomogeneous
minimum of the standardV — 1)-simplex.

Margaret Bayer
Flag vectors of polytopes: an overview

For ad-dimensional polytope®, and.S = {s1,2,...,sx} C {0,1,...,d — 1}, fs(P) is the number of
chains of face$ c F;, C I, C --- C F}, C P withdim F; = s;. Theflag vectorof P is the lengt2? vector
(fs(P))sc{o,....a—1}- This lecture gives a historical overview of the study of fl@gtors of polytopes.

The flag vector is an extension of the face vectorf-eector, which has been the subject of research since
Euler. In the cases of 3-dimensional polytopes and singdliepolytopes, characterizations gfvectors are
known, and in these cases, the flag vector is determinedljn@athe f-vector.

Richard Stanley (1979) studied flag vectors of Cohen-Magapbsets, a class that contains face lattices
of convex polytopes. Bayer and Billera (1985) proved theegalived Dehn-Sommerville equations, the
complete set of linear equations satisfied by the flag veofats convex polytopes. Kalai (1987) used rigidity
theory to show the inequalitfpo — 3 f> + f1 — dfo + (“5") > 0. The flag vectors of 4-dimensional polytopes
were studied by Bayer (1987), but a complete charactevizaif flag vectors of 4-polytopes continues to
elude us to this day.

A crucial ingredient in the characterization fvectors of simplicial polytopes was the connection with
toric varieties. In the nonsimplicial case, the middle pesity intersection homology of the toric variety
gives anh-vector, linearly dependent on the flag vector. Results fatgebraic geometry translate into linear
inequalities on the flag vector (Stanley 1987).

Another main source of linear inequalities is theindex of a polytope, discovered by Jonathan Fine
(1985). Thecd-index is a vector linearly equivalent to the flag vector;ahde viewed as a reduction of the
flag vector by the generalized Dehn-Sommerville equati&@tanley (1994) proved the nonnegativity of the
cd-index for convex polytopes. Billera and Ehrenborg (20@regthened the result by showing that among
d-polytopes thezd-index is minimized by that of thé-simplex. This depends on a co-algebra approach to
thecd-index developed by Ehrenborg and Readdy (1998).

Two separate techniques enable one to generate new lirergudlities on flag vectors from old. The
convolution operation was introduced by Kalai (1988); reoalsed this to demonstrate a particularly nice
basis for the flag vectors of polytopes. Ehrenborg (2005g#vlifting technique that applies to inequalities
on thecd-index.

We are still, apparently, far from a characterization of flagtors of polytopes. In fact, we do not even
know if the closed convex cone of flag vectors is finitely gatenl. Special classes of polytopes, such as
cubical polytopes and zonotopes, have been studied. Iiiaddhere are some results on more general
classes of partially ordered sets: general graded posdeyi&h posets, and Gorensteiattices.

Karoly Bezdek
Short Billiards

The talk is a survey talk on periodic billiards centered abthe following theorem and conjecture of the
author.

DEFINITION. We say thab is a k-sided billiard arcof the convex bodK € E",;n > 2,k > 1if bisa
k-sided polygonal arc ife™ whose vertices lie on the boundarylfand whose each angle bisector is per-
pendicular to a supporting hyperplanefpassing through the corresponding vertebad finally, whose
first (resp., last) segment is perpendicular to a suppohypgrplane oK passing through the corresponding
endpoint ofb.

THEOREM. If the minimum width of the convex boly ¢ E™, n > 2 is at leastl, then the length of any
billiard arc of K is at leastl.
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COROLLARY. Let X C E",n > 2 be a (finite) set of diameter at mokt Then the length of any billiard
arc of B[X] := (| B"[z] is at leastl, whereB"[z] C E" stands for the closed-dimensional unit ball
rzeX

centered at.

DEFINITION. We say thab is a k-sided billiard polygorof the convex bodyK € E™" n > 2.k > 2 if
b is a k-sided polygon inE™ whose vertices lie on the boundary Kf and whose each angle bisector is
perpendicular to a supporting hyperplandopassing through the corresponding vertebof

CONJECTURE Let X € E™,n > 2 be a (finite) set of diameter at mot Then the length of any billiard
polygon of B[ X] := (| B"[z]is at leas®.

rzeX
REMARK. The above theorem and conjecturefior 2 follow from a theorem of the author and R. Connelly
(1989).

Karoly Boroczky, Jr.
Convex bodies of minimal volume, surface area and mean wiitthrespect to thin shells

Givenr > 1, let us consider convex bodies kf* that contain a fixed unit ball, and whose extreme points
are of distance at leastfrom the centre of the unit ball, and we investigate how we#ise convex bodies
approximate the unit ball in terms of volume, surface areghrapan width. The main results joint with K.
Boroczky, C. Schitt and G. Wintsche are as follows:rAgnds to one, there are asymptotic formulae for
the error of the approximation, and asymptotically the veHmundary of the extremal bodies are covered by
faces that are asymptotically regular trianglegth

René Brandenberg
Minimal containment under homothetics
(joint work with Lucia Roth)

Minimal containment problems arise in a variety of appliimas, such as shape fitting problems, data clus-
tering, pattern recognition or medical surgery. Typicahreples are norm maximization, computing the

circumball, circumcylinder or the width of a given body omimal enclosing boxes or ellipsoids. A possible

general framework gives the following definition

MINIMAL CONTAINMENT PROBLEM (MCP):

Input: d € N, K ¢ R? convex body.
Task: min ¢4(C), such thatk C C € Cy,

where(Cy usually is the orbit of a given convex body under a group ofigfarmations like homothetics,
similarities or affine mappings ang; a monotone functional such as the volume or the dilatatiotofaof
C.

In this talk we focus on the MCP under homothetics (MGR), which itself has a lot of applications
but is also needed as an important subroutine in solvingliodsher MCP problems. Besides some negative
complexity results the following was shown by Gritzmann #ide: if C is given by a strong separation
oracle and ifK is aV-polytope then MCR,,, can be solved in polynomial time using the ellipsoid method.

Because of the bad practical performance of the ellips@idrghm much effort has been spend to find
better solutions, at least whéhis the Euclidean ball. One recent idea are so called cordggmithms. Here
the approximation of the circumball of a point getis reduced to the computation of the circumball of a
small subset of?, where 'small’ means independent of the size and the diroarsiP.

We present a new and easy to implement cutting plane metlasddion linear programming, which is
dual in nature to the core set idea and very easy to implertiestlves the general MGE,,,, up to any given
accuracy and because of its adaptive character it also hasdapgactical performance.

Finally we point out some relations to well known theordtimablems in convex geometry, which play
a substantial role not only in the analysis of our method sd i the task to generalize the core set method
to non-euclidean containers.



2 ABSTRACTS 4

David Bremner
Approaches to facet enumeration under symmetry

Well known theorems of Minkowski and Weyl tell us that evepneex polytope is the convex hull of a finite
set of points and the bounded intersection of a set of (fae#nidg) halfspaces. In practice transforming
from one representation to the other is often of interedt,wsually difficult. One of the obvious difficulties
is that the output may be huge with respect to the input sizéhe other hand there is typically a symmetry
group acting on the polytope, and the practioner may onntexésted in equivalence classes of the output
under this group.

| will start by giving a brief survey of the state of the art ackét enumeration, including some idea of
what kind of inputs on which the known techniques face diffies.

| will then describe some preliminary experience with a fiivg technique for generating equivalence
classes of facets of a convex polytope under the action of@métry group. | describe connections with
previously studied “adjacency decomposition” methodswal as some of details of invariants, isometry
testing for bases, and pruning the search. | discuss therpahce of the pivoting method, which depends
not just on the degeneracy of the polytope, but on how the stmyngroup acts on bases (of facets) of the
polytope. This work is joint with Achill Schiirmann and Fkaviallentin.

Time permitting, | will mention some work of David Avis thapplies the “extend and canonicalize”
techniques of Read, McKay, and others to enumerate thesdate lattice up to symmetry.

Jesus A. De Loera
Transportation Polytopes: a twenty-year update

A transportation polytope consists of all multidimensikaraays of nonnegative numbers that satisfy certain
sum conditions on subsets of the entries. They arise ntumabptimization and statistics and have also
interest for pure mathematics due to the appearance of patiom matrices, latin squares, magic squares,
as lattice points of these polytopes. In this talk we presecént advances on the understanding of the
combinatorics and geometry of these polyhedra. In pagicule try to give a complete report on the status
of a long list of open questions last collected in the 1984 agwaph by Yemelichev-Kovalev-Kravtsov and
the 1986 survey paper of Vlach.

Richard Ehrenborg
The cd-index, polytopes and Gorenstein* lattices

The f-vector enumerates the number of faces of a polytope acwptdidimension, that isf; is the number

of faces of dimension. The flagf-vector is a refinement of thgvector which counts flags of faces in the
polytope. There are linear relations between the entri¢iseoflag f-vector known as the generalized Dehn-
Sommerville relations. Hence it would be interesting toehan explicit basis for the subspace spanned by
these relations.

The cd-index, conjectured by Fine and proved by Bayer and Klapgiges such a basis. It offers an
efficient way to encode the flafvector of a polytope. In fact, Stanley showed that ¢deindex exists for
Eulerian poset, namely a poset where each interval satthieSuler-Poincaré relation.

Very little is known about thed-index of a general polytope. Fine conjectured thatdddndex of a
polytope has non-negative coefficients. This conjecture praven by Stanley, in fact, he proved that the
cd-index is non-negative for spherical-shellalfieshellable) complexes.

A poset is Gorensteinif it is Eulerian and the associated chain complex is Coheadlay. The most
natural example of a Gorenstéiposet is the face lattice of a convex polytope. For Gorenstgosets
Stanley stated two conjectures: (1) Td@-index for Gorensteihposet is non-negative. (2) Tleel-index for
Gorensteif lattice is coefficientwise minimized by thel-index of the simplex of the same dimension.

A partial step toward Stanley’s second conjecture was takeBillera and Ehrenborg. They proved the
cd-index of a polytope is coefficientwise minimized by the siexpof the same dimension. Their proof uses
the geometric fact that polytopes are shellable.

Kalle Karu using techniques from algebraic geometry prdsthley’s first conjecture, that tleel-index
of a Gorensteihposets.
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Recently, Ehrenborg and Karu proved Stanley’s second camge | will end the talk by outlining the
proof and where it differs from the earlier proof for polytsp
This is joint work with Kalle Karu.

Ferenc Fodor
Geometric transversals in low and high dimensions

This talk contains results that were achieved jointly wittd Bisztriczky (Calgary) and Deborah Oliveros
(Mexico City), and with Gergely Ambrus (Szeged, Auburn) #&mdiras Bezdek (Auburn).

Let F denote a family of ovals in the Euclidean plane. A line tssansversato a family K if it intersects
every member ofl. K has the propert{’ if it has a transversalkC has the propertd’(k) if every at most
k-membered subfamily ok has a transversallC has the propert{" — k if there is a line that meets all
members ofC with the possible exception of at mdsof them.

In 1989, Tverberg proved th&t(5) = T for a disjoint family of translates of an oval, a conjecture
of Grinbaum (1958). In general, we know that neiti&8) nor 7'(4) is enough to guarantee the same.
Katchalski and Lewis (1980) proved that there exists a usaleconstant:; such thafl’(3) = T — ks for
any finite family of disjoint translates of an arbitrary ovalhey estimateds; < 1927 and conjectured that
ks = 2. It was shown, using a construction with unit disks, by A. &z (1991) thaks > 2. The upper
estimate orks was improved by Tverberg (1991) and later by Holmsen (2000 currently known best
upper bound foks is 22, established by Holmsen (2000). Holmsen (2000) constaestamples which show
thatks > 4. Holmsen also showed thiat = 4 for finite families of unit squares whose sides are paratiel t
the coordinate axes.

Danzer (1963) proved th&t(5) = T for a pairwise disjoint family of unit disks. Kaiser (2002javed
thatks < 12 for such a family. Finally, Heppes settled the question 8428y proving thaf’(3) = T —2 for
unit disks. An example of Aronov, Goodman, Pollack, and Ver@000) showed that(4) #4 T for unit
disks. It was proved by T. Bisztriczky, D. Oliveros and F.i2005 that ifF is a finite family of mutually
disjoint unit disks with the property’(4), thenF has the property’ — 1.

A family of balls in R is thinly distributedif the distance between the centres of any two balls is at leas
twice the sum of their radii. Hadwiger (1957) proved that doy family of thinly distributed balls iR?,
T(d?) = T. Grinbaum (1960) improved Hadwiger’s statement by prptiat7(2d — 1) = T. Holmsen,
Katchalski and Lewis (2003) showed that there exists a eobsy < 46 such thatl'(ng) = T for any
family of pairwise disjoint unit balls ilR?. The constant, was improved subsequently by Cheong, Goaoc
and Holmsen (2004) tbl.

G. Ambrus, A. Bezdek and F. F. (2005) improved on the distanoéition in Hadwiger’s (1960) theorem
proving that if F is a family of unit balls inR? with the property that the mutual distances of the centres ar
atleast\/2 4 v/2 thenT'(d?) = T.

We note that Cheong, Goaoc, Holmsen and Petitjean (200%)ygeently proved thal’(4d — 1) = T
for disjoint unit balls inR<.

Natalia Garcia-Colin
On a generalization of a problem of McMullen
regarding the neighborliness in convex polytopes

McMullen proposed the following question. Determine thgést integer. = f(d) such that any set of
points in general position in the affine— space R¢ can be mapped by a projective transformation on to the
vertices of a convex polytope. Itis known that

2d+1< f(d) <2d+ {%}

In the paper where Larman proved the lowed bound, he alsegrhat the lower bound is sharp in the
cases where d=1,2 and 3. The upper bound was proved by Rafiiogwin by constructing a family of
Lawrence Oriented Matroids where every of its members camde cyclic by reorienting one element.
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Using the techniques developed by Ramirez-Alfonsin, ingaiger, we construct a family of Lawrence
Oriented matroids that can always be made cyclic by redrigrat subsetS € X of the ground sefX (of
vertices) with cardinality at mogt. This construction gives an upper bound for the followinglgem:

Determine the largest integer= f(d, k) such that any set of points in general position in the affine
d— space R? can be mapped by a permissible projective transformatida the vertices of & —neighborly
convex polytope. Namely:

d
— 1< fld,k)y<2d—k+1
d+h+1J+ < fld, k) < +

Finally, we prove the following related problem in the plarging purely geometric methods:
In R? let X be a subset of n point in general position. ¢ ) the largestt such that there exists a
subdivisionA, B of X such thatonv(A\{x1, zs, ..., zx}) N conv(B\{z1, z2, ..., zx}) # 0. If
(n) 1

. g
= ma X),  the lim 22 = =,
(n) =  max g(X) en  lim ==

Paolo Gronchi
Shadow systems

Shadow systems were introduced in 1958 by Rogers and Sliefifyas families of convex hulls of a given
set of points moving with constant speed along a fixed diwactiRogers and Shephard showed that the
volume a shadow system is a convex function of the time-ld@metetr.

Shephard [7] noted that the elements of such a family can Eeedeas the projections of a higher
dimensional convex body along the direction tv onto the hyperplane’. This fact enables us to construct
shadow systems and also to extend the convexity properheofdlume to different quantities. Precisely, a
first consequence is that projections, Minkowski sums amyeo hulls of shadow systems are still shadow
systems. Hence, the brightness along a fixed direction isneegdfunction oft and, via Cauchy’s formula,
also the surface area is convextirSimilarly, taking projections onto 1-dimensional sulzss we infer that
the mean width and the diameter are convex functions of trempetert. By the same argument, Shephard
[7] proved that quermassintegrals and mixed volumes of@liaystems are convex functionstof

More recently, Campi, Colesanti and Gronchi [1] proved thatSylvester functional (i.e., the expected
value of the volume of a random polytope from a convex bodyd tonvex function of the parameter of
parallel chord movements, a particular kind of shadow sgsteCampi and Gronchi [2], [4] proved the
same convexity property for the volume of thé-centroid bodies and theP-zonotopes. Furthermore, they
showed [3] that the reciprocal of the volume of the polar boflgn origin-symmetric shadow system is a
convex function of the parameter. Meyer and Reisner [5]redeéd such a result to the non symmetric case.

The convexity of a functional along parallel chord moverserdn be used, via Steiner symmetrization,
to characterize ellipsoids as minimizers. The same prgpgedds also to maximizers in special classes.
Namely, triangles among two-dimensional convex sets arallpbbgrams in the symmetric case, parallelo-
topes among zonoids [4], simplices amafidimensional polytopes with at mogtt 3 vertices [5].

References

[1] S. Campi, A. Colesanti and P. Gronchi, A note on Sylveésfaoblem for random polytopes in a convex
body,Rend. Ist. Mat. Univ. Triestg1(1999), 79-94.

[2] S. Campi and P. Gronchi, ThE’-Busemann-Petty centroid inequalifygv. Math.167 (2002), 128—
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[3] S. Campi and P. Gronchi, On volume product inequalittebnvex sets, to appear &noceedings of
the AMS

[4] S. Campi and P. Gronchi, Volume inequalities for Lp-ztopes, preprint.
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Maria A. Hernandez Cifre
On the minimal annulus of a convex body: some optimizatiabfEms
(joint work with P. Herrero)

Let K be a convex body (i.e., a compact convex set) in the Eucligdame. Associated witli are a
number of well-known functionals: the areh the perimetep, the diameterD, the minimal widthw, the
circumradiusR x and the inradius k.

Another interesting functional to be considered for a carivedy K is the thick of itsminimal annulus
The minimal annulus of the bod is the annulus (the closed set consisting of the points lgetgeen two
concentric discs —concentricballs inR™) with minimal difference of radii that contains the bounglaf K.

Of course, the minimal annulus is uniquely determined (Bsen, 1929, ilR? andR?3, and Barany, 1988, in
higher dimension). This object and its properties wereistiidriginally by Bonnesen for planar convex sets
in order to sharp the isoperimetric inequalityRA.

In this talk we intend to present how the minimal annulus ofaaar convex bodyx is related with the
six classic geometric measures associated with it. Fimstpltain all the possible bounds (upper and lower
bounds) for the measures, p, D, w, Rk andry of a convex bodyK" with fixed minimal annulus. Then,
we deal with the relation between the minimal annulus arttieeithe circumradius, or the inradius &f.
we study some properties relating the minimal annulus witth Imeasures, and then we solve the problem
of maximizing and minimizing the remaining geometric measuwhen, either the circumradius and the
minimal annulus, or the inradius and the minimal annulus,given. We prove the optimal inequalities for
each of those problems, determining also its corresporelitrgmal sets.

Markus Kiderlen
Spherical liftings and projections in convex geometry

Let K be a lower dimensional convex bodydrdimensional space containing the origin. The supportfunc
tion of K can be obtained from its support function relative to itsaffiull by applying a linear transforma-
tion, which we call a spherical lifting. Starting from thistivation, we will introduce more general spherical
liftings. Spherical liftings map positive finite measures the unit sphere of a linear spateto measures
on the unit sphere id-dimensional space. The dual operators, the so-calledisphprojections, will also
be introduced. We will show that many geometric operatidiks, projections or translative integrals can
conveniently be expressed using spherical liftings angeptions. One central result will be that spheri-
cal projections preserve convexity, implying in particudadirected version of the observation that the 1-st
projection function of a convex body is a support function.

We will then turn to averages of spherical lifted projecipwhere averaging is understood with respect
to the invariant probability measure on aldimensional subspacds We discuss in how far a convex body
is determined by one or several of these averages.

Alexander Koldobsky
Inequalities of Khinchin type and sections bf-balls,p > —2.

We extend Khinchin type inequalities to the case- —2. As an application we verify the slicing problem
for the unit balls of finite-dimensional spaces that embed,jnp > —2.
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David Larman
Determining properties of convex bodies from informatiboat certain sections

The talk centred around partial results to three problems:

e Let K be a convex body i?? and letp be a point ofint K such that every two section & through
p has a projective centre different frgmIs K an ellipsoid?

e Let K, L be convex bodies if? with I C int K. Suppose we know th@l — 1)-volume of everyl — 1
section of K which touched.. Does this determin&” uniquely?

e Let K, L be convex bodies ii? with L C int K. Suppose that eveyl — 1) section ofK that touches
L is centrally symmetric. I¢( an ellipsoid?

Carl Lee
Multiple views of h-vectors

| will give a brief survey of several different ways of lookj@ath-vectors of polytopes, including combinato-
rial views (winding numbers, shellings, bistellar opavati), and algebraic (the face-ring, stress, weights, the
“volume ring”). | will offer reminders of several intereati open problems.

Zsolt Langi
Isoperimetric inequalities fdk,-polygons
(joint work with Balazs Csikos and Marton Naszodi)

The discrete isoperimetric problem is to determine the makiarea polygon with at mostvertices and of
a given perimeter. It is a classical fact that the uniquerogtipolygon on the Euclidean plane is the regular
one. The same statement for the hyperbolic plane was prov&éimly Bezdek and on the sphere by LaszIo
Fejes Toth. In the present paper we extend the discreterigogtric inequality in the following way.

LetI’ ¢ M be a simple closed polygon M and letk, > 0 be fixed. IfM = S?, we assume thdt
is contained in an open hemisphere. Take the closed damvktained by joining consecutive verticesIof
by curves of geodesic curvatukg facing outward (resp. inward). K, is the geodesic curvature of a circle
of radiusr, thenI" is assumed to have sides of length at nibsand the smooth arcs d? connecting two
consecutive vertices are assumed to be shorter than ortequakmicircle. We calP anouter(resp.inner)
k4-polygonwith the same set oferticesas that of". We call ak,-polygon with perimetet a (k,, [)-polygon
An outer (resp. inner)k,, [)-polygon isoptimalif its area is maximal among the areas of outer (resp. inner)
(kg,1)-polygons having the same number of vertices. We prove timiimg statements.

PROPOSITION Let M beS?, E? or H2. Let! > 0 andk, > 0 be given. Then the only optimal inner
(kq,1)-polygons inM are the regular ones.

THEOREM. Let M beS?, E? or H2. Letk, > 0, > 0 andn be given with the above restrictions. IIfs
not equal to the perimeter of the circle of geodesic curedtyrthen the only optimal outdi:,, [)-polygons
in M are the regular ones. 1fis equal to the perimeter of the circle of geodesic curvatyrehen a(k,, [)-
polygon is optimal if and only if its underlying polygdnis inscribed in a circle of geodesic curvaturg

Jospeh M. Ling
Non-linear inequalities for 4-dimensional convex polyesp

In this talk, we consider the characterization problem fierftvectors and the flag f-vectors for 4-polytopes.
Four new (infinite) lists of quadratic inequalities for thaglf-vectors of 4-polytopes are presented. These
inequalities extend the four inequalities obtained by My&an 1984. Four cubic inequalities for the flag
f-vectors are also presented. Furthermore, the projectbthe newly found inequalities onto the f-vectors
yields new (infinite) lists of quadratic inequalities foetfvectors. An application of these include an esti-
mate of the number of edges in terms of the number of verticddlse number of facets.
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Alexander Litvak
On the vertex index of convex bodies

We introduce the vertex index of a givérdimensional centrally symmetric convex body, which, irease,
measures how well the body can be inscribed into a convextgquéywith small number of vertices. This
index is closely connected to the illumination parametex bbdy, introduced earlier by Karoly Bezdek, and,
thus, related to the famous conjecture in Convex Geomeiytatovering of ad-dimensional body by
smaller positively homothetic copies. We provide asymnipaédty sharp (up to logarithmic terms) estimates
of this index in the general case and discuss extremal cbda® precisely, we show that the vertex index
varies betweend/+/In 2d andC'd>/? In(2d), wherec andC are absolute positive constants. Here, the lower
estimate is sharp (up to a logarithmic term) for crosspgigtoand the upper estimate is sharp (again, up to
a logarithmic term) for ellipsoids. Also, we provide prexisstimates in dimensions 2 and 3. We conjecture
that the vertex index of ddimensional Euclidean ball islv/d. We prove this conjecture in dimensions two
and three.

Monika Ludwig
Elementary moves on triangulations
(joint work with Matthias Reitzner)

Let P be ann-dimensional polyhedron iR”, that is, a finite union ofi-dimensional convex polytopes. A
finite set ofn-simplicesa P is atriangulationof P if no pair of simplices intersects in a set of dimension
and if their union equal®’. An elementary movapplied toa P is one of the two following operations: a
simplexT" € o P is dissected into twa-simplicesIy, T, by a hyperplane containing &n — 2)-dimensional
face ofT'; or the reverse, that is, two simplic&s, T, € «P are replaced by’ = 3DT; U Ty if T is again
a simplex. Triangulationa P and3P are equivalent by elementary moves? ~ P, if there are finitely
many elementary moves that transfot® into 5P.

THEOREM. If o P andjP are triangulations of the-polyhedronP, thena P ~ GP.

This result is a metric version of the Alexander-Newman thaofor simplicial complexes. As an application
the following extension result is obtained.

THEOREM. Every valuation on simplices iR™ has a unique extension to a valuation on polyhedi&in

Efren Morales-Amaya
A Characterization of ellipsoids
(joint work with J. Jeronimo)

Motivated by a theorem due to Rogers [3], we give a charaeteain of ellipsoid in the spirit of the Hobinger
Problem [1], [2]. Namely, we proved thati C R"™ is a convex bodyn > 3, and for every three for every
three parallel hyperplanes D and E there exists point € R™ with the following property: for every liné
passing through, the central projection& 4, and Kp of K from N A andi N D, respectively, ontds are
homothetics, therk is an ellipsoid.
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Marton Naszodi
Touching Homothetic Bodies and Antipodality

According to Klee’s definition (1960), aentipodal sein Euclideand-space is a seX with the property that,
through any two points ok, there is a pair of parallel hyperplanes supportigin this talk, | present two
research topics that are related by the idea of antipodality

In the first part of the talk, the maximum number of touchingifiee homothetic copies of a convex body
in Euclideand-space is discussed. According to a conjecture of KarogdBk and Janos Pach, this number
is 2¢; which bound, if it holds, is sharp as it is attained by cub&se previously known bound wa, |
improved it to2¢+1. | present the proof of this recent result.

The second part of the talk focuses on the extension of theeptof antipodality to hyperboli¢-space.
This is a joint work with Karoly Bezdek and Deborah Oliverd&/e define antipodality in three different
ways, as follows.

Following Klee, we say that a séf in hyperbolicd-space ig-antipodalf, through any two points ok,
there is a pair of parallel hyperbolic hyperplanes suppgtk .

Following Erdés’ concept of antipodality (1957), a $&in hyperbolici-space is-antipodal if the angle
determined by any three points &fis acute.

Finally, anh-antipodalset in hyperboliel-space is a seX with the property that for any;, x5 € X, the
setX is contained in the intersection of the horobdils and H., whereH; is the horoball bounded by the
horosphere that passes through containsz, inside and is perpendicular to the hyperbolic lifgrz, and
H, is defined similarily.

We find upper bounds on the cardinality of an antipodal setyjmehbolic d-space, according to the
different definitions.

Shmuel Onn

Multiway polytopes: universality and convex optimization
(slides are available &ttp://ie.technion.ac.ilonn/Talks/multiwvay_polyto pes.pdf )

A k-way (transportation) polytope is the set ofal} x --- x mj nonnegative arrays = (x;, .. ;.) such
that the sums of the entries over some of their lower dimemgisub-arrays (margins) are specified. More
precisely, for any tupléis, . .., ix) withi; € {1,...,m;} U {+}, the correspondinmarginz;, ... ;, is the
sum of entries of over all coordinateg with i; = +. Thesupportof (i1, ..., ;) and ofz;, __;, isthe set
supfis, ..., %) := {j : i; # +} of non-summed coordinates. For instance; i a4 x 5 x 3 x 2 array
then it hasl2 margins with supporf1, 3} such asts 4 o = 252:1 2?4:1 x3,i5.2,i,- Given a familyF of
subsets of 1, ..., k} and margin values,, ., for all tuples with support iiF, the corresponding-way
polytope is the set of nonnegative arrays with these margins

T]: = {J’ (S RTlxmxmk D Ty, = Wig, i s Supp(il, . ,Zk) S .7:} .

In this talk we present the following two remarkable contiras statements regarding multiway polytopes
and discuss some of their many applications:

UNIVERSALITY THEOREM: Every rational polytope® = {y € R : Ay = b} is polynomial time repre-
sentable as an x ¢ x 3 multiway polytope of line-sums, that is, with = {{1, 2}, {1, 3}, {2, 3} },

XecX3 o, _ _ —
T = {zeRY° 0 Y @ije=wik, D) Tijk="Vik, ) Tijk=1Uj}-
+
i j K

OPTIMIZATION THEOREM: For any fixedd, k, my, ..., mi_1, and familyF of subsets of 1, ..., k}, there
is a polynomial oracle-time algorithm that, givenarraysws, ..., wg € Z™* " *™-1X" margin values
wi,..i, for all tuples(iy, ..., i) with support inF, and convexc : R — R presented by evaluation
oracle, solves the corresponding convex integer multiwagg@amming problem,

max{ c(wix,...,wgx) : © € NV XMhmt X0 0 g i = Uiy ix s SUPHi1, ..., ik) € F }.
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These results, their consequences, applications andsextsmappear in several recent papers joint with
various coauthors among J. De Loera, R. Hemmecke, U. Rathhhd R. Weismantel, includingonvex
combinatorial optimizatioiDisc. Comp. Geom. 32:549-566, 200%he complexity of three-way statistical
tables(SIAM J. Comp. 33:819-836, 2004)ll rational polytopes are transportation polytopes and al
polytopal integer sets are contingency tab(#3CO 10, LNCS 3064:338-351, 2004)arkov bases of three-
way tables are arbitrarily complicate(d. Symb. Comp. 41:173-181, 2006);fold integer programming
(submitted), anc€Convex integer programmin(@n preparation).

Peter Papez
Ball-Polyhedra

This talk outlines the results of a joint paper written by KeZlek, Z. Langi, M. Naszodi P. Papez. The main
goal of this paper is to study the geometry of intersectidrfsdely many unit balls from the point of view
of discrete geometry in Euclidean space. We call thesebsdkpolyhedra They have been studied in the
past, in particular Reuleaux polygons; although the naniepbéyhedra seems to be a new terminology for
this special class of linearly convex sets. In fact, thera gpecial kind of convexity entering along with
ball-polyhedra which we calkns-convexityand study as well. This paper is not a survey on ball-polydedr
instead it lays a rather broad ground work for future studyadfpolyhedra by proving several new properties
of them and raising open research problems as well.

In this talk, | first define ball-polyhedra and supportingem@s. The supporting spheres are the objects
that play the role of supporting hyperplanes in the theorpaiyhedra. Next, we examine a special class
of ball-polyhedra called standard ball-polyhedra. Thithis family of ball-polyhedra for which the Euler-
Poincare formula holds. We also examine Steinitz’ Theorenitfe edge graph of standard ball-polyhedra.
The talk concludes with a survey of results from diverseargayeometry related to ball-polyhedra.

Carla Peri
Uniqueness and stability results in geometric tomography

Geometric tomography concerns the retrieval of informmatibout a geometric object via measurements of
its sections or projections.

In this talk we consider two types of data for line sectioramnely parallel or point X-rays. After review-
ing some of the main results on continuous parallel or poita¥s and discrete parallel X-rays, we present
recent uniqueness results for discrete point X-rays (spe The discussion will show that, somewhat sur-
prisingly, non- uniqueness results hinge on the existeheebitrary long arithmetic progressions of relative
prime numbers, and on the existence of some geometric imoédgtructures.

The final part of the talk will concern recent progress in #itglestimates (see [2]).
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Rolf Schneider
Intersections of balls in normed spaces
(joint work with José Pedro Moreno)

Let| - || be a norm orR? and B its unit ball. Any positive homothet aB is called aball. For K € K (the
system of nonempty compact convex subseRYf let 3(K) denote the intersection of all balls containing
K. Thus,B := {K € K : 3(K) = K} is the system of all intersections of balls. The systéfrof Mazur
sets is defined by the property thate X belongs toM if and only if to every hyperplan& with KNH = ()
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there exists a balb’ with K ¢ B’ andB’ N H = (). Motivated by questions and observations in two papers
by Granero, Moreno and Phelps from 2004, we first give exasngfl@orms for which (a5 is not ball stable
(i.e., not closed under the addition of balls), (b)s not closed, hence the ball hull m&ds not continuous.
For polyhedral norms, we show thatis Lipschitz continuous, and we give complete charactédna of

the norms having one of the following properties: fais closed under Minkowski addition, (i is closed
under addition of balls, (cM = B, (d) M contains only balls and one-pointed sets.

Carsten Schiitt
On the minimum of several random variables
(joint work with Y. Gordon, A. Litvak, and E. Werner)

Let f;,i=1,...,n, be symmetric, identically distributed random variabM# investigate expectations

dP(w)
M

where|| ||as is an Orlicz norm. We find out that these expressions are mabifrithe random variables are in
addition required to be independent.

In case the random variables are independent we get quiteserestimates for the above expectations.
In particular, for independent Gauf3 variables we have for & R"

MMWS/QMXmﬂWWWMS@WW
Q 1<i<n

where the Orlicz function id/(t) = ¢~ 7. This case is of particular interest to us. In a paper on gdized
zonotopes these estimates are applied to obtain estinmatesifimes of certain convex bodies.
For a given sequence of real numbeys. . ., a,, we denote thé&-th smallest one by
k- min a;.
1<i<n
Let A be a class of random variables satisfying certain distigbutonditions (the class contaif$(0, 1)

Gaussian random variables). We show that there exist twal@tiespositive constantsandC' such that for
every sequence of positive real numbeys. . ., z,, and everyk < n one has

E+1-— k+1-j
<E k- <
1<J<k Z 1/ . E k mm |.T1§1| Cln(k+1) maé(k Z 1/3’1
wherefy, .. ., &, are independent random variables from the clds#loreover, ifk = 1 then the left hand

side estimate does not require independence of the We provide similar estimates for the moments of
k- minlgign |.T1§1| as well.

Grzegorz Sojka
Minor illuminations and and the determination of convex ilesdy values oftoco-chord functions
(joint work with David Larman)

The notion of illuminations is strongly connected with theious Hadwiger lllumination Conjecture. It says
that it should be possible to cover boundary of arbitrarymeshsional convex body by at mdst translates
of its interior.

The second notion mentioned in the title are chord functitm&998 A. Soranzo generalized the defini-
tion of i-chord functions to the case= 3D + oo. For arbitrary convex body and non-zero vectar he
used the following formulae:

P—oot¢ (u) = 3Dmin{pg (u), p=K (—u)};
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Pioo. i (u) = 3D max {pk (u), p=K (—u)},

wherepy denotes the radial function af.

In 2004 D. Larman and Grzegorz Sojka found a link betwees tivb subjects. They generalized the
notion of illuminations to the case when the source is sonermial point of the convex body considered.
During this presentation we will speak about their obséovednd related results.

Valeriu Soltan
Homothety classes of convex sets

Let Ay denote the homothety class (i. e., the family of positive btiatic copies) generated by a closed
convex setd C R™. We study the conditions under which the Minkowski sum, thiekdwski difference,
and the binary intersection, defined, respectively, by

BH+CH={B/+C/|B/EBH, C/ECH},
By ~Cyg = {B/NC/ | B e BH, C' e CH, dun(B/ NC/) ZTL},

ByunNCp={B'NC"|B" € By, C"eCy, dim(B'NC’) =n}

belong to a uniqgue homothety class generated by a close@xapt of dimension in R™ (more generally,
belong to the union of countably many homothety classesrgeteby closed convex setsitt).

We also study planar sections and projections of homothetigex sets ifR™. In particular, closed con-
vex setsB, C' C R™ (not necessarily compact) are homothetic if and only ifeithf the following conditions
holds: (a) the orthogonal projections @ andC on each 3-dimensional plane Bf* are homothetic, where
similarity ratio may depend on the projection plafte,there are pointg € B andg € C such that such that
for every pair of parallel 3-dimensional planésand M throughp andgq, respectively, the section8 N L
andC N M are homothetic.

Jozsef Solymosi
Additive Discrete Geometry

One of the most important results in discrete geometry,arém of Szemerédi and Trotter [2], gives a sharp
bound on the maximum number of incidences between pointbragslin the Euclidean plane. In particular it
says that lines and» points determine at mo&(n*/3) incidences. Let us suppose that an arrangemennt of
lines and» points definesn*/3 incidences, for a given positivelt is widely believed that such arrangements,
where the number of incidences is close to the maximum, haseia structure. However no results are
known in this direction. There are numerous proofs of then&zédi-Trotter theorem (the most elegant is
Székely’s [3]) but none of them gives information aboutstreicture of arrangements with many incidences.
In this talk we mentioned that if is large enough and the number of incidences is at leasf then the
arrangement contains a triangle. This seemingly obviaitestent is quite difficult to prove, the only known
proof uses Szemerédi's Regularity Lemma [1]. We gave&urédxamples how to analyze extremal point-line
arrangements using methods from algebra and number theory.
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Alina Stancu
From a characterization of ellipsoids to the p-affine siefaeca

Characterizing the ellipsoids as the only convex bodieh wifficiently regular boundary which are homo-
thetic to their illumination, or p-illumination, bodies Wlead naturally to an interpretation of the p-affine
surface area. As consequences we will discuss a couple gfiafiges relating these affine quantities to
volumes.

Konrad J. Swanepoel
Explicit upper bounds for edge-antipodal polytopes

A d-polytopeP is edge-antipodaif for any two verticesr andy joined by an edge there exist two parallel
hyperplanes, one throughand one througly, such thatP is contained in the closed slab bounded by the
two hyperplanes. This notion was introduced by Talata (39980 conjectured that the number of vertices
of an edge-antipodalpolytope is bounded above by a constant. Csikos (2003gdran upper bound d2,

and K. Bezdek, Bisztriczky and Boroczky (2005) gave tharphupper bound af. Por (2007?) proved that
the number of vertices of an edge-antipodadolytope is bounded above by a functiondfHowever, his
proof is existential, with no information on the size of thgper bound. Our main result is an explicit bound.

THEOREM Let d > 2. Then the number of vertices of an edge-antipetipblytope is bounded above by
(4 +1)d.

This theorem is proved by considering a metric relative gieedntipodal polytopes that we call subequilateral
polytopes. For more detail, as well as references to theatitee, sedttp://arxiv.org/math.MG/

0601638

Roman Vershynin
New convex geometry problems in linear programming

The Simplex Method is the oldest and easiest algorithm ire&irProgramming. Nevertheless, it puts the
theory of computing in an awkward position. This is not a palsnial time algorithm (counterexamples are
known), but in practice it runs in polynomial time. To thetieally explain the strange behavior, Spielman
and Teng introduced the notion of the Smoothed Analysis gbAthms. There, one "smoothes” an input by
a small random perturbation, in hope that this models "mpsdttice problems. Spielman and Teng showed
that the smoothed complexity of the simplex method is polgiab. Their analysis brings up a variety of
new problems in convex geometry. We go one step further tev shat the number of steps in the smoothed
simplex algorithm is actually polylogarithmic, rather thpolynomial, in the number of constraints of the
linear program.

Wolfgang Weil
Directed tomographic transforms
(based on joint work with Paul Goodey)

The basic problem in Geometric Tomography is to retrieverimfation about a compact (convex or star-
shaped) sef{ ¢ R? from data arising from sections or projectionsiof Generalizing classical results on
projection or section functions for centrally symmetriadies, we introduce directed section functions of star
bodies and two different types of directed projection fioms of convex bodies. These are functions on the
flag manifold{(L, u)}, whereL varies among thg-dimensional subspacdsC R%, 1 < j < d — 1, andu

is a variable unit vector it.. These directed section resp. projection functions determbodyK uniquely
(resp. uniquely up to a translation). As a more general prablone can consider the averaged directed
section and projection functions (obtained as integrats @l j-dimensional subspacds containing the
directionu) and ask whether even they determine the underlying bodthdmmain part of the lecture, we
study certain of these averaged functions and show rekatietween them as well as uniqueness results.
It turns out that uniqueness holds for a large range of ditnesg and j, but that there are also infinitely
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many pairs(j, d) where uniqueness fails. The proofs are based on the facthtabnsidered tomographic
transforms can be described by linear operators on the phigreS¢—!, which intertwine the action of
the rotation group. The injectivity properties of the opera are represented in the non-vanishing of the
multipliers w.r.t. spherical harmonics. The explicit beioair of the multipliers is complicated but recursion
formulas leading to the mentioned injectivity results webgained using Zeilberger's algorithm.

Elisabeth Werner
Spaces between polytopes and zonotopes
(joint work with Y. Gordon, A. Litvak and C. Schiitt)

We study geometric parameters associated with the Banacles{R", ||||x,,) normed by

1/q

[2lkg=| D> <z a;>" ,
1<i<k

where{a;};<n is a given sequence d¥ pointsinR”, 1 < k < N, 1 < ¢ < oo and{\!};>1 denotes the
decreasing rearrangement of a sequencé;>1 C R. In particular, we give estimates on the volume of the
unit balls of these spaces.

Jorg M. Wills
On the zeros of the Ehrhart polynomial
(joint work with M.Henk)

The Ehrhart polynomial counts the number of lattice poirithe integer multiples. P of a lattice polytope
PinZ%. It can be written as a product

d

G(s,P)=[Ja+ ),

i=1 i

wheres € C is the complex variable and-~; € C the zeros (or roots) off. Fors € N, G(s, P) counts
the lattice points o P. The motivation of such investigation comes from the intéom betweenP and the
zeros—-;, i. e., between Geometry and Algebra. In this talk we distwsgopics:

¢ Relations between thg and Minkowski’s successive minima, in particular betweegirt arithmetic
and geometric means.

e Polytopes with all zeros-~; on the line Res = —%. In this case the Ehrhart polynomials have some
properties in common with the Riemagrfunction, as Bump et al. (2000) and Rodriguez-Villegas
(2002) proved.

We show some basic properties of these polytopes.
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